首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Guo BL  Gao QY 《Carbohydrate research》2007,342(16):2416-2422
Thermo- and pH-responsive semi-IPN polyampholyte hydrogels were prepared by using carboxymethylchitosan and poly(N-isopropylacrylamide) with N,N'-methylenebisacrylamide (BIS) as the crosslinking agent. The swelling characteristics of these hydrogels at distinct compositions as a function of pH and temperature were investigated. It was found that the semi-IPN hydrogels demonstrated the pH- and temperature-responsive nature of the materials, and it also showed good reversibility. The study on the release of coenzyme A (CoA) showed that within 24h the cumulative release ratio of CoA was 22.6% in pH 2.1 solution and 89.1% in pH 7.4 solution at 37 degrees C, respectively. The release rate of CoA was higher at 37 degrees C than 25 degrees C in a pH 7.4 buffer solution. An increased release rate of CoA was observed with the content of carboxymethylchitosan increasing in the hydrogel at 25 degrees C in pH 7.4 solution. These results show that semi-IPN hydrogel seems to be of great promise in pH-temperature oral drug delivery systems.  相似文献   

2.
A novel interpenetrating network hydrogel for drug controlled release, composed of modified poly(aspartic acid) (KPAsp) and carboxymethyl chitosan (CMCTS), was prepared in aqueous system. The surface morphology and composition of hydrogels were characterized by SEM and FTIR. The swelling properties of KPAsp, KPAsp/CMCTS semi-IPN and KPAsp/CMCTS IPN hydrogels were investigated and the swelling dynamics of the hydrogels was analyzed based on the Fickian equation. The pH, temperature and salt sensitivities of hydrogels were further studied, and the prepared hydrogels showed extremely sensitive properties to pH, temperature, the ionic salts kinds and concentration. The results of controlled drug release behaviors of the hydrogels revealed that the introduction of IPN observably improved the drug release properties of hydrogels, the release rate of drug from hydrogels can be controlled by the structure of the hydrogels and pH value of the external environment, a relative large amount of drug released was preferred under simulated intestinal fluid. These results illustrated high potential of the KPAsp/CMCTS IPN hydrogels for application as drug carriers.  相似文献   

3.
Thermo-sensitive semi-IPN hydrogels were prepared via in situ copolymerization of N-isopropylacrylamide (NIPAAm) with poly(ethylene glycol)-co-poly(ε-caprolactone) (PEG-co-PCL) macromer in the presence of sodium alginate by UV irradiation technology. The effects of the sodium alginate content, temperature, and salt on the swelling behavior of the as-obtained hydrogels were studied. The results showed that the swelling ratio of the hydrogels increased with the increasing sodium alginate content at the same temperature, and decreased with the increase in temperature. The salt sensitivity of the semi-IPN hydrogels was dependent on the content of sodium alginate introduced in the hydrogels. The mechanical rheology of the hydrogels and in vitro release behavior of bovine serum albumin (BSA) in situ encapsulated within the hydrogels were also investigated. It was found that the introduction of sodium alginate with semi-IPN structure improved mechanical strength of the hydrogels and the cumulative release percentage of BSA from the hydrogels. Such double-sensitive semi-IPN hydrogel materials could be exploited as potential candidates for drug delivery carriers.  相似文献   

4.
A series of semi-interpenetrating polymer network (semi-IPN) materials were prepared by blending polymerization of acrylic acid (AA) in cationic starch (CS) and poly(methacryloyloxyethyl trimethylammonium chloride) (PDMC) solution. The crosslinker concentration, the feed ratio of the CS-g-AA to PDMC was discussed in term of the swelling capacity, and hydrogel properties were evaluated by network parameters Mc, morphological and compressive load tests. The semi-IPN hydrogels were also characterized by FT-IR spectroscopy to confirm the interactions between CS-g-AA and PDMC. Electron microscopy involved to staining of the anionic phases using CsF showed a transition from two-phase to compatible structure with the increasing content of PDMC, and further confirmed that the semi-IPN structure in hydrogels along with DSC. The resultant semi-IPN hydrogels were found to possess appreciable compatibility, good swellability and mechanical strength.  相似文献   

5.
With the aim of developing a pH-sensitive controlled drug release system, a poly (L-lysine) (PLL) based cationic semi-interpenetrating polymer network (semi-IPN) has been synthesized. This cationic hydrogel was designed to swell at lower pH and de-swell at higher pH and therefore be applicable for achieving regulated drug release at a specific pH range. In addition to the pH sensitivity, this hydrogel was anticipated to interact with an ionic drug, providing another means to regulate the release rate of ionic drugs. This semi-IPN hydrogel was prepared using a free-radical polymerization method and by crosslinking of the polyethylene glycol (PEG)-methacrylate polymer through the PLL network. The two polymers were penetrated with each other via interpolymer complexation to yield the semi-IPN structures. The PLL hydrogel thus prepared showed dynamic swelling/de-swelling behavior in response to pH change, and such a behavior was influenced by both the concentrations of PLL and PEG-methacrylate. Drug release from this semi-IPN hydrogel was also investigated using a model protein drug, streptokinase. Streptokinase release was found to be dependent on its ionic interaction with the PLL backbones as well as on the swelling of the semi-IPN hydrogel. These results suggest that a PLL semi-IPN hydrogel could potentially be used as a drug delivery platform to modulate drug release by pH-sensitivity and ionic interaction.  相似文献   

6.
Poly(N-isopropylacrylamide)-based [P(NIPAAm)-based] semi-interpenetrating polymer networks (semi-IPNs), consisting of P(NIPAAm)-based hydrogels and linear poly(acrylic acid) [P(AAc)] chains, were synthesized, and the effects of the P(AAc) chains on semi-IPN injectability and phase behavior were analyzed. In P(NIPAAm)- and P(NIPAAm-co-AAc)-based semi-IPN studies, numerous reaction conditions were varied, and the effects of these factors on semi-IPN injectability, transparency, phase transition, lower critical solution temperature (LCST), and volume change were examined. The P(AAc) chains did not significantly affect the LCST or volume change of the semi-IPNs, compared to control hydrogels. However, the P(AAc) chains affected the injectability, transparency, and phase transition of the matrices, and these effects were dependent on chain amount and molecular weight (MW) and on interactions between the P(AAc) chains and the solvent and/or copolymer chains in P(NIPAAm-co-AAc) hydrogels. These results can be used to design "tailored" P(NIPAAm)-based semi-IPNs that have the potential to serve as functional scaffolds in tissue engineering applications.  相似文献   

7.
Novel polyelectrolyte hydrogels (coded as GA) based on cationic guar gum (CGG) and acrylic acid monomer by photoinitiated free-radical polymerization were synthesized with various feed compositions. Fourier transform infrared spectra (FTIR), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC) confirmed that the formation of the polyelectrolyte hydrogels was attributed to the strong electrostatic interaction between cationic groups in CGG and anionic groups in poly (acrylic acid) (PAA). Swelling experiments provided important information on drug diffusion properties, which indicated the GA hydrogels were highly sensitive to pH environments. Potential applications of the hydrogels matrices in controlled drug delivery were also examined. The ketoprofen-loaded CGG/PAA matrices were prepared by hydrogels and directly compressed tablets, respectively. Release behavior of ketoprofen relied on the preparative methods of matrices, ratios of CGG/AA and pH environments. The release mechanism was studied by fitting experimental data to a model equation and calculating the corresponding parameters. The result showed that the kinetics of drug release from the hydrogels in pH 7.4 buffer solution was mainly non-Fickian diffusion. However, for tablets, the drug release in pH 7.4 buffer solution was mainly affected by polymer erosion. The pH of the dissolution medium appeared to have a strong effect on the drug transport mechanism. At more basic pH values, Case II transport was observed, indicating a drug release mechanism highly influenced by macromolecular chain relaxation. The ketoprofen release is also tested in the conditions chosen to simulate gastrointestinal tract conditions. The results implied that the GA hydrogels can be exploited as potential carriers for colon-specific drug delivery.  相似文献   

8.
Temperature and pH-responsive hydrogels based on chitosan grafted with poly acrylic acid (PAAc), poly hydroxy propyl methacrylate (PHPMA), poly (vinyl alcohol) (PVA) and gelatin were prepared for controlled drug delivery. These stimuli-responsive hydrogels were synthesized by gamma irradiation technique. The degree of gelation was over 90% and increased as chitosan, AAc and PVA content increased, while the degree of gelation decrease with the increase of gelatin content. The equilibrium swelling studies of hydrogels prepared in various conditions were carried out in an aqueous solution, and the pH sensitivity in the range of 2–9 was investigated. An increase of swelling degree with an increase in the pH was noticed and showed the highest value at pH 9. Also antibiotic drug Oxttetracycline was loaded into the hydrogels and the release studies were carried out at different pH and temperature. The in vitro release profiles of the drug showed that, the release of the drug increased as the time, temperature and pH increased and reached to maximum after 48 h at pH 9. The prepared hydrogels were characterized by using SEM, FTIR, and DSC.  相似文献   

9.
Hydrogels have been successfully used to entrap hydrophilic drugs and release them in a controlled fashion; however, the entrapment and release of hydrophobic drugs has not been well studied. We report on the release characteristics of a model hydrophobic drug, the steroid hormone estradiol, entrapped in low (MW 360/MW 550) and high (MW 526/MW 1000) molecular weight poly(ethylene glycol) methacrylate (PEG-MA)/dimethacrylate (PEG-DMA) hydrogels. The cross-linking ratio, temperature, and pH ranged from 10:1 to 10:3, from 33 to 41 degrees C, and from 2 to 12, respectively. The gelation of the PEG-MA/PEG-DMA hydrogel was initiated with UV irradiation. The absence of poly(glutamic acid) in the hydrogel formulation resulted in a loss of pH sensitivity in the acidic range, which was displayed by the hydrogels' similarities in swelling ratios in the pH buffers of pH 2, 4, and 7. Use of high molecular weight polymers resulted in a higher hydrogel swelling (300%) in comparison to the low molecular weight polymers. Drug size was found to be a significant factor. In comparison to 100% estradiol (MW 272) release, the fractional release of insulin (MW 5733) was 12 and 24% in low and high molecular weight gels at pH 2, respectively, and 17% in low molecular weight gels at pH 7. On the release kinetics of the estradiol drug, the hydrogels displayed a non-Fickian diffusion mechanism, which indicated that the media penetration rate is in the same range as the drug diffusion. The synthesis, entrapment, and release of estradiol by the PEG-MA/PEG-DMA hydrogels proved to be successful, but the use of ethanol in the buffers to promote the hydrophobic release of the estradiol in the in vitro environment caused complications, attributed to the process of transesterification.  相似文献   

10.
Arthrobacter simplex cells, which convert the steroid hydrocortisone to prednisolone, have been entrapped in a thermally reversible hydrogel. Such hydrogels exhibit a lower critical solution temperature (LCST) wherein the gel shrinks and deswells when it is warmed through its LCST, and then reversibly expands and reswells when it is cooled below the LCST. The immobilized cell-hydrogel system has been thermally cycled between two temperatures, each below the LCST. The upper temperature was selected to be just below the LCST, where the gel deswells but does not collapse, as it does at the LCST. The thermal cycling acts like a "hydraulic pump" which enhances mass transfer of the substrate (hydrocortisone) in and the product (prednisolone) out of the gel, thereby increasing steroid conversion dramatically relative to isothermal operation at either the upper or lower temperature. The increased conversion can also be due in part to reduced product inhibition. Mass transfer resistance and product inhibition are among the most serious problems in immobilized biocatalyst technology and thermal cycling of LCST hydrogels is both a novel and useful approach to minimizing these problems.  相似文献   

11.
In order to utilize the psyllium husk, a medicinally important natural polysaccharide, to develop the hydrogels meant for the drug delivery, we have prepared psyllium and polyacrylic acid based polymeric networks by radiation-induced crosslinked copolymerization. Polymeric networks (hydrogels) thus formed were characterized with SEMs, FTIR and swelling studies. Swelling behavior of the hydrogels was studied as a function of monomer concentration in the hydrogels and temperature, pH and [NaCl] of the swelling medium. This paper discusses the swelling kinetics of the hydrogels and release dynamics of anticancer model drug 5-fluorouracil from the hydrogels for the evaluation of swelling and drug release mechanisms. It has been observed from the release dynamics of drug that diffusion exponent ‘n’ have 0.7, 0.8 and 0.7 values and gel characteristics constant ‘k’ have 9.13 × 10−3, 6.22 × 10−3 and 9.01 × 10−3 values for the release of 5-fluorouracil, respectively, in distilled water, pH 2.2 buffer and pH 7.4 buffer. The values of the diffusion exponent show that the release of drug from drug-loaded hydrogels has occurred through Non-Fickian diffusion mechanism. It has also been observed from the swelling and release of drug in the different pH buffer that the polymer matrix is pH responsive and can be exploited for the delivery of anticancer drug to the colon.  相似文献   

12.
In situ polymerizable hydrogels are extensively investigated to implement new biomedical and pharmaceutical approaches. In the present paper a novel polysaccharidic matrix based on calcium alginate (Ca(II)-Alg) hydrogel and dextran methacrylate derivative (Dex-MA), showing potential applicability in the field of pharmaceutics is described. The semi-interpenetrating polymer system (semi-IPN) obtained by a dispersion of Dex-MA chains into a Ca(II) hydrogel leads to a hydrogel with rheological properties quite different from those of Ca(II)-Alg, allowing to inject the semi-IPN easily through an hypodermic needle. The UV curing of the semi-IPN, by cross-linking of the methacrylate moieties, leads to an IPN strong hydrogel that can be used for a modulated delivery of bioactive molecules. In the present paper, rheological and mechanical behaviors of the semi-IPN and of the IPN are discussed. The release of model molecules, including a protein, are also presented to show the suitability of the novel system as a drug delivery system.  相似文献   

13.
Polymeric nanoparticles have emerged as a promising approach for drug delivery systems. We prepared chitosan (CS)/sodium alginate (SAL) polyelectrolyte complex nanoparticles (CS/SAL NPs) via a simple and mild ionic gelation method by adding a CS solution to a SAL solution, and investigated the effects of molecular weight of the added CS, and the SAL:CS mass ratio on the formation of the polyelectrolyte complex nanoparticles. The well-defined CS/SAL NPs with near-monodisperse particle size of about 160 nm exhibited a pH stable structure, and pH responsive properties with a negatively or positively charged surface. The so-called “electrostatic sponge” structure of the polyelectrolyte complex nanoparticles enhanced their drug-loading capacity towards the differently charged model drug molecules, and favored controlled release. We also found that the drug-loading capacity was influenced by the nature of the drugs and the drug-loading media, while drug release was affected by the solubility of the drugs in the drug-releasing media. The biocompatibility and biodegradability of the polyelectrolytes in the polyelectrolyte complex nanoparticles were maintained by ionic interactions. These results indicate that CS/SAL NPs can represent a useful technique for pH-responsive drug delivery systems.  相似文献   

14.
In this work, hydrogels based on semi-interpenetrating polymeric networks (semi-IPN) based on collagen-polyurethane-alginate were studied physicochemically and from different approaches for biomedical application. It was determined that the matrices in the hydrogel state are crosslinked by the formation of urea and amide bonds between the biopolymer chains and the polyurethane crosslinker. The increment in alginate content (0–40 wt%) significantly increases the swelling capacity, generating semi-crystalline granular structures with improved storage modulus and resistance to thermal, hydrolytic, and proteolytic degradation. The in vitro bioactivity results indicated that the composition of these novel hydrogels stimulates the metabolic activity of monocytes and fibroblasts, benefiting their proliferation; while in cancer cell lines, it was determined that the composition of these biomaterials decreases the metabolic activity of breast cancer cells after 48 h of stimulation, and for colon cancer cells their metabolic activity decreases after 72 h of contact for the hydrogel with 40 wt% alginate. The matrices show a behavior of multidose release of ketorolac, and a higher concentration of analgesic is released in the semi-IPN matrix. The inhibition capacity of Escherichia coli is higher if the polysaccharide concentration is low (10 wt%). The in vitro wound closure test (scratch test) results indicate that the hydrogel with 20 wt% alginate shows an improvement in wound closure at 15 days of contact. Finally, the bioactivity of mineralization was evaluated to demonstrate that these hydrogels can induce the formation of carbonated apatite on their surface. The engineered hydrogels show biomedical multifunctionality and they could be applied in soft and hard tissue healing strategies, anticancer therapies, and drug release devices.  相似文献   

15.
A series of starch/methacrylic acid (MAAc) copolymer hydrogels of different compositions were synthesized using γ-rays induced polymerization and crosslinking. The effects of the preparation conditions such as the feed solution concentration, feed solution composition and irradiation dose on the gelation process of the synthesized copolymer were investigated. The swelling behavior of the starch/methacrylic acid (MAAc) copolymer hydrogels was characterized by studying the effect of the hydrogel composition on the time- and pH-dependent swelling. Swelling kinetics showed that the synthesized hydrogels possessed Fickian diffusion behavior at pH 1 and non-Fickian diffusion at pH 7 which recommend them as good candidate for colon specific drug delivery systems. The synthesized hydrogels were loaded with ketoprofen as a model drug to investigate the release behavior of the synthesized hydrogels. The results showed the ability of the hydrogels to keep the loaded drug at pH 1 and release it at pH 7. The data also showed that the release rate can be controlled by controlling the preparation conditions such as comonomer concentration and composition and irradiation dose.  相似文献   

16.
Hydrogels that undergo deformation upon appropriate changes in pH or temperature have considerable promise as drug delivery vehicles. Drug uptake in swelling and nonswelling cylindrical hydrogels and drug release from these into a target fluid are investigated here. A mathematical model for hydrogel-solution composite, a composite of a distributed parameter system (cylindrical hydrogel) and a lumped parameter system (surrounding solution), is developed. The polymer network displacement in a swelling/deswelling hydrogel is described by a stress diffusion coupling model. The analytical solution for network displacement is used to predict solvent intake by swelling hydrogels, solvent efflux from deswelling hydrogels, and changes in pressure, porosity, and effective drug diffusivity. These in turn influence drug uptake during and after hydrogel swelling and drug release from hydrogel during and after deswelling. Numerical results illustrate benefits of hydrogel swelling for drug loading and merits of different modes of drug release. Drug uptake and drug release by temperature-responsive hydrogels are compared with those by hydrogels not subject to deformation.  相似文献   

17.
A novel method using a temperature-sensitive polymer (methylcellulose) to thermally gel aqueous alginate blended with distinct salts (CaCl2, Na2HPO4, or NaCl), as a pH-sensitive hydrogel was developed for protein drug delivery. It was noted that the salts blended in hydrogels may affect the structures of an entangled network of methylcellulose and alginate and have an effect on their swelling characteristics. The methylcellulose/alginate hydrogel blended with 0.7 M NaCl (with a gelation temperature of 32 degrees C) demonstrated excellent pH sensitivity and was selected for the study of release profiles of a model protein drug (bovine serum albumin, BSA). In the preparation of drug-loaded hydrogels, BSA was well-mixed to the dissolved aqueous methylcellulose/alginate blended with salts at 4 degrees C and then gelled by elevating the temperature to 37 degrees C. This drug-loading procedure in aqueous environment at low temperature may minimize degradation of the protein drug while achieving a high loading efficiency (95-98%). The amount of BSA released from test hydrogels was a function of the amount of alginate used in the hydrogels. The amount of BSA released at pH 1.2 from the test hydrogel with 2.5% alginate was relatively low (20%), while that released at pH 7.4 increased significantly (86%). In conclusion, the methylcellulose/alginate hydrogel blended with NaCl could be a suitable carrier for site-specific protein drug delivery in the intestine.  相似文献   

18.
Huang X  Lowe TL 《Biomacromolecules》2005,6(4):2131-2139
A series of hydrogels with both thermoresponsive and completely biodegradable properties was developed for aqueous encapsulation and controlled release of hydrophilic drugs in response to temperature change. The hydrogels were prepared in phosphate-buffered saline (pH 7.4) through free radical polymerization of N-isopropylacrylamide (NIPAAm) monomer and a dextran macromer containing multiple hydrolytically degradable oligolactate-2-hydroxyethyl methacrylate units (Dex-lactateHEMA). Swelling measurement results demonstrated that four gels with feeding weight ratios of NIPAAm:Dex-lactateHEMA = 7:2, 6:3, 5:4, and 4:5 (w/w) were thermoresponsive by showing a lower critical solution temperature at approximately 32 degrees C. The swelling and degradation of the hydrogels strongly depended on temperature and hydrogel composition. An empirical mathematical model was established to describe the fast water absorption at the early stage and deswelling at the late stage of the hydrogels at 37 degrees C. Two hydrophilic model drugs, methylene blue and bovine serum albumin, were loaded into the hydrogels during the synthesis process. The molecular size of the drugs, the hydrophilicity and degradation of the hydrogels, and temperature played important roles in controlling the drug release.  相似文献   

19.
The covalently cross-linked chitosan-poly(ethylene glycol)1540 derivatives have been developed as a controlled release system with potential for the delivery of protein drug. The swelling characteristics of the hydrogels based on these derivatives as the function of different PEG content and the release profiles of a model protein (bovine serum albumin, BSA) from the hydrogels were evaluated in simulated gastric fluid with or without enzyme in order to simulate the gastrointestinal tract conditions. The derivatives cross-linked with difunctional PEG1540-dialdehyde via reductive amination can swell in alkaline pH and remain insoluble in acidic medium. The cumulative release amount of BSA was relatively low in the initial 2 h and increased significantly at pH 7.4 with intestinal lysozyme for additional 12 h. The results proved that the release-and-hold behavior of the cross-linked CS–PEG1540H-CS hydrogel provided a swell and intestinal enzyme controlled release carrier system, which is suitable for oral protein drug delivery.  相似文献   

20.
The controlled release of benzoic acid (3.31 Å) and sulphanilamide (3.47 Å) from poly(vinyl alcohol), PVA, hydrogels fabricated by solution casting at various cross-linking ratios, were investigated. The PVA hydrogels were characterized in terms of the degree of swelling, the molecular weight between cross-links, and the mesh size. The drug release experiment was carried out using a modified Franz diffusion cell, at a pH value of 5.5 and at temperature of 37°C. The amount of drug release and the diffusion coefficients of the drugs from the PVA hydrogels increased with decreasing cross-linking ratio, as a larger mesh size was obtained with lower cross-linking ratios. With the application of an electric field, the amount of drug release and the diffusion coefficient increased monotonically with increasing electric field strength, since the resultant electrostatic force drove the ionic drugs from the PVA matrix. The drug size, matrix pore size, electrode polarity, and applied electric field were shown to be influential controlling factors for the drug release rate.KEY WORDS: electrophoresis force, ionic drug delivery, iontophoresis, poly(vinyl alcohol)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号