首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There are currently no models of exercise that recruit and train muscles, such as the rat spinotrapezius, that are suitable for transmission intravital microscopic investigation of the microcirculation. Recent experimental evidence supports the concept that running downhill on a motorized treadmill recruits the spinotrapezius muscle of the rat. Based on these results, we tested the hypothesis that 6 wk of downhill running (-14 degrees grade) for 1 h/day, 5 days/wk, at a speed of up to 35 m/min, would 1) increase whole body peak oxygen uptake (Vo(2 peak)), 2) increase spinotrapezius citrate synthase activity, and 3) reduce the fatigability of the spinotrapezius during electrically induced 1-Hz submaximal tetanic contractions. Trained rats (n = 6) elicited a 24% higher Vo(2 peak) (in ml.min(-1).kg(-1): sedentary 58.5 +/- 2.0, trained 72.7 +/- 2.0; P < 0.001) and a 41% greater spinotrapezius citrate synthase activity (in mumol.min(-1).g(-1): sedentary 14.1 +/- 0.7, trained 19.9 +/- 0.9; P < 0.001) compared with sedentary controls (n = 6). In addition, at the end of 15 min of electrical stimulation, trained rats sustained a greater percentage of the initial tension than their sedentary counterparts (control 34.3 +/- 3.1%, trained 59.0 +/- 7.2%; P < 0.05). These results demonstrate that downhill running is successful in promoting training adaptations in the spinotrapezius muscle, including increased oxidative capacity and resistance to fatigue. Since the spinotrapezius muscle is commonly used in studies using intravital microscopy to examine microcirculatory function at rest and during contractions, our results suggest that downhill running is an effective training paradigm that can be used to investigate the mechanisms for improved microcirculatory function following exercise training in health and disease.  相似文献   

2.
An isolated perfused rat hindlimb preparation was used to study the impact of local muscle adaptations induced by endurance exercise training on muscle performance and peak muscle oxygen consumption. Rats were trained for 12-15 wk by a running program (30 m/min up a 15% grade for 1 h/day 5 days/wk) shown previously to increase muscle mitochondrial enzyme activity. Sedentary (n = 11) and trained (n = 11) hindlimbs of similar size were perfused with a similar inflow (12.1 ml/min) at a similar oxygen content (18.1 ml O2/100 ml blood). Tetanic contractions (100 ms at 100 Hz) at 4, 8, 15, 30, 45, and 60/min were elicited in consecutive order. Initial tension was better maintained by muscles of trained animals at all frequencies above 4 tetani/min (P less than 0.05). Oxygen consumption (mumol.min-1.g-1) increased similarly in both groups at the lower contraction frequencies but was greater (P less than 0.05) in the trained [3.52 +/- 0.32 (SE)] than in the sedentary (2.44 +/- 0.31) group at 60 tetani/min. The peak oxygen consumption of the trained group (3.93 +/- 0.27) was 20% greater (P less than 0.05) than that of the sedentary group (3.28 +/- 0.28) when peak values for each animal, irrespective of the contraction condition, are compared. Blood flows to the contracting muscle (approximately 100 ml.min-1.g-1) and, therefore, oxygen deliveries (mumol.min-1.g-1) were not different between sedentary (7.99 +/- 0.56) and trained groups (8.35 +/- 0.61). Thus the 20% higher peak oxygen consumption was achieved by a greater oxygen extraction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
In situ muscle stimulation in trained and untrained rats was used to reevaluate whether adaptations induced by endurance exercise training result in decreased lactate production by contracting muscles. The gastrocnemius-plantaris-soleus muscle group was stimulated to perform isotonic contractions. After 3 min of stimulation with 100-ms trains at 50 Hz at 60/min, the increases in lactate concentration in the plantaris, soleus, and fast-twitch red muscle (deep portion of lateral head of gastrocnemius) were only approximately 50% as great in trained as in sedentary rats. In the predominantly fast-twitch white superficial portion of the medial head of the gastrocnemius the increase in lactate concentration was 28% less in the trained than in the sedentary group. The decreases in muscle glycogen concentration seen after 3 min of stimulation at 60 trains/min were smaller in the trained than in the untrained group. The reduction in lactate accumulation that occurred in the different muscles in response to training was roughly proportional to the degree of glycogen sparing. These results show that endurance training induces adaptations that result in a slower production of lactate by muscle during contractile activity.  相似文献   

4.
We tested the hypotheses that 4 wk of exercise training would diminish the magnitude of vasoconstriction in response to sympathetic nerve stimulation and augment endothelium-dependent vasodilation (EDD) in resting skeletal muscle in a training intensity-dependent manner. Sprague-Dawley rats were randomly assigned to sedentary time-control (S), mild- (M; 20 m/min, 5% grade), or heavy-intensity (H; 40 m/min, 5% grade) treadmill exercise groups. Animals trained 5 days/wk for 4 wk with training volume matched between groups. Rats were anesthetized and instrumented for study 24 h after the last training session. Arterial pressure and femoral artery blood flow were measured, and femoral vascular conductance (FVC) was calculated. Lumbar sympathetic chain stimulation was delivered continuously at 2 Hz and in patterns at 20 and 40 Hz. EDD was assessed by the vascular response to intra-arterial bolus injections of ACh. The response (% change FVC) to sympathetic stimulation increased (P < 0.05) in a training intensity-dependent manner at 2 Hz (S: -20.2 ± 9.8%, M: -34.0 ± 6.7%, and H: -44.9 ± 2.0%), 20 Hz (S: -22.0 ± 10.6%, M: -31.2 ± 8.4%, and H: -42.8 ± 5.9%), and 40 Hz (S: H -24.5 ± 8.5%, M: -35.1 ± 8.9%, H: -44.9 ± 6.5%). The magnitude of EDD also increased in a training intensity-dependent manner (P < 0.05). These data demonstrate that short-term exercise training augments the magnitude of vasoconstriction in response to sympathetic stimulation and EDD in resting skeletal muscle in a training intensity-dependent manner.  相似文献   

5.
This study tested the hypothesis that both structural and functional adaptations of arterioles occur within the skeletal muscle of rats aerobically trained for 8-10 wk with treadmill exercise. The training regimen used has been shown to elicit a 37% increase in plantaris citrate synthase activity but did not result in an elevation in citrate synthase activity in the spinotrapezius or gracilis muscles of rats used in this study. In the in vivo resting spinotrapezius muscle, arteriole diameters were similar in sedentary (SED) and trained (TR) rats. However, large- (1A) and intermediate- (2A) sized arterioles dilated proportionately more in TR than in SED rats during 1- to 8-Hz muscle contractions, even though the passive mechanical properties (circumference-passive wall tension relationships) were similar between groups. Vascular casts demonstrated a trend for an increase in the number of small (3A) arterioles and an approximately 20% increase in the passive diameter of 1A and 2A arterioles in the spinotrapezius muscle of TR rats. In contrast, in the gracilis muscle, arteriole diameters and density were identical in SED and TR rats, but the capillary-to-muscle fiber ratio was approximately 15% higher in TR rats. The results suggest that aerobic exercise training can greatly increase functional vasodilation and induce a slight increase in vascular density in skeletal muscle tissues, even if the oxidative capacity of these tissues is not increased by the training regimen.  相似文献   

6.
Infarction of the left ventricle was induced by ligation of the coronary artery in male Sprague-Dawley rats under ketamine-xylazine anesthesia. Three weeks after surgery, animals were assigned to a trained (n = 21; running at 20 m/min, 10% grade, 1 h/day, 5 days/wk) or nontrained group (n = 23) for an additional 8 wk. A third, sham-operated control group (n = 16) remained cage sedentary for 11 wk. Ventricular mass was greater in the trained and nontrained infarct groups [1,335 +/- 57.3 and 1,414 +/- 56.1 mg, respectively (mean +/- SE)] compared with the control group (1,155 +/- 50.9 mg) (P less than or equal to 0.05). The diameter of septal fibers was 13% greater in the trained and 17% greater in the nontrained infarct groups compared with control. The specific peak developed force and maximum rate of force development of left ventricular papillary muscle in vitro were 75 and 62% greater in both infarcted groups compared with the control group; these variables were unaffected by training. Myofibrillar adenosine triphosphatase activity of septum was 20% lower in both infarct groups compared with sham-operated animals. We conclude that exercise training did not alter the magnitude of morphological and physiological adaptations to infarction.  相似文献   

7.
Single-leg cycling may enhance the peripheral adaptations of skeletal muscle to a greater extent than double-leg cycling. The purpose of the current study was to determine the influence of 3 wk of high-intensity single- and double-leg cycle training on markers of oxidative potential and muscle metabolism and exercise performance. In a crossover design, nine trained cyclists (78 ± 7 kg body wt, 59 ± 5 ml·kg(-1)·min(-1) maximal O(2) consumption) performed an incremental cycling test and a 16-km cycling time trial before and after 3 wk of double-leg and counterweighted single-leg cycle training (2 training sessions per week). Training involved three (double) or six (single) maximal 4-min intervals with 6 min of recovery. Mean power output during the single-leg intervals was more than half that during the double-leg intervals (198 ± 29 vs. 344 ± 38 W, P < 0.05). Skeletal muscle biopsy samples from the vastus lateralis revealed a training-induced increase in Thr(172)-phosphorylated 5'-AMP-activated protein kinase α-subunit for both groups (P < 0.05). However, the increase in cytochrome c oxidase subunits II and IV and GLUT-4 protein concentration was greater following single- than double-leg cycling (P < 0.05). Training-induced improvements in maximal O(2) consumption (3.9 ± 6.2% vs. 0.6 ± 3.6%) and time-trial performance (1.3 ± 0.5% vs. 2.3 ± 4.2%) were similar following both interventions. We conclude that short-term high-intensity single-leg cycle training can elicit greater enhancement in the metabolic and oxidative potential of skeletal muscle than traditional double-leg cycling. Single-leg cycling may therefore provide a valuable training stimulus for trained and clinical populations.  相似文献   

8.
The purposes of this study were 1) to determine the extent to which endurance training reduces the functional deficit induced by lengthening contractions in the soleus (Sol) muscle and 2) to determine whether young and old rats training at a comparable relative exercise intensity would demonstrate a similar protective effect from lengthening-contraction-induced injury. Young (3-mo-old) and old (23-mo-old) male Fischer 344 rats were randomly assigned to either a control or exercise training group [young control (YC), old control (OC), young trained (YT), old trained (OT)]. Exercise training consisted of 10 wk of treadmill running (15% grade, 45 min/day, and 5 days/wk) such that by the end of training the young and old rats were exercising at 27 and 15 m/min, respectively. After training, contractile properties of the Sol muscle were measured in vitro at 26 degrees C. The percent decrease in maximal isometric specific force (P(o)) was determined after a series of 20 lengthening contractions (20% strain from optimal muscle length, 1 contraction every 5 s). After the lengthening-contraction protocol, Sol muscle P(o) was decreased by approximately 26% (19.6 vs. 14.6 N/cm(2)) and 28% (14.8 vs. 9.6 N/cm(2)) in the YC and OC rats, respectively. After exercise training, the reduction in P(o) was significantly (P < 0.05) attenuated to a similar degree ( approximately 13%) in both YT rats (18.7 vs. 16.2 N/cm(2)) and OT rats (15.8 vs. 13.7 N/cm(2)). It is concluded that exercise training attenuates the force deficit after repeated lengthening contractions to a comparable extent in young and old rats training at a similar exercise intensity.  相似文献   

9.
Testicular function and associated testosterone concentration decline with advancing age, and an impaired O? supply may contribute, in part, to this reduction. We hypothesized that there would be a reduced microvascular Po? (Po?(m)) in the testes from aged rats, and this reduced Po?(m) would be associated with impaired vasomotor control in isolated resistance arterioles. In addition, given the positive effect of exercise on microvascular Po? and arteriolar function, we further hypothesized that there would be an enhanced Po?(m) in the testes from aged animals after aerobic exercise training. Testicular Po?(m) was measured in vivo via phosphorescence quenching in young and aged sedentary (SED) and exercise-trained (ET; 15 m/min treadmill walking, 15-degree incline, 5 days/wk for 10 wk) male Fischer-344 rats. Vasoconstriction to α-adrenergic [norepinephrine (NE) and phenylephrine (PE)] and myogenic stimuli in testicular arterioles was assessed in vitro. In the SED animals, testicular Po?(m) was reduced by ~50% with old age (aged SED 11.8 ± 1.9 vs. young SED 22.1 ± 1.1 mmHg; P = 0.0001). Contrary to our hypothesis, exercise training did not alter Po?(m) in the aged group and reduced testicular Po?(m) in the young animals, abolishing age-related differences (young ET, 10.0 ± 0.8 vs. aged ET, 10.7 ± 0.9 mmHg; P = 0.37). Vasoconstrictor responsiveness to NE and PE was diminished in aged compared with young (NE: young SED, 58 ± 2 vs. aged SED, 47 ± 2%; P = 0.001) (PE: young SED, 51 ± 3 vs. aged SED, 36 ± 5%; P = 0.008). Exercise training did not alter maximal vasoconstriction to NE in young or aged groups. In summary, advancing age is associated with a reduced testis Po?(m) and impaired adrenergic vasoconstriction. The diminished testicular microvascular driving pressure of O? and associated vascular dysfunction provides mechanistic insight into the old age-related decrease in testicular function, and a reduced Po?(m) may contribute, in part, to reduced fertility markers after exercise training.  相似文献   

10.
The purpose of this study was to determine the effects of high-intensity treadmill exercise training on 1) the regional distribution of muscle blood flow within and among muscles in rats during high-intensity treadmill exercise (phase I) and 2) on the total and regional hindlimb skeletal muscle blood flow capacities as measured in isolated perfused rat hindquarters during maximal papaverine vasodilation (phase II). Two groups of male Sprague-Dawley rats were trained 5 days/wk for 6 wk with a program consisting of 6 bouts/day of 2.5-min runs at 60 m/min up a 15% grade with 4.5-min rest periods between bouts. After training, blood flows were measured with the radiolabeled microsphere technique (phase I) in pair-weighted sedentary control and exercise-trained rats while they ran at 60 m/min (0% grade). In phase II of the study, regional vascular flow capacities were determined at three perfusion pressures (30, 40, and 50 mmHg) in isolated perfused hindquarters of control and trained rats maximally vasodilated with papaverine. The results indicate that this exercise training program produces increases in the vascular flow capacity of fast-twitch glycolytic muscle tissue of rats. However, these changes were not apparent in the magnitude or distribution of muscle blood flow in conscious rats running at 60 m/min, since blood flows within and among muscles during exercise were the same in trained and control rats.  相似文献   

11.
This study investigated the effect of physical training on muscle blood flow (BF) in rats with peripheral arterial insufficiency during treadmill running. Bilateral stenosis of the femoral artery of adult rats (300-350 g) was performed to reduce exercise hyperemia in the hindlimb but not limit resting muscle BF. Rats were divided into normal sedentary, acute stenosed (stenosed 3 days before the experiment), stenosed sedentary (limited to cage activity), and stenosed trained (run on a treadmill by a progressively intense program, up to 50-60 min/day, 5 days/wk for 6-8 wk). Hindlimb BF was determined with 85Sr- and 141Ce-labeled microspheres at a low (20 m/min) and high treadmill speed (30-40 m/min depending on ability). Maximal hindlimb BF was reduced to approximately 50% normal in the acute stenosed group. Total hindlimb BF (81 +/- 5 ml.min-1.100 g-1) did not change in stenosed sedentary animals with 6-8 wk of cage activity, but a redistribution of BF occurred within the hindlimb. Two factors contributed to a higher BF to the distal limb muscle of the trained animals. A redistribution BF within the hindlimb occurred in stenosed trained animals; distal limb BF increased to approximately 80% (P less than 0.001) of the proximal tissue. In addition, an increase in total hindlimb BF with training indicates that collateral BF has been enhanced (P less than 0.025). The associated increase in oxygen delivery to the relatively ischemic muscle probably contributed to the markedly improved exercise tolerance evident in the trained animals.  相似文献   

12.
We examined the transfer function of autonomic heart rate (HR) control in anesthetized sedentary and exercise-trained (16 wk, treadmill for 1 h, 5 times/wk at 15 m/min and 15-degree grade) rats for comparison to HR variability assessed in the conscious resting state. The transfer function from sympathetic stimulation to HR response was similar between groups (gain, 4.2 ± 1.5 vs. 4.5 ± 1.5 beats·min(-1)·Hz(-1); natural frequency, 0.07 ± 0.01 vs. 0.08 ± 0.01 Hz; damping coefficient, 1.96 ± 0.55 vs. 1.69 ± 0.15; and lag time, 0.7 ± 0.1 vs. 0.6 ± 0.1 s; sedentary vs. exercise trained, respectively, means ± SD). The transfer gain from vagal stimulation to HR response was 6.1 ± 3.0 in the sedentary and 9.7 ± 5.1 beats·min(-1)·Hz(-1) in the exercise-trained group (P = 0.06). The corner frequency (0.11 ± 0.05 vs. 0.17 ± 0.09 Hz) and lag time (0.1 ± 0.1 vs. 0.2 ± 0.1 s) did not differ between groups. When the sympathetic transfer gain was averaged for very-low-frequency and low-frequency bands, no significant group effect was observed. In contrast, when the vagal transfer gain was averaged for very-low-frequency, low-frequency, and high-frequency bands, exercise training produced a significant group effect (P < 0.05 by two-way, repeated-measures ANOVA). These findings suggest that, in the frequency domain, exercise training augments the dynamic HR response to vagal stimulation but not sympathetic stimulation, regardless of the frequency bands.  相似文献   

13.
With advancing age, there is a reduction in exercise tolerance, resulting, in part, from a perturbed ability to match O(2) delivery to uptake within skeletal muscle. In the spinotrapezius muscle (which is not recruited during incline treadmill running) of aged rats, we tested the hypotheses that exercise training will 1) improve the matching of O(2) delivery to O(2) uptake, evidenced through improved microvascular Po(2) (Pm(O(2))), at rest and throughout the contractions transient; and 2) enhance endothelium-dependent vasodilation in first-order arterioles. Young (Y, ~6 mo) and aged (O, >24 mo) Fischer 344 rats were assigned to control sedentary (YSED; n = 16, and OSED; n = 15) or exercise-trained (YET; n = 14, and OET; n = 13) groups. Spinotrapezius blood flow (via radiolabeled microspheres) was measured at rest and during exercise. Phosphorescence quenching was used to quantify Pm(O(2)) in vivo at rest and across the rest-to-twitch contraction (1 Hz, 5 min) transition in the spinotrapezius muscle. In a follow-up study, vasomotor responses to endothelium-dependent (acetylcholine) and -independent (sodium nitroprusside) stimuli were investigated in vitro. Blood flow to the spinotrapezius did not increase above resting values during exercise in either young or aged groups. Exercise training increased the precontraction baseline Pm(O(2)) (OET 37.5 ± 3.9 vs. OSED 24.7 ± 3.6 Torr, P < 0.05); the end-contracting Pm(O(2)) and the time-delay before Pm(O(2)) fell in the aged group but did not affect these values in the young. Exercise training improved maximal vasodilation in aged rats to acetylcholine (OET 62 ± 16 vs. OSED 27 ± 16%) and to sodium nitroprusside in both young and aged rats. Endurance training of aged rats enhances the Pm(O(2)) in a nonrecruited skeletal muscle and is associated with improved vascular smooth muscle function. These data support the notion that improvements in vascular function with exercise training are not isolated to the recruited muscle.  相似文献   

14.
During exercise, contracting muscles can override sympathetic vasoconstrictor activity (functional sympatholysis). ATP and adenosine have been proposed to play a role in skeletal muscle blood flow regulation. However, little is known about the role of muscle training status on functional sympatholysis and ATP- and adenosine-induced vasodilation. Eight male subjects (22 ± 2 yr, Vo(2max): 49 ± 2 ml O(2)·min(-1)·kg(-1)) were studied before and after 5 wk of one-legged knee-extensor training (3-4 times/wk) and 2 wk of immobilization of the other leg. Leg hemodynamics were measured at rest, during exercise (24 ± 4 watts), and during arterial ATP (0.94 ± 0.03 μmol/min) and adenosine (5.61 ± 0.03 μmol/min) infusion with and without coinfusion of tyramine (11.11 μmol/min). During exercise, leg blood flow (LBF) was lower in the trained leg (2.5 ± 0.1 l/min) compared with the control leg (2.6 ± 0.2 l/min; P < 0.05), and it was higher in the immobilized leg (2.9 ± 0.2 l/min; P < 0.05). Tyramine infusion lowers LBF similarly at rest, but, when tyramine was infused during exercise, LBF was blunted in the immobilized leg (2.5 ± 0.2 l/min; P < 0.05), whereas it was unchanged in the control and trained leg. Mean arterial pressure was lower during exercise with the trained leg compared with the immobilized leg (P < 0.05), and leg vascular conductance was similar. During ATP infusion, the LBF response was higher after immobilization (3.9 ± 0.3 and 4.5 ± 0.6 l/min in the control and immobilized leg, respectively; P < 0.05), whereas it did not change after training. When tyramine was coinfused with ATP, LBF was reduced in the immobilized leg (P < 0.05) but remained similar in the control and trained leg. Training increased skeletal muscle P2Y2 receptor content (P < 0.05), whereas it did not change with immobilization. These results suggest that muscle inactivity impairs functional sympatholysis and that the magnitude of hyperemia and blood pressure response to exercise is dependent on the training status of the muscle. Immobilization also increases the vasodilatory response to infused ATP.  相似文献   

15.
The hemodynamic response to maximal exercise was determined in sedentary and trained rats with a chronic myocardial infarction (MI) produced by coronary artery ligation and in rats that underwent sham operations (SHAM). Infarct size in the MI groups of rats comprised 28-29% of the total left ventricle and resulted in both metabolic and hemodynamic changes that suggested that these animals had moderate compensated heart failure. The training regimen used in the present study produced significant increases in maximal O2 uptake (VO2max) when expressed in absolute terms (ml/min) or when normalized for body weight (ml.min-1.kg-1) and consisted of treadmill running at work loads that were equivalent to 70-80% of the animal's VO2max for a period of 60 min/day, 5 days/wk over an 8- to 10-wk interval. This training paradigm produced two major cardiocirculatory adaptations in the MI rat that had not been elicited previously when using a training paradigm of a lower intensity. First, the decrement in the maximal heart rate response to exercise (known as "chronotropic incompetence") found in the sedentary MI rat was completely reversed by endurance training. Second, the downregulation of cardiac myosin isozyme composition from the fast ATPase V1 isoform toward the slower ATPase (V2 and V3) isoforms in the MI rat was partially reversed by endurance training. These cardiac adaptations occurred without a significant increase in left ventricular pump function as an increase in maximal cardiac output (Qmax) and maximal stroke volume (SVmax) did not occur in the trained MI rat.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
Lash, Julia M., and H. Glenn Bohlen. Time- andorder-dependent changes in functional and NO-mediated dilation during exercise training. J. Appl. Physiol.82(2): 460-468, 1997.Arterial vessel responses to sodiumnitroprusside (SNP) and acetylcholine (ACh) were measured in thespinotrapezius muscle of sedentary (Sed) and treadmill-trained (Tr)rats to determine whether these endothelium-dependent (ACh) and-independent (SNP) mechanisms contribute to thetraining-induced increase in functional vasodilation previouslyobserved. Control and maximal vessel diameters were similar between Sedand Tr. After 8 wk of training, functional dilation (2-, 4-, and 8-Hzcontractions) was enhanced in all orders of vessels studied[terminal feed artery (FA), largest arterioles (1A), andintermediate-sized arterioles (2A)], but responses to SNP wereincreased only in FA. Responses to ACh were not significantly increasedin any vessel order. After 16 wk of training, functional dilation hadregressed in Tr such that only the FA response to 4 Hz wassignificantly elevated relative to Sed. However, the FA and 1Aresponses to SNP were significantly greater in Tr than in Sed, as werethe 1A and 2A responses to ACh. These results show a dissociation offunctional dilation and SNP- or ACh-mediated responses, as well asage-dependent interactions, a time-dependent progression, and vesselorder specificity in the adaptations to training.

  相似文献   

18.
We compared the changes in monocarboxylate transporter 1 (MCT1) and 4 (MCT4) proteins in heart and skeletal muscles in sedentary control and streptozotocin (STZ)-induced diabetic rats (3 wk) and in trained (3 wk) control and STZ-induced diabetic animals. In nondiabetic animals, training increased MCT1 in the plantaris (+51%; P < 0.01) but not in the soleus (+9%) or the heart (+14%). MCT4 was increased in the plantaris (+48%; P < 0.01) but not in the soleus muscles of trained nondiabetic animals. In sedentary diabetic animals, MCT1 was reduced in the heart (-30%), and in the plantaris (-31%; P < 0.01) and soleus (-26%) muscles. MCT4 content was also reduced in sedentary diabetic animals in the plantaris (-52%; P < 0.01) and soleus (-25%) muscles. In contrast, in trained diabetic animals, MCT1 and MCT4 in heart and/or muscle were similar to those of sedentary, nondiabetic animals (P > 0.05) but were markedly greater than in the sedentary diabetic animals [MCT1: plantaris +63%, soleus +51%, heart +51% (P > 0.05); MCT4: plantaris +107%, soleus +17% (P > 0.05)]. These studies have shown that 1) with STZ-induced diabetes, MCT1 and MCT4 are reduced in skeletal muscle and/or the heart and 2) exercise training alleviated these diabetes-induced reductions.  相似文献   

19.
We tested two hypotheses: 1) that the effects of hypercholesterolemia on endothelial function in femoral arteries exceed those reported in brachial arteries and 2) that exercise (Ex) training enhances endothelium-dependent dilation and improves femoral artery blood flow (FABF) in hypercholesterolemic pigs. Adult male pigs were fed a normal fat (NF) or high-fat/cholesterol (HF) diet for 20 wk. Four weeks after the diet was initiated, pigs were Ex trained or remained sedentary (Sed) for 16 wk, thus yielding four groups: NF-Sed, NF-Ex, HF-Sed, and HF-Ex. Endothelium-dependent vasodilator responses were assessed in vivo by measuring changes in FABF after intra-arterial injections of ADP and bradykinin (BK). Endothelium-dependent and -independent relaxation was assessed in vitro by measuring relaxation responses to BK and sodium nitroprusside (SNP). FABF increased in response to ADP and BK in all groups. FABF responses to ADP and BK were not impaired by HF but were improved by Ex in HF pigs. BK- and SNP-induced relaxation of femoral artery rings was not altered by HF or Ex. To determine whether the mechanism(s) for vasorelaxation of femoral arteries was altered by HF or Ex, BK-induced relaxation was assessed in vitro in the absence or presence of N(G)-nitro-l-arginine methyl ester [l-NAME; to inhibit nitric oxide synthase (NOS)], indomethacin (Indo; to inhibit cyclooxygenase), or l-NAME + Indo. BK-induced relaxation was inhibited by l-NAME and l-NAME + Indo in all groups of femoral arteries. Ex increased the NOS-dependent component of endothelium-dependent relaxation in NF (not HF) arteries. Indo did not inhibit BK-induced relaxation. Collectively, these results indicate that hypercholesterolemia does not alter endothelial function in femoral arteries and that Ex training improves FABF responses to ADP and BK; however, the improvement cannot be attributed to enhanced endothelial function in HF femoral arteries. These data suggest that Ex-induced improvements in FABF in HF arteries are mediated by vascular adaptations in arteries/arterioles downstream from the femoral artery.  相似文献   

20.
Congestive heart failure (CHF) induces a state of immune activation, and peritoneal macrophages (M phi s) may play an important role in the development and progression of one such condition. Moderate endurance training modulates peritoneal M phi function. We evaluated the effect of endurance training on different stages of the phagocytic process and in the production of interleukin-6 (IL-6), interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) after LPS stimulation. Either ligation of the left coronary artery or Sham operations were performed in adult Wistar rats. After 4 wk, control (Sham operated) and MI (ligation of the left coronary artery) animals were randomly assigned to either a sedentary (Sham-operated sedentary, n = 7 and MI sedentary, n = 10) or a trained group (Sham-operated trained, n = 8 and MI trained, n = 8). Trained rats ran on a treadmill (0% grade at 13-20 m/min) for 60 min/day, 5 days/wk, for 8-10 wk, whereas sedentary rats had only limited activity. Training increased maximal oxygen uptake normalized for body weight (ml.kg(-1).min(-1)), as well as skeletal muscle citrate synthase maximal activity, when compared with sedentary groups. The resident and total cell number, the chemotaxis index, and the production of TNF-alpha stimulated by LPS were significantly higher in the MI sedentary group when compared with the Sham sedentary group. Moderate endurance training reversed these alterations promoted by post-MI. These results demonstrate that moderate intensity exercise training modulates peritoneal M phi function and induces beneficial metabolic effects in rats with post-MI CHF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号