首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 893 毫秒
1.
Folding of DNA into chromatin is mediated by binding to histones such as H4; association of DNA with histones is regulated by covalent histone modifications, e.g. acetylation, methylation, and biotinylation. We sought to identify amino-acid residues that are biotinylated in histone H4, and to determine whether acetylation and methylation of histones affect biotinylation. Synthetic peptides spanning fragments of human histone H4 were biotinylated enzymatically using biotinidase. Peptide-bound biotin was probed with streptavidin-peroxidase. Peptides based on the N-terminal sequence of histone H4 were effectively recognized by biotinidase as substrates for biotinylation; in contrast, peptides based on the C-terminal sequences were not biotinylated. Substitution of K8 or K12 with alanine or arginine decreased biotinylation, suggesting that these lysines are targets for biotinylation; K8 and K12 are also known targets for acetylation. Chemical acetylation or methylation of a given lysine decreased subsequent enzymatic biotinylation of neighboring lysines, consistent with cross-talk among histone modifications. Substitution of a given lysine (positive charge) with glutamate (negative charge) abolished biotinylation of neighboring lysines, providing evidence that the net charge of histones has a role in biotinylation. An antibody was generated that specifically recognized histone H4 biotinylated at K12. This antibody was used to detect biotinylated histone H4 in nuclear extracts from human cells. These studies suggest that K8 and K12 in histone H4 are targets for biotinylation, that acetylation and biotinylation compete for the same binding sites, and that acetylation and methylation of histones affect biotinylation of neighboring lysines.  相似文献   

2.
3.
An enzymatic mechanism has been proposed by which biotinidase may catalyze biotinylation of histones. Here, human cells were found to covalently bind biotin to histones H1, H2A, H2B, H3, and H4. Cells respond to proliferation with increased biotinylation of histones; biotinylation increases early in the cell cycle and remains increased during the cycle. Notwithstanding the catalytic role of biotinidase in biotinylation of histones, mRNA encoding biotinidase and biotinidase activity did not parallel the increased biotinylation of histones in proliferating cells. Biotinylation of histones might be regulated by enzymes other than biotinidase or by the rate of histone debiotinylation.  相似文献   

4.
Histones are modified post-translationally, e.g. by methylation of lysine and arginine residues, and by phosphorylation of serine residues. These modifications regulate processes such as gene expression, DNA repair, and mitosis and meiosis. Recently, evidence has been provided that histones are also modified by covalent binding of the vitamin biotin. The aims of this study were to identify biotinylation sites in histone H3, and to investigate the crosstalk among histone biotinylation, methylation and phosphorylation. Synthetic peptides based on the sequence of human histone H3 were used as substrates for enzymatic biotinylation by biotinidase; biotin in peptides was probed using streptavidin peroxidase. These studies provided evidence that K4, K9 and K18 in histone H3 are good targets for biotinylation; K14 and K23 are relatively poor targets. Antibodies were generated to histone H3, biotinylated either at K4, K9 or K18. These antibodies localized to nuclei in human placental cells in immunocytochemistry and immunoblotting experiments, suggesting that lysines in histone H3 are biotinylated in vivo. Dimethylation of R2, R8 and R17 increased biotinylation of K4, K9 and K18, respectively, by biotinidase; phosphorylation of S10 abolished biotinylation of K9. These observations are consistent with crosstalk between biotinylation of histones and other known modifications of histones. We speculate that this crosstalk provides a link to known roles for biotin in gene expression and cell proliferation.  相似文献   

5.
Holocarboxylase synthetase (HCS) mediates the binding of biotin to lysine (K) residues in histones H2A, H3 and H4; HCS knockdown disturbs gene regulation and decreases stress resistance and lifespan in eukaryotes. We tested the hypothesis that HCS interacts physically with histone H3 for subsequent biotinylation. Co-immunoprecipitation experiments were conducted and provided evidence that HCS co-localizes with histone H3 in human cells; physical interactions between HCS and H3 were confirmed using limited proteolysis assays. Yeast two-hybrid (Y2H) studies revealed that the N-terminal and C-terminal domains in HCS participate in H3 binding. Recombinant human HCS was produced and exhibited biological activity, as evidenced by biotinylation of its known substrate, recombinant p67. Recombinant histone H3.2 and synthetic H3-based peptides were also good targets for biotinylation by recombinant HCS (rHCS) in vitro, based on tracing histone-bound biotin with [3H]biotin, streptavidin and anti-biotin antibody. Biotinylation site-specific antibodies were generated and revealed that both K9 and K18 in H3 were biotinylated by HCS. Collectively, these studies provide conclusive evidence that HCS interacts directly with histone H3, causing biotinylation of K9 and K18. We speculate that the targeting of HCS to distinct regions in human chromatin is mediated by DNA sequence, biotin, RNA, epigenetic marks or chromatin proteins.  相似文献   

6.
Covalent modifications of histones play a role in regulating telomere attrition and cellular senescence. Biotinylation of lysine (K) residues in histones, mediated by holocarboxylase synthetase (HCS), is a novel diet-dependent mechanism to regulate chromatin structure and gene expression. We have previously shown that biotinylation of K12 in histone H4 (H4K12bio) is a marker for heterochromatin and is enriched in pericentromeric alpha satellite repeats. Here, we hypothesized that H4K12bio is also enriched in telomeres. We used human IMR-90 lung fibroblasts and immortalized IMR-90 cells overexpressing human telomerase (hTERT) in order to examine histone biotinylation in young and senescent cells. Our studies suggest that one out of three histone H4 molecules in telomeres is biotinylated at K12 in hTERT cells. The abundance of H4K12bio in telomeres decreased by 42% during telomere attrition in senescent IMR-90 cells; overexpression of telomerase prevented the loss of H4K12bio. Possible confounders such as decreased expression of HCS and biotin transporters were formally excluded in this study. Collectively, these data suggest that H4K12bio is enriched in telomeric repeats and represents a novel epigenetic mark for cell senescence.  相似文献   

7.
Biotinylation is a recent addition to the list of reported posttranslational modifications made to histones. Holocarboxylase synthetase (HCS) and biotinidase have been implicated as biotinylating enzymes. However, the details of the mechanism and the regulation of biotin transfer on and off histones remains unclear. Here we report that in a cell culture system low biotin availability reduces biotinylation of carboxylases, yet apparent biotinylation of histones is unaffected. This is despite biotin depletion having detrimental effects on cell viability and proliferation. Further analysis of the widely used method for detecting biotin on histones, streptavidin blotting, revealed that streptavidin interacts with histones independently of biotin binding. Preincubation of streptavidin with free biotin reduced binding to biotinylated carboxylases but did not block binding to histones. To investigate biotinylation of histones using an alternative detection method independent of streptavidin, incorporation of 14C biotin into biotinylated proteins was analyzed. Radiolabeled biotin was readily detectable on carboxylases but not on histones, implying very low levels of biotin in the nucleus attached to histone proteins (< 0.03% biotinylation). In conclusion, we would caution against the use of streptavidin for investigating histone biotinylation.  相似文献   

8.
Zhang K  Sridhar VV  Zhu J  Kapoor A  Zhu JK 《PloS one》2007,2(11):e1210
Post-translational modifications of histones play crucial roles in the genetic and epigenetic regulation of gene expression from chromatin. Studies in mammals and yeast have found conserved modifications at some residues of histones as well as non-conserved modifications at some other sites. Although plants have been excellent systems to study epigenetic regulation, and histone modifications are known to play critical roles, the histone modification sites and patterns in plants are poorly defined. In the present study we have used mass spectrometry in combination with high performance liquid chromatography (HPLC) separation and phospho-peptide enrichment to identify histone modification sites in the reference plant, Arabidopsis thaliana. We found not only modifications at many sites that are conserved in mammalian and yeast cells, but also modifications at many sites that are unique to plants. These unique modifications include H4 K20 acetylation (in contrast to H4 K20 methylation in non-plant systems), H2B K6, K11, K27 and K32 acetylation, S15 phosphorylation and K143 ubiquitination, and H2A K144 acetylation and S129, S141 and S145 phosphorylation, and H2A.X S138 phosphorylation. In addition, we found that lysine 79 of H3 which is highly conserved and modified by methylation and plays important roles in telomeric silencing in non-plant systems, is not modified in Arabidopsis. These results suggest distinctive histone modification patterns in plants and provide an invaluable foundation for future studies on histone modifications in plants.  相似文献   

9.
Kobza K  Sarath G  Zempleni J 《BMB reports》2008,41(4):310-315
BirA ligase is a prokaryotic ortholog of holocarboxylase synthetase (HCS) that can biotinylate proteins. This study tested the hypothesis that BirA ligase catalyzes the biotinylation of eukaryotic histones. If so, this would mean that recombinant BirA ligase is a useful surrogate for HCS in studies of histone biotinylation. The biological activity of recombinant BirA ligase was confirmed by enzymatic biotinylation of p67. In particular, it was found that BirA ligase biotinylated both calf thymus histone H1 and human bulk histone extracts. Incubation of recombinant BirA ligase with H3-based synthetic peptides showed that lysines 4, 9, 18, and 23 in histone H3 are the targets for the biotinylation by BirA ligase. Modification of the peptides (e.g., serine phosphorylation) affected the subsequent biotinylation by BirA ligase, suggesting crosstalk between modifications. In conclusion, this study suggests that prokaryotic BirA ligase is a promiscuous enzyme and biotinylates eukaryotic histones. Moreover the biotinylation of histones by BirA ligase is consistent with the proposed role of human HCS in chromatin.  相似文献   

10.
11.
12.
13.
Posttranslational modifications of histones are involved in regulation of chromatin structure and gene activity. Whereas the modifications of the core histones H2A, H2B, H3, and H4 have been extensively studied, our knowledge of H1 modifications remained mainly limited to its phosphorylation. Here we analyzed the composition of histone H1 variants and their modifications in two human cell lines and nine mouse tissues. Use of a hybrid linear ion trap-orbitrap mass spectrometer facilitated assignment of modifications by high resolution and low ppm mass accuracy for both the precursor and product mass spectra. Across different tissues we identified a range of phosphorylation, acetylation, and methylation sites. We also mapped sites of ubiquitination and report identification of formylated lysine residues. Interestingly many of the mapped modifications are located within the globular domain of the histones at sites that are thought to be involved in binding to nucleosomal DNA. Investigation of mouse tissue in addition to cell lines uncovered a number of interesting differences. For example, whereas methylation sites are frequent in tissues, this type of modification was much less abundant in cultured cells and escaped detection. Our study significantly extends the known spectrum of linker histone variability.  相似文献   

14.
15.
Holocarboxylase synthetase (HCS) plays an essential role in catalyzing the biotinylation of carboxylases and histones. Biotinylated carboxylases are important for the metabolism of glucose, lipids and leucine; biotinylation of histones plays important roles in gene regulation and genome stability. Recently, we reported that HCS activity is partly regulated by subcellular translocation events and by miR-539. Here we tested the hypothesis that the HCS 3′-untranslated region (3′-UTR) contains binding sites for miR other than miR-539. A binding site for miR-153 was predicted to reside in the HCS 3′-UTR by using in silico analyses. When miR-153 site was overexpressed in transgenic HEK-293 human embryonic kidney cells, the abundance of HCS mRNA decreased by 77% compared with controls. In silico analyses also predicted three putative cytosine methylation sites in two miR-153 genes; the existence of these sites was confirmed by methylation-sensitive polymerase chain reaction. When cytosines were demethylated by treatment with 5-aza-2′-deoxycytidine, the abundance of miR-153 increased by more than 25 times compared with untreated controls, and this increase coincided with low levels of HCS and histone biotinylation. Together, this study provides novel insights into the mechanisms of novel epigenetic synergies among folate-dependent methylation events, miR and histone biotinylation.  相似文献   

16.
17.
DNA in eukaryotic organisms does not exist free in cells, but instead is present as chromatin, a complex assembly of DNA, histone proteins, and chromatin-associated proteins. Chromatin exhibits a complex hierarchy of structures, but in its simplest form it is composed of long linear arrays of nucleosomes. Nucleosomes contain 147 base pairs of DNA wrapped around a histone octamer, consisting of two copies each of histones H2A, H2B, H3 and H4, where 15-38 amino terminal residues of each histone protein extends past the DNA gyres to form histone “tails” 1. Chromatin provides a versatile regulatory platform for nearly all cellular processes that involve DNA, and improper chromatin regulation results in a wide range of diseases, including various cancers and congenital defects. One major way that chromatin regulates DNA utilization is through a wide range of post-translational modification of histones, including serine and threonine phosphorylation, lysine acetylation, methylation, ubiquitination, and sumoylation, and arginine methylation 2. Histone H4 K16 acetylation is a modification that occurs on the H4 histone tail and is one of the most frequent of the known histone modifications. We have demonstrated that this mark both disrupts formation of higher-order chromatin structure and changes the functional interaction of chromatin-associated proteins 3. Our results suggest a dual mechanism by which H4 K16 acetylation can ultimately facilitate genomic functions.  相似文献   

18.
19.
Holocarboxylase synthetase (HCS) is a chromatin protein that is essential for mediating the covalent binding of biotin to histones. Biotinylation of histones plays crucial roles in the repression of genes and repeats in the human genome. We tested the feasibility of DNA adenine methyltransferase identification (DamID) technology to map HCS binding sites in human mammary cell lines. Full-length HCS was fused to DNA adenine methyltransferase (Dam) for subsequent transfection into breast cancer (MCF-7) and normal breast (MCF-10A) cells. HCS docking sites in chromatin were identified by using the unique adenine methylation sites established by Dam in the fusion construct; docking sites were unambiguously identified using methylation-sensitive digestion, cloning, and sequencing. In total, 15 novel HCS binding sites were identified in the two cell lines, and the following 4 of the 15 overlapped between MCF-7 and MCF-10A cells: inositol polyphosphate-5-phosphatase A, corticotropin hormone precursor, ribosome biogenesis regulatory protein, and leptin precursor. We conclude that DamID is a useful technology to map HCS binding sites in human chromatin and propose that the entire set of HCS binding sites could be mapped by combining DamID with microarray technology.  相似文献   

20.
Eukaryotic DNA is structurally packed into chromatin by the basic histone proteins H2A, H2B, H3, and H4. There is increasing evidence that incorporation and post-translational modifications of histone variants have a fundamental role in gene regulation. While modifications of H3 and H4 histones are now well-established, considerably less is known about H2B modifications. Here, we present the first detailed characterization of H2B-variants isolated from the model plant Arabidopsis thaliana. We combined reversed-phase chromatography with tandem mass spectrometry to identify post-translational modifications of the H2B-variants HTB1, HTB2, HTB4, HTB9, and HTB11, isolated from total chromatin and euchromatin-enriched fractions. The HTB9-variant has acetylation sites at lysines 6, 11, 27, 32, 38, and 39, while Lys-145 can be ubiquitinated. Analogous modifications and an additional methylation of Lys-3 were identified for HTB11. HTB2 shows similar acetylation and ubiquitination sites and an additional methylation at Lys-11. Furthermore, the N-terminal alanine residues of HTB9 and HTB11 were found to be mono-, di-, or trimethylated or unmodified. No methylation of arginine residues was detected. The data suggest that most of these modification sites are only partially occupied. Our study significantly expands the map of covalent Arabidopsis histone modifications and is the first step to unraveling the histone code in higher plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号