首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biotransformation of dehydroepiandrosterone (1) with Macrophomina phaseolina was investigated. A total of eight metabolites were obtained which were characterized as androstane-3,17-dione (2), androst-4-ene-3,17-dione (3), androst-4-ene-17β-ol-3-one (4), androst-4,6-diene-17β-ol-3-one (5), androst-5-ene-3β,17β-diol (6), androst-4-ene-3β-ol-6,17-dione (7), androst-4-ene-3β,7β,17β-triol (8), and androst-5-ene-3β,7α,17β-triol (9). All the transformed products were screened for enzyme inhibition, among which four were found to inhibit the β-glucuronidase enzyme, while none inhibited the α-chymotrypsin enzyme.  相似文献   

2.
The biotransformation of dehydroepiandrosterone (1) with Macrophomina phaseolina was investigated. A total of eight metabolites were obtained which were characterized as androstane-3,17-dione (2), androst-4-ene-3,17-dione (3), androst-4-ene-17β-ol-3-one (4), androst-4,6-diene-17β-ol-3-one (5), androst-5-ene-3β,17β-diol (6), androst-4-ene-3β-ol-6,17-dione (7), androst-4-ene-3β,7β,17β?triol (8), and androst-5-ene-3β,7α,17β-triol (9). All the transformed products were screened for enzyme inhibition, among which four were found to inhibit the β-glucuronidase enzyme, while none inhibited the α-chymotrypsin enzyme.  相似文献   

3.
The bacterial degradation of hyodeoxycholic acid under anaerobic conditions was studied. The major acidic product has been identified as 6 alpha-hydroxy-3-oxochol-4-ene-24-oic acid whilst the major neutral product has been identified as 6 alpha-hydroxyandrosta-1,4-diene-3,17-dione. The minor acidic products were 3,6-dioxochola-1,4-diene-24-oic acid, 3-oxochol-5-ene-24-oic acid, 3-oxochol-4-ene-24-oic acid, 3-oxochola-1,4-diene-24-oic acid and 6 alpha-hydroxy-3-oxochola-1,4-diene-24-oic acid and the minor neutral products were androst-4-ene-3,17-dione, androst-4-ene-3,6,17-trione, androsta-1,4-diene-3,6,17-trione, androsta-1,4-diene-3,17-dione, 17 beta-hydroxyandrosta-1,4-diene-3-one and 6 alpha-hydroxyandrost-4-ene-3,17-dione. Evidence is presented which suggests that under aerobic conditions, one pathway of hyodeoxycholic acid metabolism exists whilst under anaerobic conditions an extra biotransformation pathway becomes operative involving the induction of a 6 alpha-dehydroxylase enzyme. A biochemical pathway of hyodeoxycholic acid metabolism by bacteria under anaerobic conditions is discussed incorporating a scheme involving such an enzyme.  相似文献   

4.
Because relatively large amounts of dehydroepiandrosterone (DHEA) are required to demonstrate its diverse metabolic effects, it is postulated that this steroid may be converted to more active molecules. To search for the possible receptor-recognized hormones. DHEA was incubated with whole rat liver homogenate and metabolite appearances were studied by LC-MS as a function of time to predict the sequence of their formation. An array of metabolites has been resolved, identified and characterized by highly specific and accurate technique of LC-MS, and several of these steroids were analyzed quantitatively. Their identities were established by comparison with pure chemically synthesized compounds and by chemical degradation of isolated fractions. In the present study, we have reasonably established that DHEA was converted to 7alpha-OH-DHEA, 7-oxo-DHEA, and 7beta-OH-DHEA in sequence. These metabolites were further reduced at position 7 and/or 17 to form their respective diols and triols, which were also sulfated at 3beta-position. DHEA and its 7-oxygenated derivatives were also converted to their respective 3beta-sulfate esters. Several of these steroids are being reported for the first time. 16Alpha-hydroxy-DHEA, androst-5-ene-3beta,16alpha,17beta-triol, androst-4-ene-3,17-dione, 11-hydroxy-androst-4-ene-3,17-dione, androst-5-ene-3,17-diol and testosterone were also identified and characterized. In all, 19 metabolites of DHEA are being reported in this extensive study. We have also detected the formation of 12 additional metabolites including several conjugates, which are the subject of current investigation.  相似文献   

5.
The fermentation of progesterone by Colletotrichum antirrhini SC 2144 was examined. Instead of 15 alpha-hydroxyprogesterone, the reported product, this fungus converted progesterone to androst-4-ene-3,17-dione, androsta-1,4-diene-3,17-dione, 14 alpha-hydroxyandrosta-1,4-diene-3,17-dione, 11 alpha-hydroxypregn-4-ene-3,20-dione, 14 alpha-hydroxypregn-4-ene-3,20-dione, and a hitherto undescribed compound, 14 alpha-hydroxypregna-1,4-diene-3,20-dione.  相似文献   

6.
3,17-Dicarboxamido-androst-3,5,16-triene, 3-carboxamido-androst-3,5-dien-17-one, 17-carboxamido-androst-4,16-dien-3-one and 11-carboxamido-androst-5,9(11)-dien-3,17-dione derivatives were synthesized in homogeneous carbonylation reactions from the corresponding 3,17-diiodo-androst-3,5,16-triene, 3-iodo-androst-3,5-diene-17-ethylene ketal, 17-iodo-androst-5,16-dien-3-ethylene ketal, 11-iodo-androst-5,9(11)-diene-3,17-bis(ethylene ketal) derivatives, respectively. A highly chemoselective palladium-catalyzed aminocarbonylation of the corresponding iodo-alkene, carried out under mild reaction conditions, can be considered as the key-step for the introduction of the carboxamide functionalities. The synthesis of the iodo-alkene substrate is based on the transformation of the corresponding keto derivative to hydrazone, which was treated with iodine in the presence of a base (1,1,3,3-tetramethyl guanidine). The aminocarbonylation reaction is highly tolerant towards the N-nucleophiles, i.e. various primary and secondary amines including amino acid methyl esters can also be used.  相似文献   

7.
8.
Laplante Y  Poirier D 《Steroids》2008,73(3):266-271
As a therapeutic approach for the treatment of androgen-sensitive diseases, it would be tempting to lower the level of the potent androgens testosterone (T) and dihydrotestosterone (DHT) by using inhibitors of type 3 and type 5 17beta-hydroxysteroid dehydrogenases (17beta-HSDs). However, the efficiency of such a strategy will be optimal only if androst-4-ene-3,17-dione (Delta4-dione), the precursor of T, does not possess per se agonist activity on the androgen receptor (AR). To determine if the proliferative effect previously observed on AR(+) cells for Delta4-dione originates from its direct (per se) action on AR or from its transformation into a metabolite, we started a series of experimentations using the human prostate cancer LNCaP cell line, which expresses a highly sensitive AR. By real-time RT-PCR analysis, we detected type 1 5alpha-reductase (5alpha-R), a small amount of type 5 17beta-HSD, but not type 2 5alpha-R nor type 3 17beta-HSD. We then studied the transformation of labeled Delta4-dione in LNCaP cells after 1-7 days and the most important metabolite detected was 5alpha-androstane-3,17-dione (A-dione), which is the product of 5alpha-R activity. We measured only low levels of androsterone (ADT) and epi-ADT. This result was next confirmed by using an inhibitor of 5alpha-R that completely inhibited the transformation of Delta4-dione into A-dione, and consequently into ADT and epi-ADT. The proliferative effect of Delta4-dione (carefully purified) on LNCaP (AR(+)) cells was next determined in presence or absence of the 5alpha-R inhibitor. Although the cells proliferate in the presence of Delta4-dione only, no cell proliferation was observed with a combination of Delta4-dione and 5alpha-R inhibitor, suggesting that Delta4-dione is not androgenic per se. We next determined that A-dione and epi-ADT stimulated cell growth with the same pattern and potency as Delta4-dione, whereas ADT had a 3.5-fold lower proliferative activity. In conclusion, Delta4-dione is not in itself an agonist steroid on LNCaP (AR(+)) cells, and its proliferative activity appears to be mediated by its transformation into A-dione and/or into epi-ADT.  相似文献   

9.
Catharanthus roseus (L.) G. Don cell suspension cultures were used to transform 3b-hydroxyandrost-5-en-17-one, the products were isolated by chromatographic methods. Their structures were established by means of NMR and MS spectral analyses. Nine metabolites were respectively elucidated as: androst-4-ene-3,17-dione (Ⅰ), 6a-hydroxyandrost-4-ene-3,17-dione (Ⅱ), 6a,17b-dihydroxyandrost-4-en-3-one (Ⅲ), 6b-hydroxyandrost-4-ene-3,17-dione (Ⅳ), 17b-hydroxyandrost-4-en-3-one (Ⅴ), 15a,17b-dihydroxyandrost-4-en-3-one (Ⅵ), 15b,17b-dihydroxyandrost-4-en-3-one (Ⅶ), 14a-hydroxyandrost-4-ene-3,17-dione (Ⅷ), 17b-hydroxyandrost-4-ene-3,16-dione (Ⅸ). It is the first time to obtain the above compounds by biotransformation with Catharanthus roseus cell cultures.  相似文献   

10.
6-OXO, a new nutritional supplement commercially available on the internet, is sold as an aromatase-inhibitor and contains androst-4-ene-3,6,17-trione as active ingredient. This anabolic steroid is a prohibited substance in sports. Androst-4-ene-3,6,17-trione is metabolised to androst-4-ene-6alpha-ol-3,17-dione and androst-4-ene-6alpha,17beta-diol-3-one. A fast, sensitive and accurate LC/MS method was developed and validated for the quantification of androst-4-ene-3,6,17-trione and its metabolites in urine. The method is capable of determining the stereochemical position of the hydroxy-group at C-6 of the metabolites and consists of a liquid-liquid extraction step with diethylether after enzymatic hydrolysis, followed by separation on a reversed phase column. Ionisation of the analytes is carried out using atmospheric pressure chemical ionisation. The limit of quantification of the method was 5 ng/mL for all compounds. The accuracy ranged from 14.8 to 1.3% for androst-4-ene-3,6,17-trione, 9.4 to 1.6% for androst-4-ene-6alpha-ol-3,17-dione and 4.1 to 3.2% for androst-4-ene-6alpha,17beta-diol-3-one in the range of 5-1000 ng/mL. Using this method androst-4-ene-6alpha-ol-3,17-dione was identified as a major urinary metabolite, whereas androst-4-ene-6alpha,17beta-diol-3-one as a minor metabolite. While the parent compound is predominantly excreted in conjugated form, both metabolites are solely excreted as conjugates.  相似文献   

11.
An attempt was made to clarify how Pellicularia filamentosa f. sp. microsclerotia IFO 6298 capable of hydroxylating C21-steroids at the C-19 position converts C19-steroids, especially monohydroxyderivatives of androst-4-ene-3, 17-dione. Such substrates as 11β-hydroxyandrost-4-ene-3,17-dione (I), androst-4-ene-3, 11, 17-trione (II), androsta-1,4-diene-3, 17-dione (III), 11β-hydroxyandrosta-1,4-diene-3,17-dione (IV), 14α-hydroxyandrost-4-ene-3, 17-dione (V), 15α-hydroxyandrost-4-ene-3, 17-dione (VI) and 9α-hydroxyandrost-4-ene-3, 17-dione (VII) were converted by the organism. All the main and several minor products were then isolated and identified. As a result it is concluded that this organism converts I and II into 14α-hydroxyandrost-4-ene-3,11,17-trione, III and IV into 14α-hydroxyandrosta-1,4-diene-3,1l,17-trione, V into 11α 14α dihydroxyandrost-4-ene-3, 17-dione (main) and 11β, 14α-dihydroxyandrost-4-ene-3, 17-dione (minor, a tentative structure), VI into 11β, 15α-dihydroxyandrost-4-ene-3,17-dione (main) and 15α-hydroxyandrost-4-ene-3,11,17-trione (minor, a tentative structure) and VII into 9α, 14α-dihydroxyandrost-4-ene-3, 17-dione (main) and 6β, 9α-dihydroxyandrost-4-ene-3,17-dione (minor).

In addition, the structural requirement of substrate for the 19-hydroxylation catalyzed by the organism and the influence of a hydroxyl group on steroid nucleus upon the 11β- and 14α-hydroxylations and the 11β-OH-dehydrogenation was discussed.  相似文献   

12.
The in vivo and in vitro antiandrogenic activity of four aromatic esters 10a-10d, one aliphatic ester 10e based on the pregna-4,16-diene-6, 20-dione structure and two aromatic 17c, 17d and two aliphatic valeroyloxy esters 17a, 17b based on the more saturated 4-pregnene-6,20-dione skeleton was examined. The biological activity of steroids 9, 10a-10e and 17a-17d, was determined using prostate glands from gonadectomized adult male golden hamsters. In the in vitro studies, the relative binding affinity of these steroids to cytoplasmic androgen receptor (AR) of hamster prostate was determined from, the corresponding IC50 values obtained from the competitive binding plots. The standards dihydrotestosterone (DHT) and cyproterone (CA) acetate used have displaced [3H]DHT from the AR with an IC50 value of 3.2 and 4.4 nM respectively. All steroidal compounds synthesized in this study showed a binding affinity for the androgen receptor, present in the cytosol from prostate hamster; compounds 10a-10c showed the highest affinities for this receptor. The in vivo experiments showed that all steroidal derivatives were subcutaneously active, since they decreased the weight of the prostate gland in gonadectomized hamsters treated with DHT, and are antagonists for the androgen receptor since they block the DHT-induced prostate weight gain. The derivatives having the more conjugated 4,16-pregnadiene-6, 20-dione system (10a-10c) exhibited a higher antiandrogenic activity than the corresponding steroids (17a-17d) based on the more saturated 4-pregnene-6,20-dione system.  相似文献   

13.
Twelve neuroactive and neuroprotective steroids, androgens and androgen precursors i.e. 3alpha,17beta-dihydroxy-5alpha-androstane, 3alpha-hydroxy-5alpha-androstan-17-one, 3alpha-hydroxy-5beta-androstan-17-one, androst-5-ene-3beta,17beta-diol, 3beta,17alpha-dihydroxy-pregn-5-en-20-one (17alpha-hydroxy-pregnenolone), 3beta-hydroxy-androst-5-en-17-one (dehydroepiandrosterone, DHEA), testosterone, androst-4-ene-3,17-dione (androstenedione), 3alpha-hydroxy-5alpha-pregnan-20-one (allopregnanolone), 3beta-hydroxy-pregn-5-en-20-one (pregnenolone), 7alpha-hydroxy-DHEA, and 7beta-hydroxy-DHEA were measured using the GC-MS system in young men before and after ejaculation provoked by masturbation. The circulating level of 17alpha-hydroxypregnenolone increased significantly, whereas the other circulating steroids were not changed at all. This fact speaks against the hypothesis that a drop in the level of neuroactive steroids, e.g. allopregnanolone may trigger the orgasm-related increase of oxytocin, reported by other authors.  相似文献   

14.
In order to characterize the main enzymatic systems involved in androgen and estrogen formation as well as metabolism in ZR-75-1 human breast cancer cells, incubation of intact cells was performed for 12 or 24 h at 37 degrees C with tritiated estradiol (E2), estrone (E1), androst-5-ene-3 beta, 17 beta-diol (5-ene-diol), dehydroepiandrosterone (DHEA), testosterone (T), androstenedione (4-ene-dione), dihydrotestosterone (DHT) or androsterone (ADT). The extra- and intracellular steroids were extracted, separated into free steroids, sulfates and non-polar derivatives (FAE) and identified by HPLC coupled to a Berthold radioactivity monitor. Following incubation with E2, 5-ene-diol or T, E1, DHEA and 4-ene-dione were the main products, respectively, thus indicating high levels of 17 beta-hydroxysteroid dehydrogenase (17 beta-HSD). When 4-ene-dione was used, on the other hand, a high level of transformation into 5 alpha-androstane-3,17-dione (A-dione), Epi-ADT and ADT was found, thus indicating the presence of high levels of 5 alpha-reductase as well as 3 alpha- and 3 beta-hydroxysteroid dehydrogenase. Moreover, some T was formed, due to oxidation by 17 beta-HSD. No estrogen was detected with the androgen precursors T or 4-ene-dione, thus indicating the absence of significant aromatase activity. Moreover, significant amounts of sulfates and non-polar derivatives were found with all the above-mentioned substrates. The present study shows that ZR-75-1 human breast cancer cells possess most of the enzymatic systems involved in androgen and estrogen formation and metabolism, thus offering an excellent model for studies of the control of sex steroid formation and action in breast cancer tissue.  相似文献   

15.
Higashi T  Takayama N  Kyutoku M  Shimada K  Koh E  Namiki M 《Steroids》2006,71(11-12):1007-1013
Androstenediol (Adiol, androst-5-ene-3beta,17beta-diol) is suspected of being an endogenous proliferation agent of prostate cancer (PCa) even after androgen deprivation therapy (ADT). A liquid chromatography-electron capture atmospheric pressure chemical ionization-mass spectrometric (LC-ECAPCI-MS) method for the determination of Adiol in prostatic tissue was developed and validated for evaluating the influence of ADT on the prostatic Adiol level. After derivatization of Adiol with 4-nitrobenzoyl chloride, the detection response of the derivative was increased 150 times more than that of intact Adiol. The LC-MS method was specific and reliable for the measurement of a trace amount of Adiol in 30 mg of tissue. The clinical study using the developed method showed that the prostatic Adiol level was not changed by ADT. That is, the prostatic Adiol levels of PCa patients with ADT (n = 12), benign prostate hypertrophy patients without ADT (n = 8) and bladder cancer patients (without prostatic disease) (n = 6) were 0.83 +/- 0.28, 0.62 +/- 0.31 and 0.71 +/- 0.28 ng g(-1)tissue, respectively, and there was no significant difference between these groups.  相似文献   

16.
Serum levels of the adrenal androgen dehydroepiandrosterone (DHEA) peak in men and women in the third decade of life and decrease progressively with age. Increasing numbers of middle-aged and older individuals consume over-the-counter preparations of DHEA, hoping it will retard aging by increasing muscle and bone mass and strength, decreasing fat, and improving immunologic and neurobehavioral functions. Because DHEA can serve as a precursor to more potent androgens and estrogens, like testosterone (T), dihydrotestosterone (DHT), and 17beta-estradiol (E2), supplemental DHEA use may pose a cancer risk in patients with nascent or occult prostate cancer. The steroid-responsive human LNCaP prostate cancer cells, containing a functional but mutated androgen receptor (AR), were used to compare effects of DHEA with those of T, DHT, and E2 on cell proliferation and protein and/or gene expression of AR, prostate-specific antigen (PSA), IGF-I, IGF-I receptor (IGF-IR), IGF-II, IGF-binding proteins-2, -3, and -5, (IGFBPs-2, -3, and -5), and estrogen receptor-beta (ERbeta). Cell proliferation assays revealed significant stimulation by all four steroids. DHEA- and E2-induced responses were similar but delayed and reduced compared with that of T and DHT. All four hormones increased gene and/or protein expression of PSA, IGF-IR, IGF-I, and IGFBP-2 and decreased that of AR, ERbeta, IGF-II, and IGFBP-3. There were no significant effects of hormone treatment on IGFBP-5 mRNA. DHEA and E2 responses were similar, and distinct from those of DHT and T, in time- and dose-dependent studies. Further studies of the mechanisms of DHEA effects on prostate cancer epithelial cells of varying AR status, as well as on prostate stromal cells, will be required to discern the implications of DHEA supplementation on prostatic health.  相似文献   

17.
R A Meigs 《Life sciences》1990,46(5):321-327
All oxidative functions of aromatase, i.e., estrogen production, 19-oxygenated androgen production and 7-ethoxycoumarin deethylation, were inhibited in parallel in placental microsomes from non-smokers by the mechanism-based, time-dependent inactivators (suicide substrates) 10 beta-(2-propynyl)estr-4-ene-3,17-dione and 4-hydroxyandrost-4-ene-3,17-dione. In contrast, the aromatase suicide substrate androst-4-ene-3,6,17-trione had little or no effect on the conversion of androst-4-ene-3,17-dione to 19-hydroxyandrost-4-ene-3,17-dione or on the conversion of the latter to 3,17-dioxoandrost-4-en-19-al while severely limiting the capacity for estrogen production from androst-4-ene-3,17-dione and 19-hydroxyandrost-4-ene-3,17-dione in such microsomal preparations. Androst-4-ene-3,6,17-trione, therefore, appears to uncouple the 19-hydroxylation of androgens from estrogen synthesis. This agent also produced only a minimal inhibition of 7-ethoxycoumarin deethylation, indicating that this major constitutive transformation of a xenobiotic chemical is associated with the steroid 19-hydroxylating function of the aromatase system.  相似文献   

18.
Xiong Z  Wei Q  Chen H  Chen S  Xu W  Qiu G  Liang S  Hu X 《Steroids》2006,71(11-12):979-983
The microbial transformation of androst-4-ene-3,17-dione (I) by the fungus Beauveria bassiana CCTCC AF206001 has been investigated using pH 6.0 and 7.0 media. Two hydroxylated metabolites were obtained with the pH 6.0 medium. The major product was 11alpha-hydroxyandrost-4-ene-3,17-dione (II) whereas the minor product was 6beta,11alpha-dihydroxyandrost-4-ene-3,17-dione (III). On the other hand, four hydroxylated and/or reduced metabolites were obtained with the pH 7.0 medium. The major product was 11alpha,17beta-dihydroxyandrost-ene-3-one (V) and the minor products were 17beta-hydroxyandrost-ene-3-one (IV), 6beta,11alpha,17beta-trihydroxyandrost-ene-3-one (VI) and 3alpha,11alpha,17beta-trihydroxy-5alpha-androstane (VII). The products were purified by chromatographic methods, and were identified on the basis of spectroscopic methods. This fungus strain is clearly an efficient biocatalyst for 11alpha-hydroxylation and reduction of the 17-carbonyl group.  相似文献   

19.
The location and some characteristics of rat adrenal C(19)-steroid 5alpha-reductase were investigated by using [7alpha-(3)H]androst-4-ene-3,17-dione and [7alpha-(3)H]testosterone as substrates. The enzymes system was shown to be NADPH-dependent and associated with the microsomal fraction. In addition, some evidence was also obtained for the existence of a separate NADH-dependent system in the soluble fraction. Further investigation of androst-4-ene-3,17-dione metabolism by subcellular fractions indicated the presence of NADH-dependent 3alpha- and 3beta-hydroxy steroid dehydrogenase systems in the microsomal pellet. This pellet also appeared to contain an NADH-dependent 17beta-hydroxy steroid dehydrogenase system, and a similar though separate system was detected in the cytosol. Malate (20mm) effectively inhibited the microsomal C(19)-steroid 5alpha-reductase, which showed similar values for K(m) and V(max.) when either androst-4-ene-3,17-dione or testosterone was used as substrate. Cytochrome c was added to all incubation mixtures used for the determination of these values to inhibit the formation of metabolites other than 5alpha-androstane-3,17-dione and 5alpha-dihydrotestosterone (17beta-hydroxy-5alpha-androstan-3-one) respectively. It was also found that corticosterone did not inhibit the 5alpha-reduction of androst-4-ene-3,17-dione under these conditions, indicating that separate enzymes exist for the 5alpha-reduction of C(19)- and C(21)-steroids in the rat adrenal.  相似文献   

20.
Total tissue content and subcellular distribution of DHEA sulfate, DHEA, androst-5-ene-3 beta,17 beta-diol, androst-4-ene-3,17-dione, testosterone, 5 alpha-DHT, and 5 alpha-androstane-3 alpha,17 beta-diol as well as the activities of steroid sulfate-sulfatase, 17 beta-hydroxysteroid dehydrogenase, 5 alpha-reductase, 3 alpha/beta-hydroxysteroid dehydrogenase, and creatine kinase were quantified in 12 untreated primary tumors of prostatic cancer. Samples were obtained by radical prostatectomy and serial sections, and were alternately used for either biochemical or morphological evaluation. The results were compared with values determined in benign parts of the same prostates. Qualitatively, all enzymes and steroids found in the benign tissues could also be demonstrated in the cancers. Steroid patterns showed individual quantitative variation but no general differences between the carcinomas and the benign tissues. Enzymes showed a tendency to lower activities in the cancers, particularly when expressed per DNA. Substantial diminutions of creatine kinase and 5 alpha-reductase activity, the latter being often accompanied by an increased testosterone/DHT ratio, were the most striking differences seen in most of the cases between malignant and nonmalignant tissues. Some interesting individual parallels of morphological and biochemical aspects were seen, but there was no obvious general parallelism between the histological picture and endocrinological characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号