首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The urea cycle in the liver of adjuvant-induced arthritic rats was investigated using the isolated perfused liver. Urea production in livers from arthritic rats was decreased during substrate-free perfusion and also in the presence of the following substrates: alanine, alanine + ornithine, ammonia, ammonia + lactate, ammonia + pyruvate and glutamine but increased when arginine and citrulline + aspartate were the substrates. No differences were found with ammonia + aspartate, ammonia + aspartate + glutamate, aspartate, aspartate + glutamate and citrulline. Ammonia consumption was smaller in the arthritic condition when the substance was infused together with lactate or pyruvate but higher when the substance was simultaneously infused with aspartate or aspartate + glutamate. Glucose production tended to correlate with the smaller or higher rates of urea synthesis. Blood urea was higher in arthritic rats (+25.6%), but blood ammonia was lower (–32.2%). Critical for the synthesis of urea from various substrates in arthritic rats seems to be the availability of aspartate, whose production in the liver is probably limited by both the reduced gluconeogenesis and aminotransferase activities. This is indicated by urea synthesis which was never inferior in the arthritic condition when aspartate was exogenously supplied, being even higher when both aspartate and citrulline were simultaneously present. Possibly, the liver of arthritic rats has a different substrate supply of nitrogenous compounds. This could be in the form of different concentrations of aspartate or other aminoacids such as citrulline or arginine (from the kidneys) which allow higher rates of hepatic ureogenesis.  相似文献   

2.
The urea cycle was evaluated in perfused livers isolated from cachectic tumor-bearing rats (Walker-256 tumor). Urea production in livers of tumor-bearing rats was decreased in the presence of the following substrates: alanine, alanine + ornithine, alanine + aspartate, ammonia, ammonia + lactate, ammonia + pyruvate and glutamine. Urea production from arginine was higher in livers of tumor-bearing rats. No difference was found with aspartate, aspartate + ammonia, citrulline, citrulline + aspartate and glutamine + aspartate. Ammonia consumption was smaller in livers from cachectic rats when the substance was infused together with lactate and pyruvate. Glucose production was smaller in the cachectic condition only when alanine was the gluconeogenic substrate. Blood urea was higher in tumor-bearing rats, suggesting higher rates of urea production. The availability of aspartate seems to be critical for urea synthesis in the liver of tumor-bearing rats, which is possibly unable to produce this amino acid in sufficient amounts from endogenous sources. The liver of tumor-bearing rats may have a different exogenous substrate supply of nitrogenous compounds. Arginine could be one of these compounds in addition to aspartate which seems to be essential for an efficient ureogenesis in tumor-bearing rats.  相似文献   

3.
Increased blood ammonia was induced in fasting mice by ip administration of 200 mg/kg Na-valproate followed 1 h later by 13 and 4 mmol/kg alanine and ornithine, respectively. When valproate was not used blood or liver ammonia was not increased, but increases were observed in liver glutamate (5-fold), glutamine (2-fold), aspartate (5-fold), acetylglutamate (15-fold), citrulline (35-fold), argininosuccinate (11-fold), arginine (11-fold), and urea (3-fold). The level of carbamoyl phosphate (less than 2 nmol/g) was, by far, the lowest of all urea cycle intermediates. The large increase in citrulline indicates that argininosuccinate synthesis was limiting, and that the increase in acetylglutamate induced a considerable activation of carbamoyl phosphate synthetase, which agrees with theoretical expectations, irrespective of the actual KD value for acetylglutamate. Pretreatment with valproate resulted in lower hepatic levels of glutamate, glutamine, aspartate, acetyl-CoA, and acetylglutamate. At the level found of acetylglutamate the activation of carbamoyl phosphate synthetase would be expected to be similar to that without valproate. Indeed, the levels of citrulline were similar with or without valproate. Argininosuccinate, arginine, and urea levels exhibited little if any change. Although the model used may not replicate exactly the situation in patients, from our results it appears that changes in citrullinogenesis or in other steps of the urea cycle do not account for the increase in blood ammonia induced by valproate, and it is proposed that valproate may alter glutamine metabolism.  相似文献   

4.
We previously reported that endurance training increases amino acid catabolism. In this study, the effects of an acute endurance exercise bout on tissue protein levels and urea excretion have been investigated. Exhaustive exercising of trained rats resulted in an increase in ammonia excretion but there was no significant change in urea excretion. Protein levels of muscle and liver were significantly decreased by an exhaustive bout of exercise. In muscle, both the soluble and myofibrillar protein fractions were decreased in exhausted rats. These results demonstrate that during exercise there is a net loss of protein in muscle and liver.  相似文献   

5.
1. In hepatocytes isolated from 24 h-starved rats, urea production from ammonia was stimulated by addition of lactate, in both the presence and the absence of ornithine. The relationship of lactate concentration to the rate of urea synthesis was hyperbolic. 2. Other glucose precursors also stimulated urea production to varying degrees, but none more than lactate. Added oleate and butyrate did not stimulate urea synthesis. 3. Citrulline accumulation was largely dependent on ornithine concentration. As ornithine was increased from 0 to 40 mM, the rate of citrulline accumulation increased hyperbolically, and was half-maximal when ornithine was 8-12 mM. 4. The rate of citrulline accumulation was independent of the presence of lactate, but with pyruvate the rate increased. 5. The rate of urea production continued to increase as ornithine was varied from 0 to 40 mM. 6. It was concluded that intermediates provided by both ornithine and lactate are limiting for urea production from ammonia in isolated liver cells. It was suggested that the stimulatory effect of lactate lies in increased availability of cytosolic aspartate for condensation with citrulline.  相似文献   

6.
Abstract— The distribution of argininosuccinate synthetase, argininosuccinase and arginase, and the synthesis of urea in cerebullum. cerebral cortex and brain stem have been studied. Cerebral cortex had high levels of argininosuccinate synthetase and argininosuccinase. and a high ability to synthesize urea from aspartic acid and citrulline. Of the three regions, cerebullum had the highest arginase activity. The activities of the enzymes transamidinase and ornithine aminotransferase in the metabolism of arginine and ornithine in pathways other than urea formation have been studied in the three regions of the rat brain. The activity of creatine phosphokinase in all regions was the same: carbamylphosphatase activity was highest in cerebullum. Cerebral cortex had a high activity of aspartic acid transcarba-mylase. The brain stem, among the three regions, had the lowest activities of glutamine synthetase and glutaminase. The activities of these enzymes in the different regions are discussed in relation to urea production and the utilization of the urea cycle intermediates.
Intraperitoneal injection of high amounts of citrulline brought about a rise in the glutamine synthetase activity of cerebellum and brain stem and a rise in ornithine aminotransferase in cerebral cortex and liver. These results are discussed in relation to the mechanism of action of citrulline in alleviating the toxicity in hyperammonaemic states.  相似文献   

7.
Urea synthesis was studied using the isolated liver perfusion with ammonium cholride and glutamine as nitrogen sources. The rate of urea formation increases with ammonium cholorde concentration up to 5mM, and the rate remained constant in the range between 5 and 20mM of ammonium chloride as the substrate. The concentration of ammonia in the medium to support the half-maximum velocity of urea formation was 0.7mM. The rate of urea formation was stimulated by the addition of 2.5mM ornithine, and the greater part of the ornithine which was taken up into the liver was accumulated as citrulline in the presence of ammonia. A considerable accelerating effect of N-acetylglutamate on the synthetic rate was observed, but a rather high concentration of N-acetylglutamate was required in order to obtain the maximum effect possibly, because its permeability into liver cells may be limited. A marked additive effect on the rate of urea formation was observed with the combined addition of ornithine and N-acetylglutamate. The metabolic conversion of glutamine nitrogen to urea in the perfused rat liver and the effect of several compounds which stimulated urea synthesis with ammonia were further examined. The process of conversion of glutamine nitrogen to urea might be composed of the following three steps. In the first lag phase, a small amount of glutamine was removed from the medium. In the second stage, the glutamine level decreased rapidly and ammonia was accumulated in the perfusate. The third stage was a period in which glutamine concentration remained at a constant low level, and the accumulated ammonia was rapidly conversed to urea. The rate of urea formation in this third stage was found to be much higher than that with ammonia as the substrate. The maximum rate of glutamine removal was obtained at pH 7.7 of the perfusate and at a concentration of 10mM glutamine. Urea formation with glutamine was also stimulated by the addition of ornithine, malate, or N-acetylglutamate, which had accelerating effects on the urea synthesis with ammonia. This stimulation was due to an effective conversion of ammonia to urea, but no change in the rate of removal glutamine was obtained.  相似文献   

8.
In eight healthy men a 20-min load of 1.5 W/kg body weight on a bicycle ergometer led to a significant increase of alanine and decline of leucine. Exhausting exercise caused in the same subjects a highly significant increase of alanine and decline of isoleucine, threonine, ornithine, leucine, serine, glycine, and asparasine and glutamine. The methionine and citrulline level declines also significantly. The total amino acids practically did not change. Physical exercise led furthermore to a marked increase of serum ammonia and uric acid. Urea nitrogen changed only little and on average had rather a declining tendency. The rise of alanine suggests the existence of a glucose-alanine cycle, the drop of ornithine and citrulline is most probably associated with the inhibition of ureogenesis in the liver. The reduction of leucine and isoleucine is probably the result of the entry of these amino acids into muscle and their deamination.  相似文献   

9.
We have reported that (1) the synthesis of GSA, a uremic toxin, increases depending on the urea concentration and (2) GSA is formed from argininosuccinic acid (ASA) and the hydroxyl radical or SIN-1 which generates superoxide and NO simultaneously. However, an excess of NO, which also serves as a scavenger of the hydroxyl radical, inhibited GSA synthesis. We also reported that arginine, citrulline or ammonia plus ornithine, all of which increase arginine, inhibit GSA synthesis even in the presence of urea. To elucidate the mechanism for increased GSA synthesis by urea, we investigated the effect of urea on ASA and arginine, the immediate precursor of NO.Isolated rat hepatocytes were incubated in 6 ml of Krebs-Henseleit bicarbonate buffer containing 3% bovine serum albumin, 10 mM sodium lactate, 10 mM ammonium chloride and with or without 36 mM of urea and 0.5 or 5 mM ornithine at 37°C for 20 min. In vivo experiments, 4 ml/100 g body weight of 1.7 M urea or 1.7 M NaCl were injected intra-peritoneally into 5 male Wistar rats. Two hours after the intra-peritoneal injection of urea or 1.7 M NaCl, blood, liver and kidney were obtained by the freeze cramp method and amino acids were determined by an amino acid analyzer (JEOL:JCL-300).ASA in isolated hepatocytes was not detected with or without 36 mM (200 mgN/dl) urea, but the arginine level decreased from 36 to 33 nmol/g wet cells with urea. Ornithine which inhibits GSA synthesis, increased ASA markedly in a dose dependent manner and increased arginine. At 2 h after the urea injection the rat serum arginine level decreased by 42% (n = 5), and ornithine and citrulline levels increased significantly. Urea injection increased the ASA level in liver from 36–51 nmol/g liver but this was not statistically significant.We propose that urea inhibits arginine synthesis in hepatocytes, where the arginine level is extremely low to begin with, which decreases NO production which, in turn, increases hydroxyl radical generation from superoxide and NO. This may, also, be an explanation for the reported increase in oxygen stress in renal failure.  相似文献   

10.
Sporosarcina ureae BS 860, a motile, sporeforming coccus, possesses the enzymes required for a functioning urea (ornithine) cycle. This is only the second known example of urea cycle activity in a prokaryote. Specific activities are reported for ornithine carbamoyltransferase, argininosuccinase, arginase, and urease. Although argininosuccinate synthetase activity could not be detected directly in crude cell extracts, indirect evidence from radiocarbon tracing data for arginine synthesis from the substrate, l-[1-14C]-ornithine, strongly suggest the presence of this or other similar enzyme activity. Furthermore, good growth in defined media containing either 1.0% glutamine, ornithine, or citrulline as sole carbon sources suggests argininosuccinate synthetase activity is necessary for arginine synthesis. The effect of varying pH on arginase and urease activities indicate that these two enzymes may function within the context of the urea cycle to generate ammonia for amino acid synthesis, as well as for raising the pH of the growth micro-environment.  相似文献   

11.
Almost all about citrulline in mammals   总被引:2,自引:0,他引:2  
Summary. Citrulline (Cit, C6H13N3O3), which is a ubiquitous amino acid in mammals, is strongly related to arginine. Citrulline metabolism in mammals is divided into two fields: free citrulline and citrullinated proteins. Free citrulline metabolism involves three key enzymes: NO synthase (NOS) and ornithine carbamoyltransferase (OCT) which produce citrulline, and argininosuccinate synthetase (ASS) that converts it into argininosuccinate. The tissue distribution of these enzymes distinguishes three “orthogonal” metabolic pathways for citrulline. Firstly, in the liver, citrulline is locally synthesized by OCT and metabolized by ASS for urea production. Secondly, in most of the tissues producing NO, citrulline is recycled into arginine via ASS to increase arginine availability for NO production. Thirdly, citrulline is synthesized in the gut from glutamine (with OCT), released into the blood and converted back into arginine in the kidneys (by ASS); in this pathway, circulating citrulline is in fact a masked form of arginine to avoid liver captation. Each of these pathways has related pathologies and, even more interestingly, citrulline could potentially be used to monitor or treat some of these pathologies. Citrulline has long been administered in the treatment of inherited urea cycle disorders, and recent studies suggest that citrulline may be used to control the production of NO. Recently, citrulline was demonstrated as a potentially useful marker of short bowel function in a wide range of pathologies. One of the most promising research directions deals with the administration of citrulline as a more efficient alternative to arginine, especially against underlying splanchnic sequestration of amino acids. Protein citrullination results from post-translational modification of arginine; that occurs mainly in keratinization-related proteins and myelins, and insufficiencies in this citrullination occur in some auto-immune diseases such as rheumatoid arthritis, psoriasis or multiple sclerosis.  相似文献   

12.
Cells of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803 supplemented with micromolar concentrations of L-[(14)C]arginine took up, concentrated, and catabolized this amino acid. Metabolism of L-[(14)C]arginine generated a set of labeled amino acids that included argininosuccinate, citrulline, glutamate, glutamine, ornithine, and proline. Production of [(14)C]ornithine preceded that of [(14)C]citrulline, and the patterns of labeled amino acids were similar in cells incubated with L-[(14)C]ornithine, suggesting that the reaction of arginase, rendering ornithine and urea, is the main initial step in arginine catabolism. Ornithine followed two metabolic pathways: (i) conversion into citrulline, catalyzed by ornithine carbamoyltransferase, and then, with incorporation of aspartate, conversion into argininosuccinate, in a sort of urea cycle, and (ii) a sort of arginase pathway rendering glutamate (and glutamine) via Delta(1)pyrroline-5-carboxylate and proline. Consistently with the proposed metabolic scheme (i) an argF (ornithine carbamoyltransferase) insertional mutant was impaired in the production of [(14)C]citrulline from [(14)C]arginine; (ii) a proC (Delta(1)pyrroline-5-carboxylate reductase) insertional mutant was impaired in the production of [(14)C]proline, [(14)C]glutamate, and [(14)C]glutamine from [(14)C]arginine or [(14)C]ornithine; and (iii) a putA (proline oxidase) insertional mutant did not produce [(14)C]glutamate from L-[(14)C]arginine, L-[(14)C]ornithine, or L-[(14)C]proline. Mutation of two open reading frames (sll0228 and sll1077) putatively encoding proteins homologous to arginase indicated, however, that none of these proteins was responsible for the arginase activity detected in this cyanobacterium, and mutation of argD (N-acetylornithine aminotransferase) suggested that this transaminase is not important in the production of Delta(1)pyrroline-5-carboxylate from ornithine. The metabolic pathways proposed to explain [(14)C]arginine catabolism also provide a rationale for understanding how nitrogen is made available to the cell after mobilization of cyanophycin [multi-L-arginyl-poly(L-aspartic acid)], a reserve material unique to cyanobacteria.  相似文献   

13.
The main goal of the current study was to elucidate the role of mitochondrial arginine metabolism in the regulation of N-acetylglutamate and urea synthesis. We hypothesized that arginine catabolism via mitochondrially bound arginase augments ureagenesis by supplying ornithine for net synthesis of citrulline, glutamate, N-acetylglutamate, and aspartate. [U-(15)N(4)]arginine was used as precursor and isolated mitochondria or liver perfusion as a model system to monitor arginine catabolism and the incorporation of (15)N into various intermediate metabolites of the urea cycle. The results indicate that approximately 8% of total mitochondrial arginase activity is located in the matrix, and 90% is located in the outer membrane. Experiments with isolated mitochondria showed that approximately 60-70% of external [U-(15)N(4)]arginine catabolism was recovered as (15)N-labeled ornithine, glutamate, N-acetylglutamate, citrulline, and aspartate. The production of (15)N-labeled metabolites was time- and dose-dependent. During liver perfusion, urea containing one (U(m+1)) or two (U(m+2)) (15)N was generated from perfusate [U-(15)N(4)]arginine. The output of U(m+2) was between 3 and 8% of total urea, consistent with the percentage of activity of matrix arginase. U(m+1) was formed following mitochondrial production of [(15)N]glutamate from [alpha,delta-(15)N(2)]ornithine and transamination of [(15)N]glutamate to [(15)N]aspartate. The latter is transported to cytosol and incorporated into argininosuccinate. Approximately 70, 75, 7, and 5% of hepatic ornithine, citrulline, N-acetylglutamate, and aspartate, respectively, were derived from perfusate [U-(15)N(4)]arginine. The results substantiate the hypothesis that intramitochondrial arginase, presumably the arginase-II isozyme, may play an important role in the regulation of hepatic ureagenesis by furnishing ornithine for net synthesis of N-acetylglutamate, citrulline, and aspartate.  相似文献   

14.
Metabolism of arginine in lactating rat mammary gland.   总被引:3,自引:1,他引:2       下载免费PDF全文
Significant activities of the four enzymes needed to convert arginine into proline and glutamate (arginase, ornithine aminotransferase, pyrroline-5-carboxylate reductase and pyrroline-5-carboxylate dehydrogenase) develop co-ordinately in lactating rat mammary glands in proportion to the increased production of milk. No enzymes were detected to carry out the reactions of proline oxidation or reduction of glutamate to pyrroline-5-carboxylate. Minces of the gland converted ornithine into proline and into glutamate plus glutamine. These conversions increased during the cycle of lactation in proportion to the increased milk production and to the content of the necessary enzymes. The minced gland did not convert labelled ornithine into citrulline, confirming the absence from the gland of a functioning urea cycle, and did not convert labelled proline or glutamate into ornithine. A metabolic flow of labelled arginine to proline and glutamate in mammary gland was confirmed in intact animals with experiments during which the specific radioactivity of proline in plasma remained below that of the proline being formed from labelled arginine within the gland. It was concluded that arginase in this tissue had a metabolic role in the biosynthesis of extra proline and glutamate needed for synthesis of milk proteins.  相似文献   

15.
The submitochondrial localization of the four mitochondrial enzymes associated with urea synthesis in liver of Squalus acanthias (spiny dogfish), a representative elasmobranch, was determined. Glutamine- and acetylglutamate-dependent carbamoyl-phosphate synthetase, ornithine carbamoyltransferase, glutamine synthetase, and arginase were all localized within the matrix of liver mitochondria. The subcellular and submitochondrial localization and activities of several related enzymes involved in nitrogen metabolism and gluconeogenesis in liver and dogfish are also reported. Pyruvate carboxylase and phosphoenolpyruvate carboxykinase were localized in the mitochondrial matrix. Synthesis of citrulline by isolated mitochondria from ornithine proceeds at a near optimal rate at ornithine concentrations as low as 0.08 mM. The same stoichiometry and rates of citrulline synthesis are observed when ornithine is replaced by arginine. The mitochondrial location of arginase does not appear to reflect a mechanism for regulating ornithine availability.  相似文献   

16.
Arginine supplementation has been shown to alleviate endothelial dysfunction and improve exercise performance through increasing nitric oxide production in patients with cardiopulmonary diseases. In addition, arginine supplementation could decrease accumulations of lactate and ammonia, metabolites involved in development of muscular fatigue. The aim of this study was to investigate the effect of short-term arginine supplementation on performance in intermittent anaerobic exercise and the underlying mechanism in well-trained male athletes. Ten elite male college judo athletes participated with a randomized crossover, placebo-controlled design. The subjects consumed 6 g/day arginine (ARG trial) or placebo (CON trial) for 3 days then performed an intermittent anaerobic exercise test on a cycle ergometer. Blood samples were collected before supplementation, before and during exercise and 0, 3, 6, 10, 30 and 60 min after exercise. ARG trial had significantly higher arginine concentrations than CON trial at the same time point before, during and after exercise. In both trials, nitrate and nitrite concentration was significantly higher during and 6 min after exercise comparing to the basal concentration. The increase in nitrate and nitrite concentration during exercise in both trials was parallel to the increase in plasma citrulline concentrations. There was no significant difference between the 2 trials in plasma nitrate and nitrite, lactate and ammonia concentrations and peak and average power in the exercise. The results of this study suggested that short-term arginine supplementation had no effect on nitric oxide production, lactate and ammonia metabolism and performance in intermittent anaerobic exercise in well-trained male athletes.  相似文献   

17.
The possible synthesis of citrulline, a rate limiting step for urea synthesis via the ornithine-urea cycle (OUC) in teleosts was tested both in the presence of ammonia and glutamine as nitrogen-donating substrates by the isolated liver mitochondria of ureogenic air-breathing walking catfish, C. batrachus. Both ammonia and glutamine could be used as nitrogen-donating substrates for the synthesis of citrulline by the isolated liver mitochondria, since the rate of citrulline synthesis was almost equal in presence of both the substrates. The citrulline synthesis by the isolated liver mitochondria requires succinate at a concentration of 0.1 mM as an energy source, and also requires the involvement of intramitochondrial carbonic anhydrase activity for supplying HCO3 as another substrate for citrulline synthesis. The rate of citrulline synthesis was further stimulated significantly by the isolated liver mitochondria of the fish after pre-exposure to 25 mM NH4Cl for 7 days. Due to possessing this biochemical adaptational strategy leading to the amelioration of ammonia toxicity mainly by channeling ammonia directly and/or via the formation of glutamine to the OUC, this air-breathing catfish could succeed in surviving in high external ammonia, which it faces in its natural habitat in certain seasons of the year.  相似文献   

18.
The synthesis of citrulline from arginine in the small intestine depends on the provision of ornithine. To test the hypothesis that arginase II plays a central role in the supply of ornithine for citrulline synthesis, the contribution of dietary arginine, glutamine, and proline was determined by utilizing multitracer stable isotope protocols in arginase II knockout (AII(-/-)) and wild-type (WT) mice. The lack of arginase II resulted in a lower citrulline rate of appearance (121 vs. 137 μmol·kg(-1)·h(-1)) due to a reduced availability of ornithine; ornithine supplementation was able to restore the rate of citrulline production in AII(-/-) to levels comparable with WT mice. There were significant differences in the utilization of dietary citrulline precursors. The contribution of dietary arginine to the synthesis of citrulline was reduced from 45 to 10 μmol·kg(-1)·h(-1) due to the lack of arginase II. No enteral utilization of arginine was observed in AII(-/-) mice (WT = 25 μmol·kg(-1)·h(-1)), and the contribution of dietary arginine through plasma ornithine was reduced in the transgenic mice (20 vs. 13 μmol·kg(-1)·h(-1)). Dietary glutamine and proline utilization were greater in AII(-/-) than in WT mice (20 vs. 13 and 1.4 vs. 3.7 μmol·kg(-1)·h(-1), respectively). Most of the contribution of glutamine and proline was enteral rather than through plasma ornithine. The arginase isoform present in the small intestinal mucosa has the role of providing ornithine for citrulline synthesis. The lack of arginase II results in a greater contribution of plasma ornithine and dietary glutamine and proline to the synthesis of citrulline.  相似文献   

19.
20.
The activities of key glutamine and urea cycle enzymes were assayed in liver homogenates from control and chronically acidotic rats and compared with citrulline and urea productions by isolated mitochondria and intact liver slices, respectively. Glutamine-dependent urea and citrulline synthesis were increased significantly in isolated mitochondria and in liver slices; the activities of carbamoyl phosphate synthetase and arginase were unchanged and increased, respectively. Glutamine was not a precursor in the carbamoyl phosphate synthetase system, suggesting that the glutamine effect is an indirect one and that glutamine requires prior hydrolysis. Increased mitochondrial citrulline synthesis was associated with enhanced oxygen consumption, suggesting glutamine acts both as a nitrogen and fuel source. Hepatic phosphate-dependent glutaminase was elevated by chronic acidosis. The results indicate that the acidosis-induced reduction in ureagenesis and reversal from glutamine uptake to release observed in vivo are not reflections of corresponding changes in the hepatic enzyme content. Rather, when available, glutamine readily supports ureagenesis, suggesting a close coupling of hepatic glutaminase flux with citrulline synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号