首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Before integration of the human immunodeficiency virus (HIV) DNA, two nucleotides are removed from the 3' ends of the viral DNA by the integrase (IN) protein. We studied the chemistry of this reaction, and found that IN mediates site-specific hydrolysis of a phosphodiester bond, resulting in release of a dinucleotide. A class of alcohols (including glycerol, 1,2-propanediol, but not 1,3-propanediol) can also act as nucleophile in this reaction, and likewise the alcoholic amino acids L-serine and L-threonine can be covalently linked to the dinucleotide. No evidence was found for a covalent linkage between the IN protein and this dinucleotide, suggesting that IN directs a single nucleophilic attack of water at the specific phosphodiester bond.  相似文献   

2.
The integrase protein (IN) of human immunodeficiency virus type 1 removes two nucleotides from both 3' ends of the viral DNA (donor cleavage) and subsequently couples the newly generated 3' OH groups to phosphates in the target DNA (integration). The sequence requirements of IN for cleavage as well as for integration of viral DNA substrates have previously been studied by mutational analyses and by adduct interference assays. We extended these studies by analysis of heteroduplex oligonucleotide substrates and by missing-base analysis. We found for some base pairs that mutation of only one of the two bases and not the other affected IN activity. These base pairs center around the cleavage site. Besides donor cleavage and integration, IN can also perform "intermolecular disintegration," which has been described as the reversal of the integration reaction. We found that this reaction is independent of viral DNA sequences. In addition, the optimum spacing between the integration sites in intermolecular disintegration does not reflect the spacing found in vivo. These results indicate that this reaction is not the exact reversal of integration but rather is a sequence-independent phosphoryl transfer reaction between gapped DNA duplex molecules.  相似文献   

3.
4.
Retroviral integrase (IN) cleaves linear viral DNA specifically near the ends of the DNA (cleavage reaction) and subsequently couples the processed ends to phosphates in the target DNA (integration reaction). In vitro, IN catalyzes the disintegration reaction, which is the reverse of the integration reaction. Ideally, we would like to test the role of each amino acid in the IN protein. We mutagenized human immunodeficiency virus type 2 IN in a random way using PCR mutagenesis and generated a set of mutants in which 35% of all residues were substituted. Mutant proteins were tested for in vitro activity, e.g., site-specific cleavage of viral DNA, integration, and disintegration. Changes in 61 of the 90 proteins investigated showed no phenotypic effect. Substitutions that changed the choice of nucleophile in the cleavage reaction were found. These clustered around the active-site residues Asp-116 and Glu-152. We also found alterations of amino acids that affected cleavage and integration differentially. In addition, we analyzed the disintegration activity of the proteins and found substitutions of amino acids close to the dimer interface that enhanced intermolecular disintegration activity, whereas other catalytic activities were present at wild-type levels. This study shows the feasibility of investigating the role of virtually any amino acid in a protein the size of IN.  相似文献   

5.
We tested whether the selection of target sites can be manipulated by fusing retroviral integrase with a sequence-specific DNA-binding protein. A hybrid protein that has the Escherichia coli LexA protein fused to the C terminus of the human immunodeficiency virus type 1 integrase was constructed. The fusion protein, IN1-288/LA, retained the catalytic activities in vitro of the wild-type human immunodeficiency virus type 1 integrase (WT IN). Using an in vitro integration assay that included multiple DNA fragment as the target DNA, we found that IN1-288/LA preferentially integrated viral DNA into the fragment containing a DNA sequence specifically bound by LexA protein. No bias was observed when the LexA-binding sequence was absent, when the fusion protein was replaced by WT IN, or when LexA protein was added in the reaction containing IN1-288/LA. A majority of the integration events mediated by IN1-288/LA occurred within 30 bp of DNA flanking the LexA-binding sequence. The specificity toward the LexA-binding sequence and the distribution and frequency of target site usage were unchanged when the integrase component of the fusion protein was replaced with a variant containing a truncation at the N or C terminus or both, suggesting that the domain involved in target site selection resides in the central core region of integrase. The integration bias observed with the integrase-LexA hybrid shows that one effective means of altering the selection of DNA sites for integration is by fusing integrase to a sequence-specific DNA-binding protein.  相似文献   

6.
The integrase (IN) protein of the human immunodeficiency virus (HIV) is required for specific cleavage of the viral DNA termini, and subsequent integration of the viral DNA into target DNA. To identify the various domains of the IN protein we generated a series of IN deletion mutants as fusions to maltose-binding protein (MBP). The deletion mutants were tested for their ability to bind DNA, to mediate site-specific cleavage of the viral DNA ends, and to carry out integration and disintegration reactions. We found that the DNA-binding region resides between amino acids 200 and 270 of the 288-residues HIV-1 IN protein. The catalytic domain of the protein was mapped between amino acids 50 and 194. For the specific activities of IN, cleavage of the viral DNA and integration, both the DNA-binding domain and the conserved amino-terminal region of IN are required. These regions are dispensable however, for disintegration activity.  相似文献   

7.
The integrase (IN) protein of the human immunodeficiency virus mediates integration of the viral DNA into the cellular genome. In vitro, this reaction can be mimicked by using purified recombinant IN and model DNA substrates. IN mediates two reactions: an endonucleolytic cleavage at each 3' end of the proviral DNA (terminal cleavage) and the joining of the linear viral DNA to 5' phosphates in the target DNA (strand transfer). Previous investigators have shown that purified IN requires Mn2+ or Mg2+ to promote strand transfer in vitro, although Mg2+ is the likely metal cofactor in vivo. IN activity in the presence of Mg2+ in vitro requires high IN concentrations and low concentrations of salt. Here, we show that the viral nucleocapsid protein NCp7 allows efficient IN-mediated strand transfer in the presence of Mg2+ at low enzyme concentrations. This potentiating effect appears to be unique to NCp7, as other small DNA-binding proteins, while capable of stimulating integration in the presence of Mn2+, all failed to stimulate strand transfer in the presence of Mg2+.  相似文献   

8.
9.
Retroviral integrase (IN) exhibits a previously unrecognized endonuclease activity which we have termed nonspecific alcoholysis. This action occurred at every position in nonviral DNA sequences except those near 5' ends and is clearly distinguished from, and was not predicted by, the site-specific alcoholysis activity previously described for IN at the processing site near viral DNA termini. The integrases of human immunodeficiency virus type 1, visna virus, and Rous sarcoma virus exhibited different target site preferences in this new assay. The isolated central domain of human immunodeficiency virus type 1 IN preferred the same sites as the full-length protein. Nonspecific alcoholysis may provide insights into the structure and function of IN and other endonucleases and suggests that stimulators of some activities possessed by retroviral enzymes should be sought as antiviral agents.  相似文献   

10.
In vitro activities of purified visna virus integrase.   总被引:7,自引:5,他引:2       下载免费PDF全文
Although integration generally is considered a critical step in the retrovirus life cycle, it has been reported that visna virus, which causes degenerative neurologic disease in sheep, can productively infect sheep choroid plexus cells without detectable integration. To ascertain whether the integrase (IN) of visna virus is an inherently defective enzyme and to create tools for further study of integration of the phylogenetically related human immunodeficiency virus type 1 (HIV-1), we purified visna virus IN by using a bacterial expression system and applied various in vitro oligonucleotide-based assays to studying this protein. We found that visna virus IN demonstrates the full repertoire of in vitro functions characteristic of retroviral integrases. In particular, visna virus IN exhibits site-specific endonuclease activity following the invariant CA found two nucleotides from the 3' ends of viral DNA (processing activity), joins processed oligonucleotides to various sites on other oligonucleotides (strand transfer or integration activity), and reverses the integration reaction by resolving a complex that mimics one end of viral DNA integrated into host DNA (disintegration activity). In addition, although it has been reported that purified HIV-1 IN cannot specifically nick visna virus DNA ends, purified visna virus IN does specifically process and integrate HIV-1 DNA ends.  相似文献   

11.
Integration of retroviral DNA into the host cell genome requires the interaction of retroviral integrase (IN) protein with the outer ends of both viral long terminal repeats (LTRs) to remove two nucleotides from the 3' ends (3' processing) and to join the 3' ends to newly created 5' ends in target DNA (strand transfer). We have purified the IN protein of human immunodeficiency virus type 1 (HIV-1) after production in Saccharomyces cerevisiae and found it to have many of the properties described for retroviral IN proteins. The protein performs both 3' processing and strand transfer reactions by using HIV-1 or HIV-2 attachment (att) site oligonucleotides. A highly conserved CA dinucleotide adjacent to the 3' processing site of HIV-1 is important for both the 3' processing and strand transfer reactions; however, it is not sufficient for full IN activity, since alteration of nucleotide sequences internal to the HIV-1 U5 CA also impairs IN function, and Moloney murine leukemia virus att site oligonucleotides are poor substrates for HIV-1 IN. When HIV-1 att sequences are positioned internally in an LTR-LTR circle junction substrate, HIV-1 IN fails to cleave the substrate preferentially at positions coinciding with correct 3' processing, implying a requirement for positioning att sites near DNA ends. The 2 bp normally located beyond the 3' CA in linear DNA are not essential for in vitro integration, since mutant oligonucleotides with single-stranded 3' or 5' extensions or with no residues beyond the CA dinucleotide are efficiently used. Selection of target sites is nonrandom when att site oligonucleotides are joined to each other in vitro. We modified an in vitro assay to distinguish oligonucleotides serving as the substrate for 3' processing and as the target for strand transfer. The modified assay demonstrates that nonrandom usage of target sites is dependent on the target oligonucleotide sequence and independent of the oligonucleotide used as the substrate for 3' processing.  相似文献   

12.
The human immunodeficiency virus (HIV) integrase protein (IN) catalyzes two reactions required to integrate HIV DNA into the human genome: 3' processing of the viral DNA ends and integration. IN has three domains, the N-terminal zinc-binding domain, the catalytic core, and the C-terminal SH3 domain. Previously, it was shown that IN proteins mutated in different domains could complement each other. We now report that this does not require any overlap between the two complementing proteins; an N-terminal domain, provided in trans, can restore IN activity of a mutant lacking this domain. Only the zinc-coordinating form of the N-terminal domain can efficiently restore IN activity of an N-terminal deletion mutant. This suggests that interaction between different domains of IN is needed for functional multimerization. We find that the N-terminal domain of feline immunodeficiency virus IN can support IN activity of an N-terminal deletion mutant of HIV type 2 IN. These cross-complementation experiments indicate that the N-terminal domain contributes to the recognition of specific viral DNA ends.  相似文献   

13.
R A Katz  G Merkel  J Kulkosky  J Leis  A M Skalka 《Cell》1990,63(1):87-95
The integration of viral DNA into the host cell chromosome is an essential feature of the retroviral life cycle. The integration reaction requires cis-acting sequences at the ends of linear viral DNA and a trans-acting product of the pol gene, the integration protein (IN). Previously, we demonstrated that avian sarcoma-leukosis virus (ASLV) IN is able to carry out the first step in the integration process in vitro: nicking of the ends of linear viral DNA. In this paper, using two independent assays, we demonstrate that IN, alone, is sufficient to carry out the second step: cleavage and joining to the target DNA. These results demonstrate that the retroviral IN protein is an integrase.  相似文献   

14.
The integrase (IN) protein of the human immunodeficiency virus (HIV) mediates two distinct reactions: (i) specific removal of two nucleotides from the 3' ends of the viral DNA and (ii) integration of the viral DNA into target DNA. Although IN discriminates between specific (viral) DNA and nonspecific DNA in physical in vitro assays, a sequence-specific DNA-binding domain could not be identified in the protein. A nonspecific DNA-binding domain, however, was found at the C terminus of the protein. We examined the DNA-binding characteristics of HIV-1 IN, and found that a stable complex of IN and viral DNA is formed in the presence of Mn2+. The IN-viral DNA complex is resistant to challenge by an excess of competitor DNA. Stable binding of IN to the viral DNA requires that the protein contains an intact N-terminal domain and active site (in the central region of the protein), in addition to the C-terminal DNA-binding domain.  相似文献   

15.
Retroviral integration requires cis-acting sequences at the termini of linear double-stranded viral DNA and a product of the retroviral pol gene, the integrase protein (IN). IN is required and sufficient for generation of recessed 3' termini of the viral DNA (the first step in proviral integration) and for integration of the recessed DNA species in vitro. Human immunodeficiency virus type 1 (HIV-1) IN, expressed in Escherichia coli, was purified to near homogeneity. The substrate sequence requirements for specific cleavage and integration of retroviral DNA were studied in a physical assay, using purified IN and short duplex oligonucleotides that correspond to the termini of HIV DNA. A few point mutations around the IN cleavage site substantially reduced cleavage; most other mutations did not have a drastic effect, suggesting that the sequence requirements are limited. The terminal 15 bp of the retroviral DNA were demonstrated to be sufficient for recognition by IN. Efficient specific cutting of the retroviral DNA by IN required that the cleavage site, the phosphodiester bond at the 3' side of a conserved CA-3' dinucleotide, be located two nucleotides away from the end of the viral DNA; however, low-efficiency cutting was observed when the cleavage site was located one, three, four, or five nucleotides away from the terminus of the double-stranded viral DNA. Increased cleavage by IN was detected when the nucleotides 3' of the CA-3' dinucleotide were present as single-stranded DNA. IN was found to have a strong preference for promoting integration into double-stranded rather than single-stranded DNA.  相似文献   

16.
The retroviral integrase catalyzes two successive chemical reactions essential for integration of the retroviral genome into a host chromosome: 3' end processing, in which a dinucleotide is cleaved from each 3' end of the viral DNA; and the integration reaction itself, in which the resulting recessed 3' ends of the viral DNA are joined to the host DNA. We have examined the stereospecificity of human immunodeficiency virus type 1 integrase for phosphorothioate substrates in these reactions and in a third reaction, disintegration, which is macroscopically the reverse of integration. Integrase preferentially catalyzed end processing and integration of a substrate with the (R(p))-phosphorothioate stereoisomer at the reaction center and disintegration of a substrate with an (S(p))-phosphorothiate at the reaction center. These results suggest a model for the architecture of the active site of integrase, and its interactions with key features of the viral and target DNA.  相似文献   

17.
Human endogenous retrovirus K10 encodes a functional integrase.   总被引:3,自引:3,他引:0       下载免费PDF全文
We cloned a human endogenous retrovirus K1O DNA fragment encoding integrase and expressed it as a fusion protein with Escherichia coli maltose-binding protein. Integrase activities were measured in vitro by using a double-stranded oligonucleotide as a substrate mimicking viral long terminal repeats (LTR). The fusion protein was highly active for both terminal cleavage and strand transfer in the presence of Mn2+ on the K1O LTR substrate. It was also active on both Rous sarcoma virus and human immunodeficiency virus type 1 LTR substrates, whereas Rous sarcoma virus and human immunodeficiency virus type 1 integrases were active only on their corresponding LTR substrates. The results strongly suggest that K1O encodes a functional integrase with relaxed substrate specificity.  相似文献   

18.
M Katzman  R A Katz  A M Skalka    J Leis 《Journal of virology》1989,63(12):5319-5327
The purified integration protein (IN) of avian myeloblastosis virus is shown to nick double-stranded oligodeoxynucleotide substrates that mimic the ends of the linear form of viral DNA. In the presence of Mg2+, nicks are created 2 nucleotides from the 3' OH ends of both the U5 plus strand and the U3 minus strand. Similar cleavage is observed in the presence of Mn2+ but only when the extent of the reaction is limited. Neither the complementary strands nor sequences representing the termini of human immunodeficiency virus type 1 DNA were cleaved at analogous positions. Analysis of a series of substrates containing U5 base substitutions has defined the sequence requirements for site-selective nicking; nucleotides near the cleavage site are most critical for activity. The minimum substrate size required to demonstrate significant activity corresponds to the nearly perfect 15-base terminal inverted repeat. This in vitro activity of IN thus produces viral DNA ends that are joined to host DNA in vivo and corresponds to an expected early step in the integrative recombination reaction. These results provide the first enzymatic support using purified retroviral proteins for a linear DNA precursor to the integrated provirus.  相似文献   

19.
The integration of retroviral DNA proceeds through two steps: trimming of the termini to expose new 3' OH ends, and the transfer of those ends to the phosphates of target DNA. We have examined the ability of the Moloney murine leukemia virus integrase protein (IN) to trim the termini of the preintegrative DNA of mutant viruses with alterations in the U3 inverted repeat. The mutant terminus of one replication-defective viral DNA, containing a 7-bp deletion in the U3 inverted repeat, was not trimmed to produce the normal recessed end. Remarkably, the other terminus of this mutant DNA was also not trimmed, even though its sequence is wild type. This finding suggests that the IN protein requires the presence of two good ends before becoming properly activated to trim either one.  相似文献   

20.
J Yi  E Asante-Appiah  A M Skalka 《Biochemistry》1999,38(26):8458-8468
In the presence of a divalent metal cofactor (Mg2+ or Mn2+), retroviral-encoded integrase (IN) catalyzes two distinct reactions: site-specific cleavage of two nucleotides from both 3' ends of viral DNA, and sequence-independent joining of the recessed viral ends to staggered phosphates in a target DNA. Here we investigate human immunodeficiency virus type 1 (HIV-1) IN-DNA interactions using surface plasmon resonance. The results show that IN forms tight complexes both with duplex oligonucleotides that represent the viral DNA ends and with duplex oligonucleotides with an unrelated sequence that represent a target DNA substrate. The IN-DNA complexes are stable in 4.0 M NaCl, or 50% (v/v) methanol, but they are not resistant to low concentrations of SDS, indicating that their stability is highly dependent on structural features of the protein. Divalent metal cofactors exert two distinct effects on the IN-DNA interaction. Mn2+ inhibits IN binding to a model target DNA with the apparent Kd increasing approximately 3-fold in the presence of this cation. On the other hand, Mn2+ (or Mg2+) stimulates the binding of IN to a model viral DNA end, decreasing the apparent Kd of this IN-viral DNA complex approximately 6-fold. Such metal-mediated stimulation of the binding of IN to the viral DNA is totally abolished by substitution of the subterminal conserved CA/GT bp with a GT/CA bp, and is greatly diminished when the viral DNA end is recessed or "pre-processed." IN binds to a viral duplex oligonucleotide whose end was extended with nonviral sequences with kinetics similar to the nonviral model target DNA. This suggests that IN can distinguish the integrated DNA product from the viral donor DNA in the presence of divalent metal ion. Thus, our results show that preferential recognition of viral DNA by HIV-1 IN is achieved only in the presence of metal cofactor, and requires a free, wild-type viral DNA end.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号