首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclosporine A (CyA) nephrotoxicity is associated with impaired renal hemodynamic function and increased production of the vasoconstrictor eicosanoid thromboxane A2 (TxA2). In CyA toxic rats, renal dysfunction can be partially reversed by inhibitors of thromboxane synthase. However, interpretation of these results is complicated since inhibition of thromboxane synthase may cause accumulation of prostaglandin endoperoxides that can act as partial agonists at the TxA2 receptor and may blunt the efficacy of treatment. Furthermore, these endoperoxides may be used as substrate for production of vasodilator prostaglandins causing beneficial effects on hemodynamics which are independent of thromboxane inhibition. To more specifically examine the role of TxA2 in CyA toxicity, we investigated the effects of the thromboxane receptor antagonist GR32191 on renal hemodynamics in a rat model of CyA nephrotoxicity. In this model, administration of CyA resulted in a significant decrease in glomerular filtration rate (GFR) (2.85 +/- 0.26 [CyA] vs 6.82 +/- 0.96 ml/min/kg [vehicle]; p less than 0.0005) and renal blood flow (RBF) (21.65 +/- 2.31 [CyA] vs 31.87 +/- 3.60 ml/min/kg [vehicle]; p less than 0.025). Renal vascular resistance (RVR) was significantly higher in rats given CyA compared to animals treated with CyA vehicle (5.32 +/- 0.55 [CyA] vs. 3.54 +/- 0.24 mm Hg/min/ml/kg [vehicle]; p less than 0.05). These renal hemodynamic alterations were associated with a significant increase in urinary excretion of unmetabolized, "native" thromboxane B2 (TxB2) (103 +/- 18 [CyA] vs 60 +/- 16 pg/hour [vehicle]; p less than 0.05). Only minimal histomorphologic changes were apparent by light microscopic examination of kidneys from both CyA and vehicle treated animals. However, with immunoperoxidase staining, a significantly greater number of cells expressing the rat common leukocyte antigen was found in the renal interstitium of rats given CyA. There was no detectable increase in monocytes/macrophages in the kidneys of CyA toxic animals. In rats treated with CyA, intraarterial infusion of GR32191 at maximally tolerated doses significantly increased GFR and RBF, and decreased RVR. Although both RBF and RVR were restored to levels not different from controls, GFR remained significantly reduced following administration of GR32191. These data suggest that the potent vasoconstrictor TxA2 plays an important role in mediating renal dysfunction in CyA nephrotoxicity. However, other factors may be important in producing nephrotoxicity associated with CyA.  相似文献   

2.
The production of vasodilatory, antiaggregatory prostacyclin (PGI2) and vasoconstrictory, proaggregatory thromboxane A2 (TxA2) by the placenta was studied in the cases of hypertensive pregnancy complications by superfusing pieces from maternal and fetal sides of placentae of 9 pre-eclamptic, 6 hypertensive and 11 healthy women and measuring the release of 6-keto-prostaglandin F (6-keto-PGF) and thromboxane B2 (TxB2), the breakdown products of PGI2 and TxA2 respectively, from the superfusate. Both sides of the placentae from the controls produced 6-keto-PGF (maternal side 0.5±0.1 ng/g/min dry weight of tissue, mean±SEM; fetal side 0.7±0.2 ng/g/min) and TxB2 (maternal side 2.5±0.4 ng/g/min; fetal side 2.7±0.5 ng/g/min with no correlation between the two. The 6-keto-PGF production was normal in hypertensive complications whereas the TxB2 production was increased on the fetal side of the placentae obtained from the pre-eclamptic (3.7±0.3 ng/g/min: p<0.05) and hypertensive women (4.1±0.4 ng/g/min; p<0.025). This may explain the occurrence of microthrombi and infarctions in placentae of hypertensive women.  相似文献   

3.
To explore the mechanism(s) by which antiestrogens may protect against the development of cardiovascular disorders, we measured the production of vasodilatory, antiaggregatory prostacyclin (PGI2 and that of vasoconstrictive, proaggregatory thromboxane A2 (TxA2) before and after 6 months' use of antiestrogens in postmenopausal patients after operation for stage II breast cancer (n = 38). Urine samples were assayed by high performance liquid chromatography and radioimmunoassays for 2,3-dinor-6-ketoprostaglandin F1α (=metabolite of PGI2, dinor-6-keto) and for 2,3-dinor-thromboxane B2 (=metabolite of TxA2, dinor-TxB2). In addition, in 35 of these 38 patients we assayed the capacity of platelets to produce thromboxane A2 during standardized blood clotting. The 4 patients using low-dose aspirin had low thromboxane production, and were excluded from further analysis of the data. An antiestrogen regimen consisting either of tamoxifen (n = 15) or of toremifene (n = 19) caused no changes in production of PGI2 or TxA2, or in their ratio, and in this regard, these antiestrogens behaved similarly. Hypertensive patients (n = 7) using different antihypertensive agents were characterized by reduced urinary out-put of dinor-6-keto (18.5 ± 6.1 vs 35.5 ± 18.5 ng/mmol, mean ± SD, p < 0.05) and reduced platelet capacity to produce TxA2 (62.6 ± 67.8 vs 134.6 ± 75.6 ng/mL, p < 0.05). The patients (n = 15) who had used estrogen replacement therapy (ERT) up until diagnosis of breast cancer showed reduced dinor-TxB2 excretion (15.5 ± 12.7 vs 29.9 ± 20.9 ng/mmol, p < 0.05) before initiation of antiestrogens, and elevated dinor-6-keto output during the antiestrogen regimen (32.4 ± 21.2 vs 22.7 ± 8.7 ng/mmol, p = 0.07). Smokers (n = 6) had elevated dinor-TxB2 output before and during antiestrogen use. Thus we conclude that the cardiovascular protection provided by an antiestrogen regimen is unlikely to be mediated through vaso- and platelet active PGI2 and TxA2.  相似文献   

4.
To determine whether the renal vascular effect of arginine vasopressin (AVP) is modulated by renal prostaglandin E2 (PGE2) were determined during the infusion of AVP in dogs during control conditions and after the administration of the inhibitor of prostaglandin synthesis, indomethacin. During control conditions, intrarenal administration for 10 min of a dose of AVP calculated to increase arterial renal plasma AVP concentration by 75 pg/ml produced a slight renal vasodilation (p<0.01) and an increase in renal venous plasma concentration of PGE2. Renal venous PGE2 concentration during control and AVP infusion averaged 33 ± 7 and 52 ± 12 pg/ml (p<0.05), respectively. After administration of indomethacin, the same dose of AVP induced renal vasoconstriction (p<0.05) and failed to enhance renal venous PGE2 concentration (9 ± 1 to 8 ± 1 pg/ml). Intrarenal administration of 20 ng/kg. min of AVP for 10 min induced a marked renal vasoconstriction (p<0.01) and increased renal venous plasma PGE2. Renal venous PGE2 during control and AVP infusion averaged 31 ± 10 and 121 ± 31 pg/ml (p<0.01), respectively. Administration of the same dose of AVP following indomethacin produced a significantly greater and longer lasting renal vasoconstriction (p<0.01) and failed to increase renal venous plasma PGE2 (10 ± 1 to 9 ± 1 pg/ml). These results indicate that a concentration of AVP comparable to that observed in several pathophysiological conditions induces a slight renal vasodilation which is mediated by renal prostaglandins. The results also indicate that higher doses of AVP induce renal vasoconstriction and that prostaglandin synthesis induced by AVP attenautes the renal vasoconstriction produced by this peptide.  相似文献   

5.
The TxA2 synthetase inhibitor, dazoxiben, and the TxA2 antagonist, ±SQ 29, 548, were examined for effects on release and vasoactivity of TxA2 and prostacyclin. Isolated perfused guinea pig lungs were used as the enzyme source from which TxA2 and prostacyclin were released in response to injections of arachidonic acid or bradykinin. Both dazoxiben and ±SQ 29, 548 inhibited contraction of the superfused rat aorta and bovine coronary artery after arachidonic acid injection through the lung. ±SQ 29, 548 abolished contractions of the rat aorta, but significant aorta contracting activity persisted during dazoxiben treatment. Dazoxiben significantly inhibited arachidonate-induced release of TxA2 (immunoreactive TxB2)iinto the superfusate, but TxA2 release was significantly potentiated by ±SQ 29, 548. Thus, in the presence of enhanced TxA2 concentrations, ±SQ 29, 548 effectively antagonized the vasospastic effect of TxA2. Dazoxiben diverted a significantly greater amount of arachidonic acid into prostacyclin synthesis (immunoreactive 6-keto-PGF), changing original coronary vasoconstriction into relaxation. ±SQ 29, 548 did not significantly modify lung prostacyclin synthesis. Moreover, with ±SQ 29, 548, the absence of TxA2-mediated coronary contraction unmasked active relaxation of the superfused bovine coronary artery, coincident with thromboxane and prostacyclin release. Dazoxiben consistently inhibited TxA2 synthesis and enhanced prostacyclin synthesis. ±SQ 29, 548 augmented TxB2 release in response to arachidonate, but not bradykinin, and did not significantly alter 6-keto-PGF release in response to either arachidonate or bradykinin. In terms of vasoactivity measured , ±SQ 29, 548 and dazoxiben produced similar anti-vasospastic effects, although this was accomplished by completely different mechanisms.  相似文献   

6.
The effect of suppression of prostaglandin synthesis on renal sodium handling and microsomal Na---K ATPase was studied in control and indomethacin treated intact rats maintained on a normal sodium diet (series A) and chronically salt loaded (series B). Indomethacin administration resulted in a decreased GFR and a significantly depressed urinary excretion and an increased fractional reabsorption of sodium in animals fed the normal sodium diet or chronically salt loaded. In rats maintained on a nomral Na diet, the activity of the renal medullary Na---K ATPase after indomethacin was 206.3±6.4 ug Pi./mg protein, i.e. significantly higher as compared with the enzyme activity in the medullary renal fraction from control animals in which it averaged 148±7.79 ug Pi/mg protein (p<0.001). While after chronic salt load a similar increment in the activity of renal medullary Na---K ATPase was observed, no additional stimulation was elicited by subsequent indomethacin administration. The addition of exogenous PGE2, mM to microsomal fractions obtained from kidneys of normal rats, was associated with a moderate suppression of the medullary Na---K---ATPase activity, from a basal level of 170±16 to 151.3±13 umol Pi/mg protein/hr (p<0.005. In isolated segments of medullary thick ascending limb of Henle's loop (MTAL) addition of PGE2 to the incubation medium resulted in a significant inhibition of Na---K--- ATPase from 37.2±2 to 21.25 ± 1.17 × 10−11 mol/mm/min (p<0.0001.These findings suggest that the increased renal Na reabsorption after inhibition of PG synthesis might be related, at least partly, to stimulation of medullary Na---K ATPase. In parallel, the reported natriuretic effect of prostaglandins might imply a direct inhibitory effect of these mediators on renal Na---K ATPase.  相似文献   

7.
Simultaneous determination of urinary excretion rates of primary unmetabolized prostanoids and their enzymatic metabolites were performed by gas chromatography-mass spectrometry (GC/MS) or tandem mass spectrometry (GC/MS/MS). Changes in kidney function were induced by acute (4 h) volume expansion. Despite marked changes in urine flow, GFR, urinary pH, osmolality, sodium and potassium excretion, only a insignificant or transient rise in the enzymatic prostanoid metabolites (2,3-dinor-6-keto-PGF, PGE-M, 2,3-dinor-TxB2 and 11-dehydro-TxB2) was observed. The excretion rates of the primary prostanoids were elevated in parallel with the rise in urine flow: PGE2 rose (p < 0.05) from 14.2 ± 4.0 to 86.2 ± 20.7, PGF2α from 60.0 ± 4.9 to 119.8 ± 24.0, 6-keto-PGF from 7.2 ± 1.3 to 51.5 ± 17.0, and txB2 from 11.2 ± 3.3 to 13.6 ± 3.6 ng/h/1.73 m2 ( ) at the maximal urine flow. Except for 6-keto-PGF and TxB2, this rise in urinary prostanoid levels was only transient despite a sustained fourfold elevated urine flow. We conclude that urine flow rate acutely affect urine prostanoid excretion rates, however, over a prolonged peroid of time these effects are not maintained. The present data support the concept that urinary levels of primary prostanoids mainly reflect renal concentrations whereas those of enzymatic metabolites reflect systemic prostanoid activity. From the excretion pattern of TxB2 one can assume that this prostanoid represents renal as well as systemic TxA2 activity.  相似文献   

8.
The role of prostanoids in regulation of the renal circulation during hypercapnia was examined in unanesthetized rabbits. Renal blood flow (RBF) was determined with 15 μm radioactive microspheres during normocapnia (PaCO2 30 mmHg) and hypercapnia (PaCO2 60 mmHg), before and after intravenous administration of indomethacin (10 mg/kg) or vehicle (n=6 for each group). Arterial blood pressure was not different among the 4 conditions in each group. RBF was 438±61 and 326 ± 69 (P<0.05) ml/min per 100 g during normocapnia and hypercapnia, respectively, before indomethacin, and following administration of indomethacin, RBF was 426 ± 59 ml/min per 100 g during normocapnia and 295 ± 60 ml/min per 100 g during hypercapnia (P<0.05). In the vehicle group, RBF was 409±74 and 226±45(P<0.05) ml/min per 100 g during normocapnia and hypercapnia, respectively, before vehicle; and following administration of vehicle, RBF was 371±46 ml/min per 100 g during normocapnia and 219 ± 50 (P<0.05) per 100 g during hypercapnia. RBF during normocapnia was not affected by administration of indomethacin or vehicle. The successive responses to hypercapnia were not different within the indomethacin and vehicle groups, and the second responses to hypercapnia were not different between the two groups. These findings suggest that prostanoids do not contribute significantly to regulation of the renal circulation during normocapnia and hypercapnia in unanesthetized rabbits.  相似文献   

9.
To study the role of prostacyclin (PGI2) and thromboxane A2 (TxA2) in uterine tumors, pieces of endometrial cancer (n=12) and leiomyomas (n=12)_were incubated in vitro, and the productions of 6-keto-prostaglandin F1a (6-keto-PGF1a, a hydration product of PGI2) and thromboxane B2 (TxB2, a hydration product of TxA2), measured by radioimmunoassay, were compared to those of corresponding healthy tissues. The production of 6-keto-PGF1a by endometrial cancer (20.8; 1.5–85 ng/mg protein/min, median and interquartile range), by healthy endometrium (25.5; 10.0–55.0), by healthy myometrium (34.9; 25.0–59.9) and by leiomyoma (20.3; 10.2–45.1) was similar. The production of TxB2 was increased by endometrial cancer (55.5; 10.5–155.2, p < 0.02) in comparison with endometrium (9.8; 4.3–35.1), myometrium (3.8; 2.1–8.0) and leiomyoma (1.9; 1.0–3.8). The 6-keto-PGF1a/TxB2 ratio in endometrial cancer (0.9; 0.3–1.5) was smaller (p < 0.02) than that in healthy endometrium (3.3; 1.9–4.8). Thus, TxA2 may be a factor in endometrial cancer.  相似文献   

10.
11.
Thromboxane B2 (TxB) is excreted in human urine, but the mechanism of renal excretion and the quantitative relationship of urinary TxB to the active parent compound, thromboxane A2, of renal or extrarenal origin is not established. To determine the effects of vasoactive hormones, uricosuric agents and urinary flow rate on TxB excretion, urinary TxB was measured by radioimmunoassay and mass spectrometry, and renal metabolism of blood TxB was determined by radiochromatography of urine after i.v. [3H]-TxB infusions. Basal TxB was 6.7 ± 1.1 ng/h during an oral water load, and TxB fell with s.q. antidiuretic hormone (to 3.4 ± 0.4 ng/h, P<0.01) and with fluid restriction (to 2.6 ± 0.5 ng/hr, P=0.001) in parallel with urinary volume. Urinary excretion of unmetabolized [3H]-TxB also fell (by 56%) with fluid restriction, implicating altered metabolism rather than synthesis as the mechanism of the urinary flow effect. Angiotensin II infusions slightly reduced both TxB and urine volume, consistent with a flow effect. In contrast, probenecid did not alter urine volume, but increased urinary uric acid (by 244%), TxB (from 5.6 ± 0.9 to 11.1 ± 2.9 ng/h) and urinary excretion of blood [3H]-TxB (by 243%) by similar amounts (all P<0.05), suggesting that TxB is actively reabsorbed in the proximal tubule, similarly to uric acid. Thus, urinary excretion of TxB of renal and extrarenal origin is regulated by proximal and distal tubule factors.  相似文献   

12.
To investigate the physiologic significance of enhanced renal thromboxane production in murine lupus nephritis, we measured renal hemodynamics and eicosanoid production in MRL-lpr/lpr mice from 8 to 20 weeks of age. Over this age range, MRL-lpr/lpr mice develop an autoimmune disease with nephritis similar to human systemic lupus erythematosus (SLE). In these studies, glomerular filtration rate (GFR) and PAH clearance (CPAH) decreased progressively with age in MRL-lpr/lpr mice, but not in controls. This impairment of renal hemodynamics was associated with increased renal thromboxane production, as well as increased excretion of both thromboxane B2 (TxB2) and 2,3-dinor TxB2 in urine. There was an inverse correlation between renal thromboxane production in MRL-lpr/lpr mice and both GFR and CPAH. Furthermore, there were positive correlations between thromboxane production by the kidney and both the severity of renal histopathology and serum anti-DNA antibody levels measured in individual animals. Enhanced urinary excretion of TxB2 and the development of renal dysfunction also coincided temporally with the appearance of increased levels of interleukin 1 beta (IL-1 beta) mRNA in renal cortex. Acute administration of the specific thromboxane receptor antagonist GR32191 to MRL-lpr/lpr mice restored GFR to normal in early stages of the autoimmune disease. However, in animals with more advanced nephritis, the effect of acute thromboxane receptor blockade on renal hemodynamics was less marked. We conclude that thromboxane A2 is an important mediator of reversible renal hemodynamic impairment in murine lupus, especially in the early phase of disease.  相似文献   

13.
Diets that are enriched with fish oil have been shown to alter arachidonic acid metabolism via the cyclooxygenase pathway. Recently it has been shown that one of the major component fatty acids of fish oil, eicosapentaenoate (EPA), is a substrate for the leukotriene B (LTB) pathway when added exogenously to human neutrophils . We fed a diet that contained 8–10 gm/day of EPA to four human subjects for three weeks and compared the arachidonate metabolism of their neutrophils to the same functions while the subjects were on their usual diet. The fish oil-supplementation increased neutrophil EPA content from undetectable levels to 7.4 ± 2.4% (p<0.01, expressed as % of total fatty acid), and decreased arachidonate from 15.4 ± 2.3% to 12.8 ± 2.3% (p<0.05). Leukotriene B5 was identified as a metabolite during the fish oil-diet by its chromatographic profile and mass spectrum. During the experimental diet LTB4 decreased from 160 ± 37 ng/107 neutrophils to 120 ± 12 (p<0.05), and LTB5 increased from 0 to 39 ± 9 ng/107 neutrophils (p<0.005). The diet had no effect on neutrophil aggregation or adherence to nylon fibers.  相似文献   

14.
Prostacyclin (PGI2) infused at a rate of 350 ng/kg/min significantly increased survival time in rats subjected to Noble-Collip drum trauma from 2.7±0.3 to 4.6±0.2 h (p<0.01) compared with traumatized rats given only the vehicle (Tris buffer). Moreover, PGI2 treated rats exhibited significantly lower circulating cathepsin D and myocardial depressant factor (MDF) activities, indicative of lower lysosomal disruption and lower toxic factor formation. PGI2 induced vasodilation in rats as well as these other protective effects.  相似文献   

15.
A deficiency in renal prostaglandin synthesis has been proposed as the cause of the syndrome of hyporeninemic hypoaldosteronism. To determine if renin release could be stimulated by pharmacologic infusions of PGA1, we infused PGA1 0.075 to 0.60 μg/kg/min to nine patients with the syndrome. Total renal PGE production as measured by urinary PGE excretion was normal (650 ± 169 vs 400 ± 55 ng/24hr in normal subjects). Renin (PRA) was markedly depressed in all patients despite stimulation with upright posture and furosemide (1.0 ± 0.4 vs 9.3 ± 0.7 ng/ml/hr, p<0.001). But in two patients PGA1 induced an increase in renin similar to that of normal subjects. PRA increased to a lesser degree in two other patients and plasma aldosterone slightly increased. Five showed no response. Infusions of nitroprusside in doses and duration that mimicked the hypotensive effects of PGA1 failed to increase PRA or aldosterone. The data suggest that total renal PGE production is normal in patients with the syndrome of hyporeninemic hypoaldosteronism. Although orthostasis, furosemide and nitroprusside do not increase renin, prostaglandin A1 infusion appears to be a potent stimulus to renin release in some of the patients.  相似文献   

16.

Background

We sought to develop a new equation to estimate glomerular filtration rate (GFR) in Chinese elderly population.

Methods

A total of 668 Chinese elderly participants, including the development cohort (n = 433), the validation cohort (n = 235) were enrolled. The new equation using the generalized additive model, and age, gender, serum creatinine as predictor variables was developed and the performances was compared with the CKD-EPI equation.

Results

In the validation data set, both bias and precision were improved with the new equation, as compared with the CKD-EPI equation (median difference, −1.5 ml/min/1.73 m2 vs. 7.4 ml/min/1.73 m2 for the new equation and the CKD-EPI equation, [P<0.001]; interquartile range [IQR] for the difference, 16.2 ml/min/1.73 m2 vs. 19.0 ml/min/1.73 m2 [P<0.001]), as were accuracies (15% accuracy, 40.4% vs. 30.6% [P = 0.02]; 30% accuracy, 71.1% vs. 47.2%, [P<0.001]; 50% accuracy, 90.2% vs. 75.7%, [P<0.001]), allowing improvement in GFR categorization (GFR category misclassification rate, 37.4% vs. 53.2% [P = <0.001]).

Conclusions

A new equation was developed in Chinese elderly population. In the validation data set, the new equation performed better than the original CKD-EPI equation. The new equation needs further external validations. Calibration of the GFR referent standard to a more accurate one should be an useful way to improve the performance of GFR estimating equations.  相似文献   

17.

Background

A new component of the protein antioxidant capacity, designated Response Surplus (RS), was recently described. A major feature of this component is the close relationship between protein antioxidant capacity and molecular structure. Oxidative stress is associated with renal dysfunction in patients with renal failure, and plasma albumin is the target of massive oxidation in nephrotic syndrome and diabetic nephropathy. The aim of the present study was to explore the albumin redox state and the RS component of human albumin isolated from diabetic patients with progressive renal damage.

Methods/Principal Findings

Serum aliquots were collected and albumin isolated from 125 diabetic patients divided into 5 groups according to their estimated glomerular filtration rate (GFR). In addition to clinical and biochemical variables, the albumin redox state, including antioxidant capacity, thiol group content, and RS component, were evaluated. The albumin antioxidant capacity and thiol group content were reciprocally related to the RS component in association with GFR reduction. The GFR decline and RS component were significantly negatively correlated (R = –0.83, p<0.0001). Age, creatinine, thiol groups, and antioxidant capacity were also significantly related to the GFR decline (R = –0.47, p<0.001; R = –0.68, p<0.0001; R = 0.44, p<0.001; and R = 0.72, p<0.0001).

Conclusion/Significance

The response of human albumin to stress in relation to the progression of diabetic renal disease was evaluated. The findings confirm that the albumin molecular structure is closely related to its redox state, and is a key factor in the progression of diabetes nephropathy.  相似文献   

18.
While the incidence of duodenal ulcer disease has been documented to be greater in men than in women, this observation has not been previously noted in animal studies of the upper gastrointestinal tract. In this study, we questioned whether the cytoprotective properties of 16, 16-dimethyl PGE2 were sex-related by comparing the degree of ethanol-induced hemorrhagic gastritis in male and female rats pretreated with 16,16-dimethyl PGE2 or lithium chloride. Animals receiving 16,16-dimethyl PGE2 or lithium chloride had significantly less ethanol-induced hemorrhagic gastritis (1.17±0.15 and 1.24±0.13, respectively, p<0.001) when compared with controls (2.69±0.10). Female rats treated with 16,16-dimethyl PGE2 had 59% less hemorrhagic gastritis than male rats treated similarly (0.76±0.14 vs 1.86±0.19 respectively, p<0.001). This sex-related difference in hemorrhagic gastritis was not noted in male and female rats receiving lithium chloride (1.24±0.15 vs 1.23±0.27, respectively). However, female rats treated with 16, 16-dimethyl PGE2 had significantly less hemorrhagic gastritis when compared with female rats receiving lithium chloride (0.76±0.14 vs 1.24±0.15 respectively, p<0.05).These findings suggest that the protective properties of 16, 16-dimethyl PGE2 are sex-related while those of lithium chloride are not.  相似文献   

19.

Background

Patients with type 1 diabetes mellitus (DM) and renal hyperfiltration also exhibit systemic microvascular abnormalities, including endothelial dysfunction. The effect of renal hyperfiltration on systemic blood pressure (BP) is less clear. We therefore measured BP, renal hemodynamic function and circulating renin angiotensin aldosterone system (RAAS) mediators in type 1 DM patients with hyperfiltration (n = 36, DM-H, GFR≥135 ml/min/1.73 m2) or normofiltration (n = 40, DM-N), and 56 healthy controls (HC). Since renal hyperfiltration represents a state of intrarenal RAAS activation, we hypothesized that hyperfiltration would be associated with higher BP and elevated levels of circulating RAAS mediators.

Methods

BP, glomerular filtration rate (GFR - inulin), effective renal plasma flow (paraaminohippurate) and circulating RAAS components were measured in DM-H, DM-N and HC during clamped euglycemia (4–6 mmol/L). Studies were repeated in DM-H and DM-N during clamped hyperglycemia (9–11 mmol/L).

Results

Baseline GFR was elevated in DM-H vs. DM-N and HC (167±6 vs. 115±2 and 115±2 ml/min/1.73 m2, p<0.0001). Baseline systolic BP (SBP, 117±2 vs. 111±2 vs. 109±1, p = 0.004) and heart rate (76±1 vs. 67±1 vs. 61±1, p<0.0001) were higher in DM-H vs. DM-N and HC. Despite higher SBP in DM-H, plasma aldosterone was lower in DM-H vs. DM-N and HC (42±5 vs. 86±14 vs. 276±41 ng/dl, p = 0.01). GFR (p<0.0001) and SBP (p<0.0001) increased during hyperglycemia in DM-N but not in DM-H.

Conclusions

DM-H was associated with higher heart rate and SBP values and an exaggerated suppression of systemic aldosterone. Future work should focus on the mechanisms that explain this paradox in diabetes of renal hyperfiltration coupled with systemic RAAS suppression.  相似文献   

20.

Background

Thromboxane A2 (TxA2)-induced smooth muscle contraction has been implicated in cardiovascular, renal and respiratory diseases. This contraction can be partly attributed to TxA2-induced Ca2+ influx, which resulted in vascular contraction via Ca2+-calmodulin-MLCK pathway. This study aims to identify the channels that mediate TxA2-induced Ca2+ influx in vascular smooth muscle cells.

Methodology/Principal Findings

Application of U-46619, a thromboxane A2 mimic, resulted in a constriction in endothelium-denuded small mesenteric artery segments. The constriction relies on the presence of extracellular Ca2+, because removal of extracellular Ca2+ abolished the constriction. This constriction was partially inhibited by an L-type Ca2+ channel inhibitor nifedipine (0.5–1 µM). The remaining component was inhibited by L-cis-diltiazem, a selective inhibitor for CNG channels, in a dose-dependent manner. Another CNG channel blocker LY83583 [6-(phenylamino)-5,8-quinolinedione] had similar effect. In the primary cultured smooth muscle cells derived from rat aorta, application of U46619 (100 nM) induced a rise in cytosolic Ca2+ ([Ca2+]i), which was inhibited by L-cis-diltiazem. Immunoblot experiments confirmed the presence of CNGA2 protein in vascular smooth muscle cells.

Conclusions/Significance

These data suggest a functional role of CNG channels in U-46619-induced Ca2+ influx and contraction of smooth muscle cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号