首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The antiproliferative effect of 1alpha,25(OH)(2)D(3) on human prostate cancer cells is well known, but the mechanism is still not fully understood, especially its androgen-dependent action. Based on cDNA microarray results, we found that long-chain fatty-acid-CoA ligase 3 (FACL3/ACS3) might play an important role in vitamin D(3) and androgen regulation of LNCaP cell growth. The expression of FACL3/ACS3 was found to be significantly upregulated by 1alpha,25(OH)(2)D(3) and the regulation was shown to be time-dependent, with the maximal regulation over 3.5-fold at 96h. FACL3/ACS3 was a dominant isoform of FACL/ACS expressed in LNCaP cells as indicated by measuring the relative expression of each isoform. 1alpha,25(OH)(2)D(3) had no significant effect on the expression of FACL1(FACL2), FACL4 and FACL6 except for its downregulation of FACL5 at 24 and 48h by around twofold. The upregulation of FACL3/ACS3 expression by 1alpha,25(OH)(2)D(3) was accompanied with increased activity of FACL/ACS as demonstrated by enzyme activity assay using a (14)C-labeled substrate preferential for FACL3/ACS3. The growth inhibitory effect of 1alpha,25(OH)(2)D(3) on LNCaP cells was significantly attenuated by FACL3/ACS3 activity inhibitor. Androgen withdrawal (DCC-serum), in the presence of antiandrogen Casodex or in AR-negative prostate cancer cells (PC3 and DU145), vitamin D(3) failed to regulate FACL3/ACS3 expression. The upregulation of FACL3/ACS3 expression by vitamin D(3) was recovered by the addition of DHT in DCC-serum medium. Western blot analysis showed that the expression of androgen receptor (AR) protein was consistent with vitamin D(3) regulation of FACL3/ACS3 expression. Taken together, the data suggest that the upregulation of FACL3/ACS3 expression by vitamin D(3) is through an androgen/AR-mediated pathway and might be one of the contributions of the vitamin D(3) antiproliferative effect in prostate cancer LNCaP cells.  相似文献   

2.
3.
The aim of this study was to investigate effects of 1,25(OH)(2)D(3) (calcitriol), 25OHD(3), and EB1089 on cell growth and on Vitamin D receptor (VDR) mRNA and 1alpha-hydroxylase (1alpha-OHase) mRNA expression in normal canine prostatic primary cultures. Canine prostatic epithelial cells were isolated, cultured, and treated with vehicle (ethanol), calcitriol, 25OHD(3), and EB1089 at 10(-9) and 10(-7)M. The VDR was present in epithelial and stromal cells of the canine prostate gland. 1,25(OH)(2)D(3), 25OHD(3), and EB1089 inhibited epithelial cell growth at 10(-7)M compared to vehicle-treated controls [calcitriol (P < 0.01), EB1089 (P < 0.01), and 25OHD(3) (P < 0.05)]. Epithelial cells treated with calcitriol and EB1089 at 10(-7)M had slightly increased VDR mRNA expression (0.2-0.3-fold) at 6 and 12h compared to controls. There was no difference in 1alpha-OHase mRNA expression in epithelial cells treated with these three compounds. 1,25(OH)(2)D(3) and its analogs may be effective antiproliferative agents of epithelial cells in certain types of prostate cancer.  相似文献   

4.
Qiao S  Tuohimaa P 《FEBS letters》2004,577(3):451-454
FAS and FACL3 are enzymes of fatty acid metabolism. In our previous studies, we found that FAS and FACL3 genes were vitamin D3-regulated and involved in the antiproliferative effect of 1alpha,25(OH)2D3 in the human prostate cancer LNCaP cells. Here, we elucidated the mechanism behind the downregulation of FAS expression by vitamin D3. Triacsin C, an inhibitor of FACL3 activity, completely abolished the downregulation of FAS expression by vitamin D3, whereas an inhibitor of FAS activity, cerulenin, had no significant effect on the upregulation of FACL3 expression by vitamin D3 in LNCaP cells. In human prostate cancer PC3 cells, in which FACL3 expression is not regulated by vitamin D3, no regulation of FAS expression was seen. This suggests that the downregulation of FAS expression by vitamin D3 is mediated by vitamin D3 upregulation of FACL3 expression. Myristic acid, one of the substrates preferential for FACL3, enhanced the repression of FAS expression by vitamin D3. The action of myristic acid was abrogated by inhibition of FACL3 activity, suggesting that the enhancement in the downregulation of FAS expression by vitamin D3 is due to the formation of myristoyl-CoA. The data suggest that vitamin D3-repression of FAS mRNA expression is the consequence of feedback inhibition of FAS expression by long chain fatty acyl-CoAs, which are formed by FACL3 during its upregulation by vitamin D3 in human prostate cancer LNCaP cells.  相似文献   

5.
Sepulveda VA  Weigel NL  Falzon M 《Steroids》2006,71(2):102-115
Parathyroid hormone-related protein (PTHrP) increases the growth and osteolytic potential of prostate cancer cells, making it important to control PTHrP expression in these cells. We show that 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) and its non-hypercalcemic analog, EB1089, decrease PTHrP mRNA and cellular protein levels in the androgen-dependent human prostate cancer cell line LNCaP and its androgen-independent derivative, the C4-2 cell line. This effect is mediated via a negative Vitamin D response element (nVDREhPTHrP) within the human PTHrP gene and involves an interaction between nVDREhPTHrP and the Vitamin D receptor (VDR). The retinoid X receptor (RXR) is a frequent heterodimeric partner of the VDR. We show that RXRalpha forms part of the nuclear protein complex that interacts with nVDREhPTHrP along with the VDR in LNCaP and C4-2 cells. We also show that the RXR ligand, 9-cis-retinoic acid, downregulates PTHrP mRNA levels; this decrease is more pronounced in LNCaP than in C4-2 cells. In addition, 9-cis-retinoic acid enhances the 1,25(OH)2D3-mediated downregulation of PTHrP expression in both cell lines; this effect also is more pronounced in LNCaP cells. Proliferation of LNCaP, but not C4-2, cells is decreased by 9-cis-retinoic acid. Promoter activity driven by nVDREhPTHrP cloned upstream of the SV40 promoter and transiently transfected into LNCaP and C4-2 cells is downregulated in response to 1,25(OH)2D3 and EB1089 in both cell lines. Co-treatment with these compounds and 9-cis-retinoic acid further decreases CAT activity in LNCaP, but not C4-2, cells. These results indicate that PTHrP gene expression is regulated by 1,25(OH)2D3 in a cell type-specific manner in prostate cancer cells.  相似文献   

6.
Estrogens and androgens are proposed to play a role in the pathogenesis of prostate cancer. The effective metabolites, estradiol and 5alpha-dihydrotestosterone are produced from testosterone by aromatase and 5alpha-reductase, respectively. Metabolites of vitamin D have shown to inhibit the growth of prostate cancer cells. The aim of the present study was to verify whether 25-hydroxyvitamin D(3) (25OHD(3)), 1alpha,25-dihydroxyvitamin D(3) [1alpha,25-(OH)(2)D(3)], dexamethasone, and progesterone regulate the expression of aromatase and 5alpha-reductase in human prostate cancer cells. LNCaP and PC3 cells were treated with 25OHD(3), 1alpha,25-(OH)(2)D(3), dexamethasone, or progesterone. Aromatase and 5alpha-reductase mRNA was quantified by real-time RT-PCR and aromatase enzyme activity was measured by the [(3)H] water assay. Aromatase enzyme activity in LNCaP and PC3 cells was increased by both 10nM dexamethasone, 1-100 nM 1alpha,25-(OH)(2)D(3) and 100 nM-10 microM progesterone. The induction was enhanced when hormones were used synergistically. Real-time RT-PCR analysis showed no regulation of the expression of aromatase mRNA by any steroids tested in either LNCaP or PC3 cells. The expression of 5alpha-reductase type I mRNA was not regulated by 1alpha,25-(OH)(2)D(3) and no expression of 5alpha-reductase type II was detected in LNCaP.  相似文献   

7.
1alpha,25-Dihydroxyvitamin D(3) [1,25(OH)2D3] inhibits growth of cells derived from a variety of tumors in vitro and in vivo. Proliferation in vitro of human SCC25 cells, derived from a primary squamous cell carcinoma (SCC) of the tongue, was blocked by 1,25(OH)2D3 and its analog EB1089. A similar effect was observed with 13-cis retinoic acid (RA), which has been used in chemoprevention of SCC. We identified amphiregulin, a member of the epidermal growth factor family, as a 1,25(OH)2D3 target gene in SCC25 cells. Induction of amphiregulin mRNA by 1,25(OH)2D3 was rapid and sustained over 48 h, and was unaffected by cycloheximide. 1,25(OH)2D3 also induced amphiregulin mRNA in estrogen receptor-positive and -negative human breast cancer cell lines, but not in LNCaP human prostate cancer cells. RAR- or RXR-specific retinoids did not affect amphiregulin mRNA levels in SCC25 cells; however, 13-cis RA partially blocked the response to 1,25(OH)2D3. Amphiregulin partially inhibited growth of SCC25 cells in culture. Our data show that amphiregulin is a 1,25(OH)2D3 target gene, and suggest that its induction may contribute to the growth inhibitory effects of 1,25(OH)2D3.  相似文献   

8.
9.
Accumulating data suggest that local production of 1alpha,25-dihydroxyvitamin D (1alpha,25(OH)(2)D) could provide an important cell growth regulatory mechanism in an autocrine fashion in prostate cells. Previously, we demonstrated a differential expression of 1alpha-OHase enzymatic activity among noncancerous (PZHPV-7) and cancer cells (PC-3, DU145, LNCaP), which appears to correlate with 1alpha-OHase m-RNA synthesis and its promoter activities. Since it is well-established that EGF regulates the proliferation of prostate cells via autocrine and paracrine loops and 1alpha,25(OH)(2)D inhibites prostate cell proliferation, we investigated if EGF also regulated 1alpha-OHase expression in prostate cells. We found that EGF upregulated 1alpha-OHase promoter activity and enzyme activity in PZ-HPV-7 and that 1alpha,25(OH)(2)D(3) inhibited EGF-dependent up-regulation of 1alpha-OHase enzymatic activity. Moreover, the EGF-stimulated promoter activity was inhibited 70% by the MAPKK inhibitor, PD98059, suggesting that the MAPK pathway may be one pathway involved in the regulation of prostatic 1alpha-OHase by EGF to increase1alpha,25(OH)(2)D synthesis as a feedback regulator of cell growth. Because EGF has no effect on 1alpha-OHase promoter activity in LNCaP cells, we propose that the ability of EGF to stimulate 1alpha,25(OH)(2)D synthesis may be abolished or diminished in cancer cells.  相似文献   

10.
The hormone 1alpha,25-dihydroxyvitamin D (1alpha,25(OH)(2)D) inhibits growth and induces differentiation of prostate cells. The enzyme responsible for 1alpha,25(OH)(2)D synthesis, 25-hydroxyvitamin D (25(OH)D)-1alpha-hydroxylase (1alpha-OHase), has been demonstrated in human prostate cells. We compared the levels of 1alpha-OHase activity in prostate cancer cell lines, LNCaP, DU145 and PC-3 and in primary cultures of normal, cancerous and benign prostatic hyperplasia (BPH) prostate cells. We observed a marked decrease in 1alpha-OHase activity in prostate cancer cells, including an undetectable level of activity in LNCaP cells. Transient or stable transfection of 1alpha-OHase cDNA into LNCaP cells increased 1alpha-OHase activity from undetectable to 4.95pmole/mg+/-0.69pmole/mg and 5.8pmole/mg+/-0.7pmole/mg protein per hour, respectively. In response to 25(OH)D, the prohormone of 1alpha,25(OH)(2)D, the transfected LNCaP cells showed a significant inhibition of 3H-thymidine incorporation (37%+/-6% and 56%+/-4% at 10(-8)M for transiently and stably transfected cells, respectively). These findings support an important autocrine role for 1alpha,25(OH)(2)D in the prostate and suggest that the re-introduction of the 1alpha-OHase gene to prostate cancer cells, in conjunction with the systemic administration of 25(OH)D, constitutes an endocrine form of gene therapy that may be less toxic than the systemic administration of 1alpha,25(OH)(2)D.  相似文献   

11.
The active form of vitamin D(3), 1α,25-dihydroxyvitamin D(3)(1α,25(OH)(2)D(3)), has anti-proliferative and anti-invasive activities in prostate cancer cells. Because of 1α,25(OH)(2)D(3) therapeutic potential in treating cancers, numerous analogues have been synthesized with an attempt to increase anti-proliferative and/or decrease calcemic properties. Among these analogues, 19-nor-1α,25(OH)(2)D(2) while being less calcemic has equivalent potency as 1α,25(OH)(2)D(3) in several in vitro and in vivo systems. We recently showed that 19-nor-2α-(3-hydroxypropyl)-1α,25(OH)(2)D(3) (MART-10) was at least 500-fold and 10-fold more active than 1α,25(OH)(2)D(3) in inhibiting the proliferation of an immortalized normal prostate PZ-HPV-7 cells and the invasion of androgen insensitive PC-3 prostate cancer cells, respectively. In this study, we further investigated the effects of MART-10 and 1α,25(OH)(2)D(3) on the dose- and time-dependent induction of CYP24A1 gene expression in PC-3 prostate cancer cells. We found that MART-10 induced CYP24A1 gene expression at a lower concentration with a longer duration compared to 1α,25(OH)(2)D(3), suggesting that MART-10 is less susceptible to CYP24A1 degradation. Molecular docking model of human CYP24A1 and MART-10 indicates that its side chain is far away from the heme ion and is less likely to be hydroxylated by the enzyme. Furthermore, MART-10 was a more potent inhibitor of PC-3 cell proliferation and invasion compared to 1α,25(OH)(2)D(3). In addition, MART-10 down-regulated matrix metalloproteinase-9 (MMP-9) expression which could be one mechanism whereby MART-10 influences cancer cell invasion. Finally, we observed that subcutaneous administration of MART-10 up-regulated the CYP24A1 mRNA expression in rat kidneys without affecting their plasma calcium levels. Thus, our findings demonstrate that MART-10 is biologically active in vivo and may be an effective vitamin D analogue for clinical trials to treat prostate cancer.  相似文献   

12.
13.
14.
Normal prostate epithelial cells are acutely sensitive to the antiproliferative action of 1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)), whilst prostate cancer cell lines and primary cultures display a range of sensitivities. We hypothesised that key antiproliferative target genes of the Vitamin D receptor (VDR) were repressed by an epigenetic mechanism in 1alpha,25(OH)(2)D(3)-insensitive cells. Supportively, we found elevated nuclear receptor co-repressor and reduced VDR expression correlated with reduced sensitivity to the antiproliferative action of 1alpha,25(OH)(2)D(3). Furthermore, the growth suppressive actions of 1alpha,25(OH)(2)D(3) can be restored by co-treatment with low doses of histone deacetylation inhibitors, such as trichostatin A (TSA) to induce apoptosis. Examination of the regulation of VDR target genes revealed that co-treatment of 1alpha,25(OH)(2)D(3) plus TSA co-operatively upregulated GADD45alpha. Similarly in a primary cancer cell culture, the regulation of appeared GADD45alpha repressed. These data demonstrate that prostate cancer cells utilise a mechanism involving deacetylation to suppress the responsiveness of VDR target genes and thus ablate the antiproliferative action of 1alpha,25(OH)(2)D(3).  相似文献   

15.
16.
17.
In this report we describe that 1,25(OH)(2)D(3)-3-BE, a VDR-affinity labeling analog of 1,25(OH)(2)D(3), showed strong and dose-dependent growth-inhibitory effect in several epithelial cells, i.e., keratinocytes (primary cells), MCF-7 breast cancer, PC-3, and LNCaP prostate cancer and PZ-HPV-7 immortalized normal prostate cell-lines. Furthermore, 10(-6) M of 1,25(OH)(2)D(3)-3-BE induced apoptosis specifically in LNCaP and PC-3 cells; and the effect was much less pronounced at lower doses. We also showed that the effect (of 1,25(OH)(2)D(3)-3-BE) was not due to probable degradation (hydrolysis) of 1,25(OH)(2)D(3)-3-BE or random interaction of this molecule with cellular proteins. Tissue- or cell-specific action of 1,25(OH)(2)D(3) and its mimics is not common due to the ubiquitous nature of VDR. Furthermore, variable effects of 1,25(OH)(2)D(3) and its analogs in various cell-lines potentially limits their application as anticancer agents. We showed that 1,25(OH)(2)D(3)-3-BE displayed similar growth-inhibitory and cytotoxic activities towards androgen sensitive LNCaP and androgen-independent PC-3 cell-lines. Therefore, these results raise the possibility that 1,25(OH)(2)D(3)-3-BE or similar VDR-cross linking analogs of 1,25(OH)(2)D(3) might be considered for further development as potential candidates for prostate cancer.  相似文献   

18.
19.
We have previously demonstrated that 1α,25 dihydroxy-vitamin D(3) (1α,25(OH)(2)D(3)) has antiproliferative effects on the growth of endothelial cells transformed by the viral G protein-coupled receptor associated to Kaposi sarcoma (vGPCR). In this work, we have investigated whether 1α,25(OH)(2)D(3) exerts its growth inhibitory effects by inhibiting the Nuclear Factor κ B (NFκB) pathway which is highly activated by vGPCR. Cell proliferation studies demonstrated that 1α,25(OH)(2)D(3), similarly to bortezomib, a proteosome inhibitor that suppresses the activation of NFκB, reduced the proliferation of endothelial cells transformed by vGPCR (SVEC-vGPCR). The activity of NFκB in these cells decreased by 70% upon 1α,25(OH)(2)D(3) treatment. Furthermore, time and dose response studies showed that the hormone significantly decreased NFκB and increased IκBα mRNA and protein levels in SVEC-vGPCR cells, whereas in SVEC only IκBα increased significantly. Moreover, NFκB translocation to the nucleus was inhibited and occurred by a mechanism independent of NFκB association with vitamin D(3) receptor (VDR). 1α,25(OH)(2)D(3)-induced increase in IκBα required de novo protein synthesis, and was independent of MAPK and PI3K/Akt pathways. Altogether, these results suggest that down-regulation of the NFκB pathway is part of the mechanism involved in the antiproliferative effects of 1α,25(OH)(2)D(3) on endothelial cells transformed by vGPCR.  相似文献   

20.
1,25-Dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] exerts anti-proliferative, differentiating and apoptotic effects on prostatic cells. These activities, in addition to epidemiologic findings that link Vitamin D to prostate cancer risk, support the use of 1,25(OH)(2)D(3) for prevention or therapy of prostate cancer. The molecular mechanisms by which 1,25(OH)(2)D(3) exerts antitumor effects on prostatic cells are not well-defined. In addition, there is heterogeneity among the responses of various prostate cell lines and primary cultures to 1,25(OH)(2)D(3) with regard to growth inhibition, differentiation and apoptosis. To understand the basis of these differential responses and to develop a better model of Vitamin D action in the prostate, we performed cDNA microarray analyses of primary cultures of normal and malignant human prostatic epithelial cells, treated with 50 nM of 1,25(OH)(2)D(3) for 6 and 24 h. CYP24 (25-hydroxyvitamin D(3)-24-hydroxylase) was the most highly upregulated gene. Significant and early upregulation of dual specificity phosphatase 10 (DUSP10), validated in five additional primary cultures, points to inhibition of members of the mitogen-activated protein kinase (MAPK) superfamily as a key event mediating activity of 1,25(OH)(2)D(3) in prostatic epithelial cells. The functions of other regulated genes suggest protection by 1,25(OH)(2)D(3) from oxidative stress. Overall, these results provide new insights into the molecular basis of antitumor activities of Vitamin D in prostate cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号