首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 558 毫秒
1.
Veratridine modification of Na current was examined in single dissociated ventricular myocytes from late-fetal rats by applying pulses to -30 mV for 50 ms every 2 or 5 s from a holding potential of -100 mV (20 degrees C) and measuring amplitude, Itail, and time constant, tau tail, of the post-repolarization inward tail current induced by the alkaloid. Increasing the pH of a 30 microM veratridine superfusate from 7.3 to 8.3 (which increases the fraction of uncharged veratridine molecules from 0.5 to 5% while decreasing that of protonated molecules from 99.5 to 95%) increased Itail by a factor of 2.5 +/- 0.5 (mean +/- SEM; n = 3). Switching from 100 microM veratridine superfusate at pH 7.3 to 10 microM at pH 8.3 did not affect the size of Itail (n = 4). Intracellular (pipette) application of 100 microM veratridine at pH 7.3 or 8.3 produced small Itail's suggesting transmembrane loss of alkaloid. If this was compensated for by simultaneous extracellular application of 100 microM veratridine at a pH identical to intracellular pH, Itail (measured relative to the maximum amplitude induced by a combination of 100 microM veratridine and 1 microM BDF 9145 in the same cell) at pHi 7.3 did not significantly differ from that at pHi 8.3 (84 +/- 4 vs. 70 +/- 6%; n = 3 each). Results from six control cells and five cells subjected to extra- and/or intracellularly increased viscosity by the addition of 0.5 or 1 molal sucrose showed that increasing intracellular viscosity 1.6- and 2.5-fold increased tau tail 1.5- and 2.3-fold, respectively, while a selective 2.5-fold increase of extracellular viscosity did not significantly affect tau tail.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Kinetics of veratridine action on Na channels of skeletal muscle   总被引:15,自引:8,他引:7       下载免费PDF全文
Veratridine bath-applied to frog muscle makes inactivation of INa incomplete during a depolarizing voltage-clamp pulse and leads to a persistent veratridine-induced Na tail current. During repetitive depolarizations, the size of successive tail currents grows to a plateau and then gradually decreases. When pulsing is stopped, the tail current declines to zero with a time constant of approximately 3 s. Higher rates of stimulation result in a faster build-up of the tail current and a larger maximum value. I propose that veratridine binds only to open channels and, when bound, prevents normal fast inactivation and rapid shutting of the channel on return to rest. Veratridine-modified channels are also subject to a "slow" inactivation during long depolarizations or extended pulse trains. At rest, veratridine unbinds with a time constant of approximately 3 s. Three tests confirm these hypotheses: (a) the time course of the development of veratridine-induced tail currents parallels a running time integral of gNa during the pulse; (b) inactivating prepulses reduce the ability to evoke tails, and the voltage dependence of this reduction parallels the voltage dependence of h infinity; (c) chloramine-T, N-bromoacetamide, and scorpion toxin, agents that decrease inactivation in Na channels, each greatly enhance the tail currents and alter the time course of the appearance of the tails as predicted by the hypothesis. Veratridine-modified channels shut during hyperpolarizations from -90 mV and reopen on repolarization to -90 mV, a process that resembles normal activation gating. Veratridine appears to bind more rapidly during larger depolarizations.  相似文献   

3.
The single and combined effects of carbamazepine and vinpocetine on the release of the excitatory amino acid neurotransmitter glutamate, on the rise in internal Na+ (Na(i), as determined with SBFI), and on the rise in internal Ca2+ (Ca(i), as determined with fura-2) induced by an increased permeability of presynaptic Na+ channels, with veratridine, or by an increased permeability of presynaptic Ca2+ channels with high K+, were investigated in isolated hippocampal nerve endings. The present study shows that carbamazepine and vinpocetine, both inhibit dose dependently the release of preloaded [3H]Glu induced by veratridine. However, carbamazepine is two orders of magnitude less potent than vinpocetine. The calculated IC(50)'s for carbamazepine and vinpocetine to inhibit veratridine-induced [3H]Glu release are 200 and 2 microM, respectively. Consistently 150 microM carbamazepine and 1.5 microM vinpocetine reduce the veratridine-induced rise in Na(i) in a similar extent. The single effects of carbamazepine and of vinpocetine on the presynaptic Na+ channel mediated responses, namely the rise in Na(i) and the release of Glu induced by veratridine, are additive. Responses that depend on the entrance of external Ca2+ via presynaptic Ca2+ channels, such as the release of [3H]Glu and the rise in Ca(i) induced by high K+, are insensitive to 300 microM carbamazepine and slightly reduced by 5 microM vinpocetine. It is concluded that the additive effects of carbamazepine, which is one of the most common antiepileptic drugs, and vinpocetine that besides its known neuroprotective action and antiepileptic potential is a memory enhancer, may perhaps be advantageous in the treatment of epileptic patients.  相似文献   

4.
Diltiazem was able to decrease the oxygen consumption rate and lactate production in synaptosomes isolated from rat forebrains, both under control and depolarized (40 microM veratridine) conditions, starting from a concentration of 250 microM. This effect was particularly evident when synaptosomes were depolarized by veratridine. This depolarization-counteracting action was evident also when transplasma membrane K+ diffusion potentials were measured after depolarization induced by veratridine and by rotenone with a glucose shortage. The concentrations of ATP, phosphocreatine, and creatine were less sensitive to diltiazem action. The concentration/response relationships were the same as those found for the oxygen consumption were the same as those found for the oxygen consumption rate, lactate production, and K+ diffusion potentials. The effects of 0.5 mM diltiazem in counteracting inhibition of energy metabolism induced by rotenone without glucose were no longer detectable when either Ca2+ or Na+ was absent from the incubation medium of synaptosomes. Diltiazem at the same concentrations (starting from 250 microM) was able to inhibit both the veratridine-induced and the rotenone-without-glucose-induced increase in intrasynaptosomal free Ca2+ levels evaluated with the fluorescent probe quin2. The results are discussed in view of a possible effect of diltiazem on voltage-dependent Na+ channels and the possibility of utilizing this approach for counteracting neuronal failure due to derangement of energy metabolism or hyperexcitation.  相似文献   

5.
In Shaker K(+) channel, the amino terminus deletion Delta6-46 removes fast inactivation (N-type) unmasking a slow inactivation process. In Shaker Delta6-46 (Sh-IR) background, two additional mutations (T449V-I470C) remove slow inactivation, producing a noninactivating channel. However, despite the fact that Sh-IR-T449V-I470C mutant channels remain conductive, prolonged depolarizations (1 min, 0 mV) produce a shift of the QV curve by about -30 mV, suggesting that the channels still undergo the conformational changes typical of slow inactivation. For depolarizations longer than 50 ms, the tail currents measured during repolarization to -90 mV display a slow component that increases in amplitude as the duration of the depolarizing pulse increases. We found that the slow development of the QV shift had a counterpart in the amplitude of the slow component of the ionic tail current that is not present in Sh-IR. During long depolarizations, the time course of both the increase in the slow component of the tail current and the change in voltage dependence of the charge movement could be well fitted by exponential functions with identical time constant of 459 ms. Single channel recordings revealed that after prolonged depolarizations, the channels remain conductive for long periods after membrane repolarization. Nonstationary autocovariance analysis performed on macroscopic current in the T449V-I470C mutant confirmed that a novel open state appears with increasing prepulse depolarization time. These observations suggest that in the mutant studied, a new open state becomes progressively populated during long depolarizations (>50 ms). An appealing interpretation of these results is that the new open state of the mutant channel corresponds to a slow inactivated state of Sh-IR that became conductive.  相似文献   

6.
Using the whole-cell variation of the patch-clamp technique it has been determined that 0.25-3 mM bretylium tosylate (BT) exerts a repolarizing effect on partially depolarized human lymphocytes. The repolarizing effect was ouabain (40 microM)-sensitive, and was inhibited by the removal of external Na+ or by the Na(+)-channel-blocker amiloride (10-44 microM), but K(+)-channel-blockers 4-aminopyridine (0.1-5 mM) and quinine (100 microM) had no effect. The drug induced a sodium dependent, amiloride-sensitive transient inward current reaching its maximum value approx. 20-30 s after the administration of BT and lasting for 6-10 min. This current was activated by depolarization within 25 ms at around -42 mV, its inactivation took about 2 s and its reversal potential was +24 +/- 5 mV. An increase in the intracellular sodium concentration (1.8-3.2 mM) has been observed upon the addition of BT by monitoring the SBFI fluorescence of the dye-loaded cells. It has been shown that whole-cell K+ currents are significantly decreased by BT. The existence of voltage and ligand (BT)-gated sodium channels has been postulated in human lymphocytes. These channels are thought to participate in the initiation of membrane repolarization in human lymphocytes, and thereby influence mitogenic or antigen-induced cell-activation processes.  相似文献   

7.
Veratridine modifies open sodium channels   总被引:11,自引:4,他引:7       下载免费PDF全文
The state dependence of Na channel modification by the alkaloid neurotoxin veratridine was investigated with single-channel and whole-cell voltage-clamp recording in neuroblastoma cells. Several tests of whole-cell Na current behavior in the presence of veratridine supported the hypothesis that Na channels must be open in order to undergo modification by the neurotoxin. Modification was use dependent and required depolarizing pulses, the voltage dependence of production of modified channels was similar to that of normal current activation, and prepulses that caused inactivation of normal current had a parallel effect on the generation of modified current. This hypothesis was then examined directly at the single-channel level. Modified channel openings were easily distinguished from normal openings by their smaller current amplitude and longer burst times. The modification event was often seen as a sudden, dramatic reduction of current through an open Na channel and produced a somewhat flickery channel event having a mean lifetime of 1.6 s at an estimated absolute membrane potential of -45 mV (23 degrees C). The modified channel had a slope conductance of 4 pS, which was 20-25% the size of the slope conductance of normal channels with the 300 mM NaCl pipette solution used. Most modified channel openings were initiated by depolarizing pulses, began within the first 10 ms of the depolarizing step, and were closely associated with the prior opening of single normal Na channels, which supports the hypothesis that modification occurs from the normal open state.  相似文献   

8.
Extracellular acidification is known to decrease the conductance of many voltage-gated potassium channels. In the present study, we investigated the mechanism of H(+)(o)-induced current inhibition by taking advantage of Na(+) permeation through inactivated channels. In hKv1.5, H(+)(o) inhibited open-state Na(+) current with a similar potency to K(+) current, but had little effect on the amplitude of inactivated-state Na(+) current. In support of inactivation as the mechanism for the current reduction, Na(+) current through noninactivating hKv1.5-R487V channels was not affected by [H(+)(o)]. At pH 6.4, channels were maximally inactivated as soon as sufficient time was given to allow activation, which suggested two possibilities for the mechanism of action of H(+)(o). These were that inactivation of channels in early closed states occurred while hyperpolarized during exposure to acid pH (closed-state inactivation) and/or inactivation from the open state was greatly accelerated at low pH. The absence of outward Na(+) currents but the maintained presence of slow Na(+) tail currents, combined with changes in the Na(+) tail current time course at pH 6.4, led us to favor the hypothesis that a reduction in the activation energy for the inactivation transition from the open state underlies the inhibition of hKv1.5 Na(+) current at low pH.  相似文献   

9.
Voltage-dependent gating of veratridine-modified Na channels   总被引:15,自引:7,他引:8       下载免费PDF全文
Na channels of frog muscle fibers treated with 100 microM veratridine became transiently modified after a train of repetitive depolarizations. They open and close reversibly with a gating process whose midpoint lies 93 mV more negative than the midpoint of normal activation gating and whose time course shows no appreciable delay in the opening or closing kinetics but still requires more than two kinetic states. Like normal activation, the voltage dependence of the modified gating can be shifted by changing the bathing Ca2+ concentration. The instantaneous current-voltage relation of veratridine-modified channels is curved at potentials negative to -90 mV, as if external Ca ions produced a voltage-dependent block but also permeated. Modified channels probably carry less current than normal ones. When the concentration of veratridine is varied between 5 and 100 microM, the initial rate of modification during a pulse train is directly proportional to the concentration, while the rate of recovery from modification after the train is unaffected. These are the properties expected if drug binding and modification of channels can be equated. Hyperpolarizations that close modified channels slow unbinding. Allethrin and DDT also modify channels. They bind and unbind far faster than veratridine does, and their binding requires open channels.  相似文献   

10.
This paper shows the presence, in rat myometrial smooth muscles, of low affinity binding sites for tetrodotoxin with a K0.5 value of 2 microM. Electrophysiological experiments using both intact strips and single isolated myometrial cells in culture have shown that veratridine and sea anemone toxins reveal functional Na+ channels. The activity of these channels was blocked by tetrodotoxin (10 microM) or by removal of Na+ ions. Results presented here are the first direct demonstration of the existence in rat myometrium of Na+ channels of the tetrodotoxin-resistant type.  相似文献   

11.
In embryonic chick hearts during development, there are three inward current systems which are involved in the rising phases of the action potentials (APs): fast INa, slow ICa, and tetrodotoxin-insensitive slow INa. To assess reactivation processes for these three types of inward current channels (fast Na+, slow Ca2+, and slow Na+ channels), diastolic recovery of Vmax was examined in embryonic chick hearts using a paired-pulse protocol. In all cases, the diastolic recoveries were approximated by single exponential functions. The time constants of recovery (tau(V)) and T90% (the diastolic interval which allows 90% recovery of Vmax of the premature AP) were, respectively, 53.1 +/- 5.2 and 61.5 +/- 8.6 ms for Na+-dependent fast AP (n = 10), 376.9 +/- 49.3 and 659.2 +/- 113.1 ms for the Ca2+-dependent slow AP (n = 10), and 40.7 +/- 5.3 and 45.6 +/- 12.0 ms for the Na+-dependent slow AP (n = 10). In the presence of lidocaine, the recovery kinetics also appeared to be single exponentials for diastolic intervals up to 500 ms (fast APs) or 250 ms (slow APs). The reactivation processes for the Na+-dependent fast and slow channels were significantly slowed by 100 microM lidocaine. In addition, in the presence of 100 microM lidocaine, Vmax was depressed in a frequency-dependent manner; the higher the stimulation frequency, the greater the depression. Hence, the fast Na+ channels and the slow Na+ channels had the following similarities: rapid reactivation, reactivation slowed by lidocaine, and frequency-dependent depression in the presence of lidocaine.  相似文献   

12.
Both wild-type (WT) and nonconducting W472F mutant (NCM) Kv1.5 channels are able to conduct Na(+) in their inactivated states when K(+) is absent. Replacement of K(+) with Na(+) or NMG(+) allows rapid and complete inactivation in both WT and W472F mutant channels upon depolarization, and on return to negative potentials, transition of inactivated channels to closed-inactivated states is the first step in the recovery of the channels from inactivation. The time constant for immobilized gating charge recovery at -100 mV was 11.1 +/- 0.4 ms (n = 10) and increased to 19.0 +/- 1.6 ms (n = 3) when NMG(+)(o) was replaced by Na(+)(o). However, the decay of the Na(+) tail currents through inactivated channels at -100 mV had a time constant of 129 +/- 26 ms (n = 18), much slower than the time required for gating charge recovery. Further experiments revealed that the voltage-dependence of gating charge recovery and of the decay of Na(+) tail currents did not match over a 60 mV range of repolarization potentials. A faster recovery of gating charge than pore closure was also observed in WT Kv1.5 channels. These results provide evidence that the recovery of the gating elements is uncoupled from that of the pore in Na(+)-conducting inactivated channels. The dissociation of the gating charge movements and the pore closure could also be observed in the presence of symmetrical Na(+) but not symmetrical Cs(+). This difference probably stems from the difference in the respective abilities of the two ions to limit inactivation to the P-type state or prevent it altogether.  相似文献   

13.
Action potentials and developed contractions of externally unloaded single ventricular myocytes isolated from adult rat and guinea pig hearts were recorded by means of an optical system for recording contractile activity during regular stimulation by microelectrodes. Under control conditions, the shortenings (twitches) in the rat myocytes were fully inhibited by 0.1 microM ryanodine, but they were rather insensitive to the Ca2+ blocker 0.2-0.5 microM nifedipine. In contrast, the contractions of the isolated guinea pig ventricular myocytes were greatly suppressed by 0.2-0.5 microM nifedipine (to less than 30%), while they were only slightly reduced by 1 microM ryanodine. When the Na+ gradient was decreased by reducing [Na]o or by elevating [Na]i in the presence of veratridine, the twitch contractions were increased in both species. The effect of reduced [Na]o on twitch contractions was not affected by ryanodine in either type of myocytes, while nifedipine still fully abolished the twitches in the guinea pig cells, indicating a strong dependence of guinea pig contractions on Ca2+ influx. On the other hand, the effect of a reduced Na gradient by veratridine was more complex; the usual twitch (phasic component) was increased and it was followed by a second (tonic) component which relaxed only after the repolarization of the action potential. While the phasic component was decreased by nifedipine and ryanodine in the usual way (as in the controls), the sustained contractions (lasting up to several seconds) were ryanodine and nifedipine insensitive. Furthermore, the cardiomyocytes of both species exposed to strontium in place of external calcium still exhibited all the effects observed when reducing the Na+ gradient.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Wang Z  Fedida D 《Biophysical journal》2001,81(5):2614-2627
Sustained Na(+) or Li(+) conductance is a feature of the inactivated state in wild-type (WT) and nonconducting Shaker and Kv1.5 channels, and has been used here to investigate the cause of off-gating charge immobilization in WT and Kv1.5-W472F nonconducting mutant channels. Off-gating immobilization in response to brief pulses in cells perfused with NMG/NMG is the result of a more negative voltage dependence of charge recovery (V(1/2) is -96 mV) compared with on-gating charge movement (V(1/2) is -6.3 mV). This shift is known to be associated with slow inactivation in Shaker channels and the disparity is reduced by 40 mV, or approximately 50% in the presence of 135 mM Cs. Off-gating charge immobilization is voltage-dependent with a V(1/2) of -12 mV, and correlates well with the development of Na(+) conductance on repolarization through C-type inactivated channels (V(1/2) is -11 mV). As well, the time-dependent development of the inward Na(+) tail current and gating charge immobilization after depolarizing pulses of different durations has the same time constant (tau = 2.7 ms). These results indicate that in Kv1.5 channels the transition to a stable C-type inactivated state takes only 2-3 ms and results in strong charge immobilization in the absence of Group IA metal cations, or even in the presence of Na. Inclusion of low concentrations of Cs delays the appearance of Na(+) tail currents in WT channels, prevents transition to inactivated states in Kv1.5-W472F nonconducting mutant channels, and removes charge immobilization. Higher concentrations of Cs are able to modulate the deactivating transition in Kv1.5 channels and prevent the residual slowing of charge return.  相似文献   

15.
Batrachotoxin, veratridine and aconitine, activators of the voltage-dependent sodium channel in excitable cell membranes, increase the rate of 22Na+ uptake by mouse brain synaptosomes. Batrachotoxin was both the most potent (K0.5, 0.49 microM) and most effective activator of specific 22Na+ uptake. Veratridine (K0.5, 34.5 microM) and aconitine (K0.5, 19.6 microM) produced maximal stimulations of 22Na+ uptake that were 73% and 46%, respectively, of that produced by batrachotoxin. Activation of 22Na+ uptake by veratridine was completely inhibited by tetrodotoxin (I50, 6 nM ), a specific blocker of nerve membrane sodium channels. These results identify appropriate conditions for measuring sodium channel-dependent 22Na+ flux in mouse brain synaptosomes. The pharmacological properties of mouse brain synaptosomal sodium channels described here are distinct from those previously described for sodium channels in rat brain synaptosomes and mouse neuroblastoma cells.  相似文献   

16.
The interaction of large depolarization and dihydropyridine Ca2+ agonists, both of which are known to enhance L-type Ca2+ channel current, was examined using a conventional whole-cell clamp technique. In guinea pig detrusor cells, only L-type Ca2+ channels occur. A second open state (long open state: O2) of the Ca2+ channels develops during large depolarization (at +80 mV, without Ca2+ agonists). This was judged from lack of inactivation of the Ca2+ channel current during the large depolarizing steps (5 s) and slowly deactivating inward tail currents (= 10-15 ms) upon repolarization of the cell membrane to the holding potential (-60 mV). Application of Bay K 8644 (in 2.4 mM Ca(2+)- containing solutions) increased the amplitude of the Ca2+ currents evoked by simple depolarizations, and made it possible to observe inward tail currents (= 2.5-5 ms at -60 mV). The open state induced by large depolarization (O2*) in the Bay K 8644 also seemed hardly to inactivate. After preconditioning with large depolarizing steps, the decay time course of the inward tail currents upon repolarization to the holding potential (-60 mV) was significantly slowed, and could be fitted reasonably with two exponentials. The fast and slow time constants were 10 and 45 ms, respectively, after 2 s preconditioning depolarizations. Qualitatively the same results were obtained using Ba2+ as a charge carrier. Although the amplitudes of the inward currents observed in the test step and the subsequent repolarization to the holding potential were decreased in the same manner by additional application of nifedipine (in the presence of Bay K 8644), the very slow deactivation time course of the tail current was little changed. The additive enhancement by large depolarization and Ca2+ agonists of the inward tail current implies that two mechanisms separately induce long opening of the Ca2+ channels: i.e., that there are four open states.  相似文献   

17.
Otoom SA  Nusier MK 《Cytobios》2001,106(Z1):75-83
The effect of lamotrigine (LTG) on evoked and spontaneous seizure-like activity induced by veratridine, was investigated. Rat brain slices were examined using conventional electrophysiological intracellular techniques. Alteration of sodium channel function by veratridine (0.3 microM) induced spontaneous seizure-like activity in the hippocampal CA1 pyramidal neurons. Therapeutic concentrations of LTG (5-10 microM) inhibited both evoked and spontaneous bursting induced by veratridine. This inhibition was voltage-dependent indicating possible interaction between the drug and the inactivated state of sodium channels. There was an increase in the firing threshold of the bursting but no change in the resting membrane potential (RMP) and membrane input resistance. Results from this work suggest that the veratridine model of epilepsy is very sensitive to drugs which act on sodium channels. These data make the veratridine model a suitable tool for screening potential sodium channel-dependent antiepileptic drugs.  相似文献   

18.
Effects of the plant alkaloid Aconitine on the kinetics of sodium channels were studied in enzymatically isolated single cells of the mouse ventricular myocardium. Aconitine (1 mumol/l) induced a prolongation of the 90% repolarization of action potentials from 52.4 +/- 3.7 ms to 217.0 +/- 12.5 ms. Delayed terminal repolarization and oscillatory afterpotentials preceded spontaneous activity with high frequencies. Peak sodium currents were diminished from 28.0 +/- 9.0 to 14.0 +/- 6.0 nA. The reversal potential of the sodium current was shifted from 16.0 +/- 11.0 to -8.0 +/- 6.0 mV (52.5 mmol/l extracellular sodium concentration) suggesting a decreased selectivity of the Aconitine-modified Na channels. The m-affinity-curves were shifted 31 mV towards more negative potentials at a constant slope. The h affinity-curves were shifted in the same direction by 13 mV. The slope parameter of the h affinity-voltage relationship was enlarged from 9.1 +/- 2.2 mV to 15.6 +/- 4.4 mV. Shifts in m affinity and h affinity resulted in an increased "window". The alkaloid modified channels inactivated extremely slowly at potentials negative to -40 mV, but showed a fast and complete inactivation at potentials positive to -40 mV.  相似文献   

19.
Voltage-sensitive sodium channels encoded by the Vssc1 gene of the house fly (Musca domestica) were expressed in Xenopus laevis oocytes in combination with the tipE gene product of Drosophila melanogaster and were characterized by two-electrode voltage clamp. Vssc1/tipE sodium channels expressed in oocytes were highly sensitive to tetrodotoxin; half-maximal inhibition of sodium currents by tetrodotoxin was obtained at a concentration of 2.4 nM. Cismethrin, a pyrethroid that produces Type I effects on intact nerve, slowed the inactivation of sodium currents carried by Vssc1/tipE channels during a depolarizing pulse and induced a tail current after repolarization that decayed with a first-order time constant of approximately 650 ms. The voltage dependence of activation and steady-state inactivation of cismethrin-modified channels were shifted to more negative potentials. Cypermethrin, a pyrethroid with Type II effects on intact nerve, also prolonged the inactivation of Vssc1/tipE sodium channels and induced a tail current. However, the cypermethrin-induced tail current was extremely persistent, decaying with a first-order time constant of approximately 42 s. Unlike cismethrin, the effect of cypermethrin was use dependent, requiring repeated depolarizing pulses for the full development of modified sodium currents. The divergent effects of cismethrin and cypermethrin on Vssc1/tipE sodium channels expressed in oocytes are consistent with the actions of these and related compounds on sodium channels in invertebrate and vertebrate nerve preparations and provide insight into the mechanisms underlying the production of Type I and II effects on neuronal excitability. Arch. Insect Biochem. Physiol. 38:126–136, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

20.
The blocking effect of 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) was investigated on single Cl- channels of the cultured human colon carcinoma cells, HT29. In the absence of NPPB, the open-time histogram yielded two time constants, with 0.9 ms and 33 ms, whereas the closed-time distribution could be fitted by a single exponential with a time constant of 0.7 ms. Addition of NPPB in the range 1-50 microM induced brief closing events of the single-channel current. This resulted in a decrease of the long open-time constant to 2.1 ms and in an increase of the closed-time constant to 1.8 ms at 50 microM NPPB concentration. The short open-time constant did not change at low blocker concentration (1 microM), but could no longer be resolved at higher concentrations. The open-state probability decreased from 0.9 (control conditions) to 0.5 at 50 microM NPPB. The Hill plot yielded a Hill coefficient of about 0.7, compatible with one NPPB molecule inhibiting one channel molecule. The kinetics of channel gating are described by a sequential model with one closed and two open states. Since in the presence of NPPB no additional time constant appeared in the time histograms, we assumed the same kinetic scheme as under control conditions, and hypothesize that NPPB has an influence on rate constants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号