首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Long-term plasticity typically relies on postsynaptic NMDA receptors to detect the coincidence of pre- and postsynaptic activity. Recent studies, however, have revealed forms of plasticity that depend on coincidence detection by presynaptic NMDA receptors. In the amygdala, cortical afferent associative presynaptic long-term potentiation (LTP) requires activation of presynaptic NMDA receptors by simultaneous thalamic and cortical afferents. Surprisingly, both types of afferent can also undergo postsynaptically induced NMDA-receptor-dependent LTP. In the neocortex, spike-timing-dependent long-term depression (LTD) requires simultaneous activation of presynaptic NMDA autoreceptors and retrograde signalling by endocannabinoids. In cerebellar LTD, presynaptic NMDA receptor activation suggests that similar presynaptic mechanisms may exist. Recent studies also indicate the existence of presynaptic coincidence detection that is independent of NMDA receptors, suggesting that such mechanisms have a widespread role in plasticity.  相似文献   

2.
The mechanisms involved in mossy fiber LTP in the hippocampus are not well established. In the present study, we show that the kainate receptor antagonist LY382884 (10 microM) is selective for presynaptic kainate receptors in the CA3 region of the hippocampus. At a concentration at which it blocks mossy fiber LTP, LY382884 selectively blocks the synaptic activation of a presynaptic kainate receptor that facilitates AMPA receptor-mediated synaptic transmission. Following the induction of mossy fiber LTP, there is a complete loss of the presynaptic kainate receptor-mediated facilitation of synaptic transmission. These results identify a central role for the presynaptic kainate receptor in the induction of mossy fiber LTP. In addition, these results suggest that the pathway by which kainate receptors facilitate glutamate release is utilized for the expression of mossy fiber LTP.  相似文献   

3.
Schmitz D  Frerking M  Nicoll RA 《Neuron》2000,27(2):327-338
Kainate receptors (KARs) are a poorly understood family of ionotropic glutamate receptors. A role for these receptors in the presynaptic control of transmitter release has been proposed but remains controversial. Here, KAR agonists are shown to enhance fiber excitability, and a number of experiments show that this is a direct effect of KARs on the presynaptic fibers. In addition, KAR activation inhibits evoked transmitter release from mossy fiber synapses. Synaptic release of glutamate from either neighboring mossy fiber synapses or associational/commisural (A/C) synapses results in the activation of these presynaptic ionotropic KARs. These results, along with previous studies, indicate that KARs, through the endogenous release of glutamate, mediate excitatory postsynaptic potentials (EPSPs), alter presynaptic excitability, and modulate transmitter release.  相似文献   

4.
Although it has been well established that GABAA receptors are molecular targets of a variety of allosteric modulators, such as benzodiazepines, the pharmacological properties of presynaptic GABAA receptors are poorly understood. In this study, the effects of diazepam and Zn2+ on presynaptic GABAA receptors have been investigated by measuring the GABAA receptor-mediated facilitation of spontaneous glutamate release in mechanically dissociated rat CA3 pyramidal neurons. Diazepam significantly enhanced the muscimol-induced facilitation (particularly at submicromolar concentrations) of spontaneous glutamate release and shifted the concentration–response relationship for muscimol toward the left, whereas Zn2+ (≤ 100 μM) had little effect on the muscimol-induced facilitation of spontaneous glutamate release. In contrast, Zn2+ significantly suppressed the muscimol-induced currents mediated by GABAA receptors expressed on dentate gyrus granule cells, which are parent neurons of mossy fibers, whereas the effect of diazepam on GABAA receptors expressed on dentate gyrus granule cells was lesser than that on presynaptic GABAA receptors. The results suggest that the pharmacological properties of GABAA receptors differ considerably between presynaptic (axon terminals) and somatic regions in the same granule cell and that presynaptic GABAA receptors should be considered as one of the important pharmacological targets of many drugs affecting GABAA receptors.  相似文献   

5.
A novel investigational antidepressant with high affinity for the serotonin transporter and the serotonin 1A (5-HT(1A)) receptor, called Wf-516 (structural formula: (2S)-1-[4-(3,4-dichlorophenyl)piperidin-1-yl]-3-[2-(5-methyl-1,3,4-oxadiazol-2-yl)benzo[b]furan-4-yloxy]propan-2-ol monohydrochloride), has been found to exert a rapid therapeutic effect, although the mechanistic basis for this potential advantage remains undetermined. We comparatively investigated the pharmacokinetics and pharmacodynamics of Wf-516 and pindolol by positron emission tomographic (PET) and autoradiographic assays of rat brains in order to elucidate their molecular interactions with presynaptic and postsynaptic 5-HT(1A) receptors. In contrast to the full receptor occupancy by pindolol in PET measurements, the binding of Wf-516 to 5-HT(1A) receptors displayed limited capacity, with relatively high receptor occupancy being achieved in regions predominantly containing presynaptic receptors. This selectivity was further proven by PET scans of neurotoxicant-treated rats deficient in presynaptic 5-HT(1A) receptors. In addition, [(35)S]guanosine 5'-O-[γ-thio]triphosphate autoradiography indicated a partial agonistic ability of Wf-516 for 5-HT(1A) receptors. This finding has lent support to reports that diverse partial agonists for 5-HT(1A) receptors exert high sensitivity for presynaptic components. Thus, the present PET data suggest a relatively high capacity of presynaptic binding sites for partial agonists. Since our in vitro and ex vivo autoradiographies failed to illustrate these distinct features of Wf-516, in vivo PET imaging is considered to be, thus far, the sole method capable of pharmacokinetically demonstrating the unique actions of Wf-516 and similar new-generation antidepressants.  相似文献   

6.
At presynaptic terminals vesicular membranes are fused into plasma membrane upon exocytosis and retrieved by endocytosis. During a sustained high-frequency transmission, exoendocytic coupling is critical for the maintenance of synaptic transmission. Here, we show that this homeostatic coupling is supported by cGMP-dependent protein kinase (PKG) at the calyx of Held. This mechanism starts to operate after hearing onset during the second postnatal week, when PKG expression becomes upregulated in the brainstem. Pharmacological tests with capacitance measurements revealed that presynaptic PKG?activity is supported by a retrograde signal cascade mediated by NO that is released by activation of postsynaptic NMDA receptors. Activation of PKG also upregulates phosphatidylinositol-4,5-bisphosphate, thereby accelerating endocytosis. Furthermore, presynaptic PKG activity upregulates synaptic fidelity during high-frequency transmission. We conclude that maturation of the PKG-dependent retrograde signal cascade strengthens the homeostatic plasticity for the maintenance of high-frequency synaptic transmission at the fast glutamatergic synapse.  相似文献   

7.
Although glycine receptors are found in most areas of the brain, including the hippocampus, their functional significance remains largely unknown. In the present study, we have investigated the role of presynaptic glycine receptors on excitatory nerve terminals in spontaneous glutamatergic transmission. Spontaneous EPSCs (sEPSCs) were recorded in mechanically dissociated rat dentate hilar neurons attached with native presynaptic nerve terminals using a conventional whole-cell patch recording technique under voltage-clamp conditions. Exogenously applied glycine or taurine significantly increased the frequency of sEPSCs in a concentration-dependent manner. This facilitatory effect of glycine was blocked by 1 μM strychnine, a specific glycine receptor antagonist, but was not affected by 30 μM picrotoxin. In addition, Zn2+ (10 μM) potentiated the glycine action on sEPSC frequency. Pharmacological data suggested that the activation of presynaptic glycine receptors directly depolarizes glutamatergic terminals resulting in the facilitation of spontaneous glutamate release. Bumetanide (10 μM), a specific Na-K-2C co-transporter blocker, gradually attenuated the glycine-induced sEPSC facilitation, suggesting that the depolarizing action of presynaptic glycine receptors was due to a higher intraterminal Cl concentration. The present results suggest that presynaptic glycine receptors on excitatory nerve terminals might play an important role in the excitability of the dentate gyrus-hilus-CA3 network in physiological and/or pathological conditions.  相似文献   

8.
Presynaptic inhibition exerted by the common inhibitor on the closer and opener muscles and by the specific inhibitor on the opener muscle was investigated in the crab Eriphia spinifrons. In the closer muscle, activation of GABAB receptors by baclofen reduced the mean quantal content of excitatory junctional currents by about 25%. Blocking GABAB receptors with CGP 55845 diminished presynaptic inhibition at a similar percentage. GABAB receptor-mediated presynaptic inhibition is linked to G proteins. Application of pertussis toxin eliminated about 25% of the inhibition exerted by the common inhibitory neuron. GABAB receptors participate in presynaptic inhibition at release boutons of the slow and the fast closer excitor at a similar percentage. In the opener muscle, presynaptic inhibition of transmitter release from the same endings of the opener excitor was about 15% stronger with the specific inhibitor than with the common inhibitor. About 10% of the presynaptic inhibition produced by either one of the two inhibitors could be abolished by blocking GABAB receptors. The amplitudes of the excitatory junctional currents in the opener were reduced in the presence of baclofen by about 25%, suggesting that synaptic terminals of the opener excitor are endowed with a similar percentage of GABAB receptors as terminals of the slow and the fast closer excitors. Baclofen had no effect on postsynaptic inhibition, indicating that GABAB receptors are not involved in postsynaptic neuromuscular inhibition. Accepted: 8 January 2000  相似文献   

9.
M D Hirsch 《Peptides》1983,4(2):255-260
In vitro thyrotropin releasing hormone (TRH) radioligand binding assays were performed using purified presynaptic and postsynaptic membranes derived from various regions of mouse brain. These studies revealed the pattern of central distribution of specific TRH binding sites. The highest concentrations of both types of membrane receptors were localized in the limbic forebrain. The brain stem contained a high density of only presynaptic receptors, and the cerebral cortex contained a moderate-high level of only postsynaptic receptors. Barbiturate analogues effectively competed for all forebrain and brain stem, but not cortical, TRH receptors, thus implicating these specific receptors in the neuromodulation of barbiturate anesthesia. The results of in vivo radioligand binding assays for [3H] TRH disposition after central infusions concomitant with barbiturate vs. saline challenges further support this viewpoint.  相似文献   

10.
Sensory input from peripheral nerves to the dorsal horn of the spinal cord is mediated by a variety of agents released by the central terminals of dorsal root ganglion (DRG) neurons. These include, but are not limited to, amino acids, especially glutamate, peptides and purines. The unraveling of the mechanisms of synaptic transmission by central terminals of DRG neurons has to take into account various ways in which the message from the periphery can be modulated at the level of the first central synapse. These include postsynaptic and presynaptic mechanisms. Homomeric and heteromeric complexes of receptor subunits for the different transmitters released by DRG neurons and interneurons, clustered at the postsynaptic site of central synapses, can be expressed in different combinations and their rate of insertion into the postsynaptic membrane is activity-regulated. Inhibitory mechanisms are an important part of central modulation, especially via presynaptic inhibition, currently believed to involve GABA released by inhibitory intrinsic neurons. Recent work has established the occurrence of another way by which sensory input can be modulated, i.e. the expression of presynaptic ionotropic and metabotropic receptors in central terminals of DRG neurons. Microscopic evidence for the expression, in these terminals, of various subunits of ionotropic glutamate receptors documents the selective expression of glutamate receptors in functionally different DRG afferents. Electrophysiological and pharmacological data suggest that activation of presynaptic ionotropic glutamate receptors in central terminals of DRG neurons may result in inhibition of release of glutamate by the same terminals. Glutamate activating presynaptic receptors may spill over from the same or adjacent synapses, or may be released by processes of astroglial cells surrounding synaptic terminals. The wide expression of presynaptic ionotropic glutamate receptors, especially in superficial laminae of the dorsal horn, where Adelta- and C fibers terminate, provides an additional or alternative mechanism, besides GABA-mediated presynaptic inhibition, for the modulation of glutamate release by these fibers. Since, however, presynaptic ionotropic glutamate receptors are also expressed in terminals of GABAergic intrinsic interneurons, a decrease of GABA release resulting from activation of these receptors in the same laminae, may also play a role in central sensitization and hyperalgesia.  相似文献   

11.
Postsynaptic complexin controls AMPA receptor exocytosis during LTP   总被引:1,自引:0,他引:1  
Long-term potentiation (LTP) is a compelling synaptic correlate of learning and memory. LTP induction requires NMDA receptor (NMDAR) activation, which triggers SNARE-dependent exocytosis of AMPA receptors (AMPARs). However, the molecular mechanisms mediating AMPAR exocytosis induced by NMDAR activation remain largely unknown. Here, we show that complexin, a protein that regulates neurotransmitter release via binding to SNARE complexes, is essential for AMPAR exocytosis during LTP but not for the constitutive AMPAR exocytosis that maintains basal synaptic strength. The regulated postsynaptic AMPAR exocytosis during LTP requires binding of complexin to SNARE complexes. In hippocampal neurons, presynaptic complexin acts together with synaptotagmin-1 to mediate neurotransmitter release. However, postsynaptic synaptotagmin-1 is not required for complexin-dependent AMPAR exocytosis during LTP. These results suggest?a complexin-dependent molecular mechanism for regulating AMPAR delivery to synapses, a mechanism that is surprisingly similar to presynaptic exocytosis but controlled by regulators other than synaptotagmin-1.  相似文献   

12.
AMPA receptor ion channels are of paramount importance for postsynaptic excitation. Several reports demonstrate that AMPA receptors are present in the presynaptic compartment and point to a role of these receptors in the modulation of presynaptic function. We discuss here the possibility that not only ion influx through the receptor, but also biochemical cascades, activated by ligand binding and independent from ion flux, might contribute to AMPA mediated presynaptic modulation.  相似文献   

13.
Most animals are endowed with an olfactory system that is essential for finding foods, avoiding predators, and locating mating partners. The olfactory system must encode the identity and intensity of behaviorally relevant stimuli in a dynamic environmental landscape. How is olfactory information represented? How is a large dynamic range of odor concentrations represented in the olfactory system? How is this representation modulated to meet the demands of different internal physiological states? Recent studies have found that sensory terminals are important targets for neuromodulation. The emerging evidence suggests that presynaptic inhibition scales with sensory input and thus provides a mechanism to increase dynamic range of odor representation. In addition, presynaptic facilitation could be a mechanism to alter behavioral responses in hungry animals. This review will focus on the GABA(B) (gamma-aminobutyric acid) receptor-mediated presynaptic inhibition, and neuropeptide-mediated presynaptic modulation in Drosophila.  相似文献   

14.
Hou Q  Gilbert J  Man HY 《Neuron》2011,72(5):806-818
During homeostatic adjustment in response to alterations in neuronal activity, synaptic expression of AMPA receptors (AMPARs) is globally tuned up or down so that the neuronal activity is restored to a physiological range. Given that a central neuron receives multiple presynaptic inputs, whether and how AMPAR synaptic expression is homeostatically regulated at individual synapses remain unclear. In cultured hippocampal neurons we report that when activity of an individual presynaptic terminal is selectively elevated by light-controlled excitation, AMPAR abundance at the excited synapses is selectively downregulated in an NMDAR-dependent manner. The reduction in surface AMPARs is accompanied by enhanced receptor endocytosis and dependent on proteasomal activity. Synaptic activation also leads to a site-specific increase in the ubiquitin ligase Nedd4 and polyubiquitination levels, consistent with?AMPAR ubiquitination and degradation in the spine. These results indicate that AMPAR accumulation at individual synapses is subject to autonomous homeostatic regulation in response to synaptic activity.  相似文献   

15.
There is a consensus that NMDA receptors (NMDARs) detect coincident pre- and postsynaptic activity during induction of long-term potentiation (LTP), but their role in timing-dependent long-term depression (tLTD) is unclear. We examine tLTD in neocortical layer 5 (L5) pyramidal pairs and find that tLTD is expressed presynaptically, implying retrograde signaling. CB1 agonists produce depression that mimics and occludes tLTD. This agonist-induced LTD requires presynaptic activity and NMDAR activation, but not postsynaptic Ca(2+) influx. Further experiments demonstrate the existence of presynaptic NMDARs that underlie the presynaptic activity dependence. Finally, manipulating cannabinoid breakdown alters the temporal window for tLTD. In conclusion, tLTD requires simultaneous activation of presynaptic NMDA and CB1 receptors. This novel form of coincidence detection may explain the temporal window of tLTD and may also impart synapse specificity to cannabinoid retrograde signaling.  相似文献   

16.
In recent years, a role for AMPA receptors as modulators of presynaptic functions has emerged. We have investigated the presence of AMPA receptor subunits and the possible dynamic control of their surface exposure at the presynaptic membrane. We demonstrate that the AMPA receptor subunits GluR1 and GluR2 are expressed and organized in functional receptors in axonal growth cones of hippocampal neurons. AMPA receptors are actively internalized upon activation and recruited to the surface upon depolarization. Pretreatment of cultures with botulinum toxin E or tetanus toxin prevents the receptor insertion into the plasma membrane, whereas treatment with alpha-latrotoxin enhances the surface exposure of GluR2, both in growth cones of cultured neurons and in brain synaptosomes. Purification of small synaptic vesicles through controlled-pore glass chromatography, revealed that both GluR2 and GluR1, but not the GluR2 interacting protein GRIP, copurify with synaptic vesicles. These data indicate that, at steady state, a major pool of AMPA receptor subunits reside in synaptic vesicle membranes and can be recruited to the presynaptic membrane as functional receptors in response to depolarization.  相似文献   

17.
N-methyl-D-aspartate (NMDA) receptors are associated with many forms of synaptic plasticity. Their expression level and subunit composition undergo developmental changes in several brain regions. In the mouse cerebellum, beside a developmental switch between NR2B and NR2A/C subunits in granule cells, functional postsynaptic NMDA receptors are seen in Purkinje cells of neonate and adult but not juvenile rat and mice. A presynaptic effect of NMDA on GABA release by cerebellar interneurons was identified recently. Nevertheless whereas NMDA receptor subunits are detected on parallel fiber terminals, a presynaptic effect of NMDA on spontaneous release of glutamate has not been demonstrated. Using mouse cerebellar cultures and patch-clamp recordings we show that NMDA facilitates glutamate release onto Purkinje cells in young cultures via a presynaptic mechanism, whereas NMDA activates extrasynaptic receptors in Purkinje cells recorded in old cultures. The presynaptic effect of NMDA on glutamate release is also observed in Purkinje cells recorded in acute slices prepared from juvenile but not from adult mice and requires a specific protocol of NMDA application.  相似文献   

18.
Airas JM  Betz H  El Far O 《FEBS letters》2001,494(1-2):60-63
Group III metabotropic glutamate receptors (mGluRs) serve as presynaptic receptors that mediate feedback inhibition of glutamate release via a Ca(2+)/calmodulin (CaM)-dependent mechanism. In vitro phosphorylation of mGluR7A by protein kinase C (PKC) prevents its interaction with Ca(2+)/CaM. In addition, activation of PKC leads to an inhibition of mGluR signaling. Here, we demonstrate that disrupting CaM binding to mGluR7A by PKC in vitro is due to phosphorylation of a highly conserved serine residue, S862. We propose charge neutralization of the CaM binding consensus sequence resulting from phosphorylation to constitute a general mechanism for the regulation of presynaptic mGluR signaling.  相似文献   

19.
We have directly observed the effects of activating presynaptic D1-like and D2-like dopamine receptors on Ca2+ levels in isolated nerve terminals (synaptosomes) from rat striatum. R-(+)-SKF81297, a selective D1-like receptor agonist, and (-)-quinpirole, a selective D2-like receptor agonist, induced increases in Ca2+ levels in different subsets of individual striatal synaptosomes. The SKF81297- and quinpirole-induced effects were blocked by R-(+)-SCH23390, a D1-like receptor antagonist, and (-)-sulpiride, a D2-like receptor antagonist, respectively. SKF81297- or quinpirole-induced Ca2+ increases were inhibited following blockade of voltage-gated calcium channels or sodium channels. In a larger subset of synaptosomes, quinpirole decreased baseline Ca2+. Quinpirole also inhibited veratridine-induced increases in intrasynaptosomal Ca2+ level. Immunostaining confirmed the presynaptic expression of D1, D5, D2 and D3 receptors, but not D4 receptors. The array of neurotransmitter phenotypes of the striatal nerve endings expressing D1, D5, D2 or D3 varied for each receptor subtype. These results suggest that presynaptic D1-like and D2-like receptors induce increases in Ca2+ levels in different subsets of nerve terminals via Na+ channel-mediated membrane depolarization, which, in turn, induces the opening of voltage-gated calcium channels. D2-like receptors also reduce nerve terminal Ca2+ in a different but larger subset of synaptosomes, consistent with the predominant presynaptic action of dopamine in the striatum being inhibitory.  相似文献   

20.
Interaction with the multi-PDZ protein GRIP is required for the synaptic targeting of AMPA receptors, but the underlying mechanism is unknown. We show that GRIP binds to the liprin-alpha/SYD2 family of proteins that interact with LAR receptor protein tyrosine phosphatases (LAR-RPTPs) and that are implicated in presynaptic development. In neurons, liprin-alpha and LAR-RPTP are enriched at synapses and coimmunoprecipitate with GRIP and AMPA receptors. Dominant-negative constructs that interfere with the GRIP-liprin interaction disrupt the surface expression and dendritic clustering of AMPA receptors in cultured neurons. Thus, by mediating the targeting of liprin/GRIP-associated proteins, liprin-alpha is important for postsynaptic as well as presynaptic maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号