首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Uterine blood flow (UBF) and uterine artery endothelial nitric oxide synthase (eNOS) expression are greatest during the follicular vs. luteal phase. 17 beta-Estradiol (E(2)beta) increases UBF and elevates eNOS in ovine uterine but not systemic arteries; progesterone (P(4)) effects on E(2)beta changes of eNOS remain unclear. Nonpregnant ovariectomized sheep received either vehicle (n = 10), P(4) (0.9 g Controlled Internal Drug Release vaginal implants; n = 13), E(2)beta (5 microg/kg bolus + 6 microg x kg(-1) x day(-1); n = 10), or P(4) + E(2)beta (n = 12). Reproductive (uterine/mammary) and nonreproductive (omental/renal) artery endothelial proteins were procured on day 10, and eNOS was measured by Western analysis. P(4) and E(2)beta alone and in combination increased (P < 0.05) eNOS expression in uterine artery endothelium (vehicle = 100 +/- 16%, P(4) = 251 +/- 59%, E(2)beta = 566 +/- 147%, P(4) + E(2)beta = 772 +/- 211% of vehicle). Neither omental, renal, nor mammary artery eNOS was altered, demonstrating the local nature of steroid-induced maintenance of uterine arterial eNOS. In the myometrial microvasculature, eNOS was increased slightly (P = 0.06) with E(2)beta and significantly with P(4) + E(2)beta. Systemic NO(x) was increased with P(4) and P(4) + E(2)beta, but not E(2)beta, suggesting differential regulation of eNOS expression and activity, since P(4) increased eNOS in uterine artery endothelium while E(2)beta and the combination further increased eNOS protein.  相似文献   

2.
Nitric oxide synthase (NOS) contributes to estradiol-17beta (E(2)beta)-induced uterine vasodilation, but additional mechanisms are involved, and the cellular pathways remain unclear. We determined if 1) uterine artery myocytes express potassium channels, 2) E(2)beta activates these channels, and 3) channel blockade plus NOS inhibition alters E(2)beta-induced uterine vasodilation. Studies of cell-attached patches identified a 107 +/- 7 pS calcium-dependent potassium channel (BK(Ca)) in uterine artery myocytes that rapidly increased single-channel open probability 70-fold (P < 0.05) after exposure to 100 nM E(2)beta through an apparent cGMP-dependent mechanism. In ovariectomized nonpregnant ewes (n = 11) with uterine artery flow probes and catheters, local BK(Ca) blockade with tetraethylammonium (TEA; 0.05-0.6 mM) dose dependently inhibited E(2)beta-induced uterine vasodilation (n = 37, R = 0.77, P < 0.0001), with maximum inhibition averaging 67 +/- 11%. Mean arterial pressure (MAP) and E(2)beta-induced increases (P 相似文献   

3.
Nitric oxide (NO) produced by inducible nitric oxide synthase (iNOS) is responsible for sepsis-induced hypotension and plays a major contributory role in the ensuing multiorgan failure. The present study aimed to elucidate the role of endothelial NO in lipopolysaccharide (LPS)-induced iNOS expression, in isolated rat aortic rings. Exposure to LPS (1 mug/ml, 5 h) resulted in a reversal of phenylephrine precontracted tone in aortic rings (70.7 +/- 3.2%). This relaxation was associated with iNOS expression and NF-kappaB activation. Positive immunoreactivity for iNOS protein was localized in medial and adventitial layers of LPS-treated aortic rings. Removal of the endothelium rendered aortic rings resistant to LPS-induced relaxation (8.9 +/- 4.5%). Western blotting of these rings demonstrated an absence of iNOS expression. However, treatment of endothelium-denuded rings with the NO donor, diethylamine-NONOate (0.1 mum), restored LPS-induced relaxation (61.6 +/- 6.6%) and iNOS expression to levels comparable with arteries with intact endothelium. Blockade of endothelial NOS (eNOS) activation using geldanamycin and radicicol, inhibitors of heat shock protein 90, in endothelium-intact arteries suppressed both LPS-induced relaxation and LPS-induced iNOS expression (9.0 +/- 8.0% and 2.0 +/- 6.2%, respectively). Moreover, LPS treatment (12.5 mg/kg, intravenous, 15 h) of wild-type mice resulted in profound elevation of plasma [NO(x)] measurements that were reduced by approximately 50% in eNOS knock-out animals. Furthermore, LPS-induced changes in vascular reactivity and iNOS expression evident in wild-type tissues were profoundly suppressed in tissues taken from eNOS knockout animals. Together, these data suggest that eNOS-derived NO, in part via activation of NF-kappaB, regulates iNOS-induction by LPS. This study provides the first demonstration of a proinflammatory role of vascular eNOS in sepsis.  相似文献   

4.
组胺对肺动脉内皮细胞一氧化氮合酶基因表达的影响   总被引:4,自引:1,他引:3  
Lu DQ  Li HG  Ye H  Ye SQ  Jin S  Wang DX 《生理学报》2004,56(3):288-294
本实验研究了组胺对原代培养的肺动脉内皮细胞一氧化氮合酶(nitric oxidCsynthase,NOS)基因表达的影响及分子机制。采用RT-PCR和免疫印迹技术分别检测mRNA和蛋白质的表达水平,用荧光素酶报告基因实验检测eNOS基因转录起始点上游长1.6-kb的启动子活性,用硝酸还原酶法检测NO的产量。结果发现,组胺增强eNOS表达,呈浓度和时间依赖性,10μmol/L组胺处理肺动脉内皮细胞24h可使eNOS mRNA和蛋白质的表达达到高峰,eNOS mRNA水平为正常对照组的160.8±12.2%(P<0.05),蛋白质水平为正常对照组的136.2±11.2%(P<0.05)。特异性CaMK Ⅱ抑制剂KN-93可抑制组胺的这一效应,表明组胺可通过激活CaMK Ⅱ增强肺动脉内皮细胞eNOS基因的表达。报告基因实验表明,10μmol/L组胺处理24h后肺动脉内皮细胞eNOS基因启动子的活性增强,为正常对照组的148.2±33.7%(P<0.05)。组胺可使肺动脉内皮细胞产生NO增加。这些结果表明组胺在转录水平增强肺动脉内皮细胞eNOS基因的表达,并使细胞产生NO增加,这可能是组胺调节肺血管张力的机制之一。CaMK Ⅱ可能是组胺增强肺动脉内皮细胞eNOS基因表达的途径之一。  相似文献   

5.
The objective of the current study was to develop an ovine animal model for consistent study of uterine blood flow (UBF) changes during synchronized ovarian cycles regardless of season. Sheep were surgically bilaterally instrumented with uterine artery blood flow transducers and 5-7 days later implanted with a vaginal progesterone (P(4))-controlled internal drug-releasing device (CIDR; 0.3 g) for 7 days. On Day 6 of P(4), sheep were given two prostaglandin F(2 alpha) injections (7.5 mg i.m. 4 h apart). At CIDR removal, Experimental Day 0, zero (n = 9), 500 IU (n = 8), or 1000 IU (n = 7) eCG was injected i.m.; UBF was monitored continuously for 55-75 h. Jugular blood was sampled every 8 h to evaluate levels of P(4), estradiol-17 beta (E(2)beta) and luteinizing hormone (LH). The inhibitor of nitric oxide synthase, L-nitro-arginine methyl ester (L-NAME) was infused in a stepwise fashion unilaterally into one uterine artery at 48-50 h after 500 IU eCG and the effects on UBF were examined (n = 7). The zero-eCG group gradually increased UBF from a baseline of 17.4 +/- 3.9 to 80.5 +/- 1.1 ml/min. The 500-IU-eCG group increased UBF between 10 and 15 h from a baseline of 11 +/- 3.3 to 83.3 +/- 1.0 ml/min, whereas UBF for the 1000-IU-eCG group was higher (100.1 +/- 1.7 ml/min) than that seen in either of the other groups. Plasma P(4) fell to baseline within 8 h of CIDR removal, while E(2)beta rose gradually in association with elevations in UBF. LH surges occurred between 32 and 56 h after CIDR removal and the LH surge occurred earlier in the 1000-IU-eCG group than the other two groups (P < 0.01). L-NAME infusion dose dependently reduced maximum levels of UBF ipsilaterally by 54.6% +/- 6.2%, but contralaterally only by 27.4% +/- 8.5%. Regardless of season, either dose of eCG will result in analogous UBF responses. During the follicular phase, elevations in UBF are in part locally controlled by the de novo production of nitric oxide.  相似文献   

6.
Normal pregnancy and the follicular phase of the ovarian cycle are both estrogen-dominated physiological states that are characterized by elevations in uterine blood flow and endothelial nitric oxide synthase (eNOS) protein expression in the uterine artery (UA) endothelium. It is unknown if elevations in mRNA level account for the changes in protein or eNOS activity. We tested the hypothesis that pregnancy and the follicular phase are associated with increases in eNOS mRNA and the consequent elevated expression of eNOS protein results in increased circulating nitric oxide (NO) levels. UA were obtained from pregnant (PREG; n = 8; 110-130 days gestation; term = 145 +/- 3 days), nonpregnant luteal (LUT; n = 6), nonpregnant follicular (FOL; n = 6), and nonpregnant ovariectomized (OVEX; n = 6) sheep. Circulating NO levels were analyzed as total NO(2)-NO(3) (NO(x)). Western analysis performed on UA endothelial-isolated proteins demonstrated that eNOS protein levels were OVEX = LUT < or = FOL < PREG (P < 0.05), whereas eNOS mRNA expression (RT-PCR) in UA endothelial cells obtained by limited collagenase digestion was OVEX < LUT < FOL < PREG (P < 0.05). Pregnancy dramatically elevated eNOS protein (4.1- to 6.9-fold) and mRNA (2.4- to 6.9-fold) over LUT controls (P < 0.01). Circulating NO(x) levels were not altered by ovariectomy or the ovarian cycle but were elevated from 4.4 +/- 1.1 microM in LUT to 12 +/- 4, 22 +/- 3, and 41 +/- 3 microM at 110, 120, and 130 days gestation (P < 0.01). Systemic NO(x) levels in singleton (12.5 +/- 1.6 microM) were less (P < 0.01) than in multiple (twin 27.6 +/- 6.5 microM; triplet = 46 +/- 10 microM) pregnancies. Therefore, the follicular phase and, to a much greater extent, pregnancy are associated with elevations in UA endothelium-derived eNOS expression, although significant increases in systemic NO(x) levels were only observed in the PREG group (multiple > singleton). Thus, although UA endothelial increases in eNOS protein and mRNA levels are associated with high estrogen states, increases in local UA NO production may require additional eNOS protein activation to play its important role in the maintenance of uterine blood flow in pregnancy.  相似文献   

7.
We determined whether nitric oxide (NO) counters the development of hypertension at the onset of diabetes in mice, whether this is dependent on endothelial NO synthase (eNOS), and whether non-NO endothelium-dependent vasodilator mechanisms are altered in diabetes in mice. Male mice were instrumented for chronic measurement of mean arterial pressure (MAP). In wild-type mice, MAP was greater after 5 wk of N(omega)-nitro-L-arginine methyl ester (L-NAME; 100 mg x kg(-1) x day(-1) in drinking water; 97 +/- 3 mmHg) than after vehicle treatment (88 +/- 3 mmHg). MAP was also elevated in eNOS null mice (113 +/- 4 mmHg). Seven days after streptozotocin treatment (200 mg/kg iv) MAP was further increased in L-NAME-treated mice (108 +/- 5 mmHg) but not in vehicle-treated mice (88 +/- 3 mmHg) nor eNOS null mice (104 +/- 3 mmHg). In wild-type mice, maximal vasorelaxation of mesenteric arteries to acetylcholine was not altered by chronic L-NAME or induction of diabetes but was reduced by 42 +/- 6% in L-NAME-treated diabetic mice. Furthermore, the relative roles of NO and endothelium-derived hyperpolarizing factor (EDHF) in acetylcholine-induced vasorelaxation were altered; the EDHF component was enhanced by L-NAME and blunted by diabetes. These data suggest that NO protects against the development of hypertension during early-stage diabetes in mice, even in the absence of eNOS. Furthermore, in mesenteric arteries, diabetes is associated with reduced EDHF function, with an apparent compensatory increase in NO function. Thus, prior inhibition of NOS results in endothelial dysfunction in early diabetes, since the diabetes-induced reduction in EDHF function cannot be compensated by increases in NO production.  相似文献   

8.
External pneumatic compression (EPC) is effective in preventing deep vein thrombosis (DVT) and is thought to alter endothelial thromboresistant properties. We investigated the effect of EPC on changes in nitric oxide (NO), a critical mediator in the regulation of vasomotor and platelet function. An in vitro cell culture system was developed to simulate flow and vessel collapse conditions under EPC. Human umbilical vein endothelial cells were cultured and subjected to tube compression (C), pulsatile flow (F), or a combination of the two (FC). NO production and endothelial nitric oxide synthase (eNOS) mRNA expression were measured. The data demonstrate that in the F and FC groups, there is a rapid release of NO followed by a sustained increase. NO production levels in the F and FC groups were almost identical, whereas the C group produced the same low amount of NO as the control group. Conditions F and FC also upregulate eNOS mRNA expression by a factor of 2.08 +/- 0.25 and 2.11 +/- 0.21, respectively, at 6 h. Experiments with different modes of EPC show that NO production and eNOS mRNA expression respond to different time cycles of compression. These results implicate enhanced NO release as a potentially important factor in the prevention of DVT.  相似文献   

9.
Animal studies suggest that nitric oxide (NO) plays an important role in buffering short-term arterial pressure variability, but data from humans addressing this hypothesis are scarce. We evaluated the effects of NO synthase (NOS) inhibition on arterial blood pressure (BP) variability in eight healthy subjects in the supine position and during 60 degrees head-up tilt (HUT). Systemic NOS was blocked by intravenous infusion of N(G)-monomethyl-L-arginine (L-NMMA). Electrocardiogram and beat-by-beat BP in the finger (Finapres) were recorded continuously for 6 min, and brachial cuff BP was recorded before and after L-NMMA in each body position. BP and R-R variability and their transfer functions were quantified by power spectral analysis in the low-frequency (LF; 0.05-0.15 Hz) and high-frequency (HF; 0.15-0.35 Hz) ranges. L-NMMA infusion increased supine BP (systolic, 109 +/- 4 vs. 122 +/- 3 mmHg, P = 0.03; diastolic, 68 +/- 2 vs. 78 +/- 3 mmHg, P = 0.002), but it did not affect supine R-R interval or BP variability. Before L-NMMA, HUT decreased HF R-R variability (P = 0.03), decreased transfer function gain (LF, 12 +/- 2 vs. 5 +/- 1 ms/mmHg, P = 0.007; HF, 18 +/- 3 vs. 3 +/- 1 ms/mmHg, P = 0.002), and increased LF BP variability (P < 0.0001). After L-NMMA, HUT resulted in similar changes in BP and R-R variability compared with tilt without L-NMMA. Increased supine BP after L-NMMA with no effect on BP variability during HUT suggests that tonic release of NO is important for systemic vascular tone and thus steady-state arterial pressure, but NO does not buffer dynamic BP oscillations in humans.  相似文献   

10.
Cardiovascular and sympathoadrenal responses to a reproducible mental stress test were investigated in eight healthy young men before and during intravenous infusion of the nitric oxide (NO) synthesis inhibitor N-monomethyl-L-arginine (L-NMMA). Before L-NMMA, stress responses included significant increases in heart rate, mean arterial pressure, and cardiac output (CO) and decreases in systemic and forearm vascular resistance. Arterial plasma norepinephrine (NE) increased. At rest after 30 min of infusion of L-NMMA (0.3 mg.kg(-1).min(-1) iv), mean arterial pressure increased from 98 +/- 4 to 108 +/- 3 mmHg (P <0.001) because of an increase in systemic vascular resistance from 12.9 +/- 0.5 to 18.5 +/- 0.9 units (P <0.001). CO decreased from 7.7 +/- 0.4 to 5.9 +/- 0.3 l/min (P <0.01). Arterial plasma NE decreased from 2.08 +/- 0.16 to 1.47 +/- 0.14 nmol/l. Repeated mental stress during continued infusion of L-NMMA (0.15 mg.kg(-1).min(-1)) induced qualitatively similar cardiovascular responses, but there was a marked attenuation of the increase in mean arterial blood pressure, resulting in similar "steady-state" blood pressures during mental stress without and with NO blockade. Increases in heart rate and CO were attenuated, but stress-induced decreases in systemic and forearm vascular resistance were essentially unchanged. Arterial plasma NE increased less than during the first stress test. Thus the increased arterial tone at rest during L-NMMA infusion is compensated for by attenuated increases in blood pressure during mental stress, mainly through a markedly attenuated CO response and suppressed sympathetic nerve activity.  相似文献   

11.
Placental blood flow, endothelial nitric oxide (NO) production, and endothelial cell nitric oxide synthase (eNOS) expression increase during pregnancy. Shear stress, the frictional force exerted on endothelial cells by blood flow, stimulates vessel dilation, endothelial NO production, and eNOS expression. In order to study the effects of pulsatile flow/shear stress, we adapted Cellco CELLMAX artificial capillary modules to study ovine fetoplacental artery endothelial (OFPAE) cells for NO production and eNOS expression. OFPAE cells were grown in the artificial capillary modules at 3 dynes/cm2. Confluent cells were then exposed to 10, 15, or 25 dynes/cm2 for up to 24 h. NO production by OFPAE cells exposed to pulsatile shear stress was inhibited to nondetectable levels by the NOS inhibitor l-NMMA and reversed by excess NOS substrate l-arginine. NO production and expression of eNOS mRNA and protein by OFPAE cells were elevated by shear stress in a graded fashion (P < 0.05). The rise in NO production with 25 dynes/cm2 shear stress (8-fold) was greater (P < 0.05) than that observed for eNOS protein (3.6-fold) or eNOS mRNA (1.5-fold). The acute shear stress-induced rise in NO production by OFPAE cells was via eNOS activation, whereas the prolonged NO rise occurred by elevations in both eNOS expression and enzyme activation. Thus, elevations of placental blood flow and physiologic shear stress may be partly responsible for the increases in placental arterial endothelial eNOS expression and NO production during pregnancy.  相似文献   

12.
Congestive heart failure (CHF) after myocardial infarction is associated with diminished endothelial nitric oxide (NO)-mediated vasorelaxation. The 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors have been shown to modulate vascular tone independent of the effects on lipid lowering. We hypothesized that simvastatin restores NO-dependent vasorelaxation with CHF. We found that incubation of the normal rat aorta with 0.1 mM simvastatin for 24 h enhanced ACh-mediated vasorelaxation (P < 0.05). Moreover, simvastatin increased (P < 0.05) endothelial NO synthase (eNOS) protein content by >200% (82.0 +/- 14.0 vs. 21.6 +/- 7.9% II/microg). In cultured endothelial cells, simvastatin (10 and 20 microM) increased eNOS levels by 114.7 +/- 39.9 and 212.0 +/- 75.0% II/microg protein, respectively (both P < 0.05; n = 8). In the rat coronary artery ligation model, oral gavage with 20 mg. kg(-1). day(-1) simvastatin for 3 wk decreased (P < 0.05) mean arterial pressure (121 +/- 20 vs. 96.5 +/- 10.8 mmHg) and left ventricular change in pressure with time (4,500 +/- 700 vs. 4,091 +/- 1,064 mmHg/s, n = 6). Simvastatin reduced (P < 0.05) basal vasoconstriction and improved ACh-mediated vasorelaxation in CHF arterial rings. Inhibition of NO generation by N(G)-nitro-L-arginine methyl ester (100 microM) abolished the ACh-induced vasorelaxation in all rats. In conclusion, chronic treatment of CHF with simvastatin restores endothelial NO-dependent dysfunction and upregulates eNOS protein content in arterial tissue.  相似文献   

13.
Smith AR  Visioli F  Frei B  Hagen TM 《Aging cell》2006,5(5):391-400
Aging is the single most important risk factor for cardiovascular diseases (CVD), which are the leading cause of morbidity and mortality in the elderly. The underlying etiologies that elevate CVD risk are unknown, but increased vessel rigidity appears to be a major hallmark of cardiovascular aging. We hypothesized that post-translational signaling pathways become disrupted with age and adversely affect endothelial nitric oxide synthase (eNOS) activity and endothelial-derived nitric oxide (NO) production. Using arterial vessels and isolated endothelia from old (33-month) vs. young (3-month) F344XBrN rats, we show a loss of vasomotor function with age that is attributable to a decline in eNOS activity and NO bioavailability. An altered eNOS phosphorylation pattern consistent with its inactivation was observed: phosphorylation at the inhibitory threonine 494 site increased while phosphorylation at the activating serine 1176 site declined by 50%. Loss of phosphorylation on serine 1176 was related to higher ceramide-activated protein phosphatase 2 A activity, which was driven by a 125% increase in ceramide in aged endothelia. Elevated ceramide levels were attributable to chronic activation of neutral sphingomyelinases without a concomitant increase in ceramidase activity. This imbalance may stem from an observed 33% decline in endothelial glutathione (GSH) levels, a loss known to differentially induce neutral sphingomyelinases. Pretreating aged vessel rings with the neutral sphingomyelinase inhibitor, GW4869, significantly reversed the age-dependent loss of vasomotor function. Taken together, these results suggest a novel mechanism that at least partly explains the persistent loss of eNOS activity and endothelial-derived NO availability in aging conduit arteries.  相似文献   

14.
Statin drugs can upregulate endothelial nitric oxide (NO) synthase (eNOS) in isolated endothelial cells independent of lipid-lowering effects. We investigated the effect of short-term simvastatin administration on coronary vascular eNOS and NO production in conscious dogs and canine tissues. Mongrel dogs were instrumented under general anesthesia to measure coronary blood flow (CBF). Simvastatin (20 mg. kg(-1). day(-1)) was administered orally for 2 wk; afterward, resting CBF was found to be higher compared with control (P < 0.05) and veratrine- (activator of reflex cholinergic NO-dependent coronary vasodilation) and ACh-mediated coronary vasodilation were enhanced (P < 0.05). Response to endothelium-independent vasodilators, adenosine and nitroglycerin, was not potentiated. After simvastatin administration, plasma nitrate and nitrite (NO(x)) levels increased from 5.22 +/- 1.2 to 7. 79 +/- 1.3 microM (P < 0.05); baseline and agonist-stimulated NO production in isolated coronary microvessels were augmented (P < 0.05); resting in vivo myocardial oxygen consumption (MVO(2)) decreased from 6.8 +/- 0.6 to 5.9 +/- 0.4 ml/min (P < 0.05); NO-dependent regulation of MVO(2) in response to NO agonists was augmented in isolated myocardial segments (P < 0.05); and eNOS protein increased 29% and eNOS mRNA decreased 50% in aortas and coronary vascular endothelium. Short-term administration of simvastatin in dogs increases coronary endothelial NO production to enhance NO-dependent coronary vasodilation and NO-mediated regulation of MVO(2).  相似文献   

15.
Physiologically modulated concentrations of nitric oxide (NO) are generally beneficial, but excessive NO can injure myocardium by producing cytotoxic peroxynitrite. Recently we reported that intermittent, normobaric hypoxia conditioning (IHC) produced robust cardioprotection against infarction and lethal arrhythmias in a canine model of coronary occlusion-reperfusion. This study tested the hypothesis that IHC suppresses myocardial nitric oxide synthase (NOS) activity and thereby dampens explosive, excessive NO formation upon reperfusion of occluded coronary arteries. Mongrel dogs were conditioned by a 20 d program of IHC (FIO(2) 9.5-10%; 5-10 min hypoxia/cycle, 5-8 cycles/d with intervening 4 min normoxia). One day later, ventricular myocardium was sampled for NOS activity assays, and immunoblot detection of the endothelial NOS isoform (eNOS). In separate experiments, myocardial nitrite (NO(2)(-)) release, an index of NO formation, was measured at baseline and during reperfusion following 1 h occlusion of the left anterior descending coronary artery (LAD). Values in IHC dogs were compared with respective values in non-conditioned, control dogs. IHC lowered left and right ventricular NOS activities by 60%, from 100-115 to 40-45 mU/g protein (P < 0.01), and decreased eNOS content by 30% (P < 0.05). IHC dampened cumulative NO(2)(-) release during the first 5 min reperfusion from 32 +/- 7 to 14 +/- 2 mumol/g (P < 0.05), but did not alter hyperemic LAD flow (15 +/- 2 vs. 13 +/- 2 ml/g). Thus, IHC suppressed myocardial NOS activity, eNOS content, and excessive NO formation upon reperfusion without compromising reactive hyperemia. Attenuation of the NOS/NO system may contribute to IHC-induced protection of myocardium from ischemia-reperfusion injury.  相似文献   

16.
The capillary filtration coefficient (CFC) is assumed to reflect both microvascular hydraulic conductivity and the number of perfused capillaries at a given moment (precapillary sphincter activity). Estimation of hydraulic conductivity in vivo with the CFC method has therefore been performed under conditions of unchanged vascular tone and metabolic influence. There are studies, however, that did not show any change in CFC after changes in vascular tone and metabolic influence, and these studies indicate that CFC may not be influenced by alteration in the number of perfused capillaries. The present study reexamined to what extent CFC in a pressure-controlled preparation depends on the vascular tone and number of perfused capillaries by analyzing how CFC is influenced by 1) vasoconstriction, 2) increase in metabolic influence by decrease in arterial blood pressure, and 3) occlusion of precapillary microvessels by arterial infusion of microspheres. CFC was calculated from the filtration rate induced by a fixed decrease in tissue pressure. Vascular tone was increased in two steps by norepinephrine (n = 7) or angiotensin II (n = 6), causing a blood flow reduction from 7.2 +/- 0.8 to at most 2.7 +/- 0.2 ml x min(-1) x 100 g(-1) (P < 0.05). The decrease in arterial pressure reduced blood flow from 4.8 +/- 0.4 to 1.40 +/- 0.1 ml x min(-1) x 100 g(-1) (n = 6). Vascular resistance increased to 990 +/- 260% of control after the infusion of microspheres (n = 6). CFC was not significantly altered from control after any of the experimental interventions. We conclude that CFC under these conditions is independent of the vascular tone and number of perfused capillaries and that variation in CFC reflects variation in microvascular hydraulic conductivity.  相似文献   

17.
Endothelial nitric oxide synthase (eNOS) haplotypes are associated with hypertension (HT) in patients with or without type 2 diabetes mellitus (T2DM). We evaluated the association of eNOS genotypes/haplotypes with the plasma concentrations of nitrite/nitrate (NO(x)), which are products of nitric oxide in HT, T2DM, and T2DM+HT patients. We studied eNOS polymorphisms in the promoter region (T-786C), in exon 7 (Glu298Asp), and in intron 4 (b/a) in 98 controls, 68 patients with HT, 66 patients with T2DM, and 86 patients with T2DM+HT. NO(x) concentrations were assessed using a chemiluminescence assay. No differences were found in genotype/allele distribution among groups. Genotypes were not associated with NO(x) concentrations. The "C-Glu-b" haplotype was more common in controls than in HT/T2DM+HT groups (21% versus 9/5%, respectively, P<0.006). This haplotype was more common in HT and T2DM+HT groups among subjects with high (82+/-38 and 90+/-33 microM, respectively) than with low (35+/-7 and 34+/-7 microM, respectively) NO(x) concentrations. Conversely, the "C-Asp-b" haplotype was more common in HT/T2DM+HT groups than healthy (21/21% versus 10%, respectively, P<0.006). The haplotype associated with lower risk of developing hypertension is also associated with higher NO(x) levels among hypertensives. Conversely, the haplotype increasing the risk of developing hypertension is associated with lower NO(x) levels in hypertensives.  相似文献   

18.
Hyperoxia may affect lung physiology in different ways. We investigated the effect of hyperoxia on the protein expression of endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS), nitric oxide (NO) production, and hypoxic pulmonary vasoconstriction (HPV) in rat lung. Twenty-four male rats were divided into hyperoxic and normoxic groups. Hyperoxic rats were placed in > 90% F1O2 for 60 h prior to experiments. After baseline in vitro analysis, the rats underwent isolated, perfused lung experiments. Two consecutive hypoxic challenges (10 min each) were administered with the administration of a non-specific NOS inhibitor, N-nitro-L-arginine methyl ester (L-NAME), in between. We measured intravascular NO production, pulmonary arterial pressure, and protein expression of eNOS and iNOS by immunohistochemistry. We found that hyperoxia rats exhibited increased baseline NO production (P < 0.001) and blunted HPV response (P < 0.001) during hypoxic challenges compared to normoxia rats. We also detected a temporal association between the attenuation in HPV and increased NO production level with a negative pre-L-NAME correlation between HPV and NO (R = 0.52, P < 0.05). After L-NAME administration, a second hypoxic challenge restored the HPV response in the hyperoxic group. There were increased protein expression of eNOS (12.6 +/- 3.1-fold, n = 3) (X200) and iNOS (8.1 +/- 2.6-fold, n = 3) (X200) in the hyperoxia group. We conclude that hyperoxia increases the protein expression of eNOS and iNOS with a subsequent increased release of endogenous NO, which attenuates the HPV response.  相似文献   

19.
Oxidative stress may mediate vascular disruption associated with a loss of endothelial nitric oxide synthase (eNOS) activity and a hypersensitivity to the constrictor effects of endothelin-1 (ET-1). We hypothesize that this is due, in part, to uncoupling of ET(B) receptors from eNOS activation. Thus, we tested whether oxidative stress (OS) affects liver vascular relaxation by reducing basal and ET-1-induced NO production. Primary sinusoidal endothelial cell cultures were pretreated with H(2)O(2) (25 microM) for 1 or 6 h before a 10-min ET-1 stimulation. OS resulted in a significant basal and ET-1-induced decrease in NO production. Acute OS increased the monomeric form of the inhibitory protein caveolin-1 (1.2 +/- 0.05 vs 0.9 +/- 0.02, p < 0.01) and increased the eNOS-caveolin association as determined by coimmunoprecipitation (1.24 +/- 0.04 vs 0.97 +/- 0.04, p < 0.05). ET-1 stimulation further exacerbated these effects. Subacute OS inhibited ET-1-induced eNOS phosphorylation of serine 1177 (activation residue) (1 +/- 0.07 vs 1.6 +/- 0.04, p < 0.05) and dephosphorylation of the inhibitory residue threonine 495 (1.5 +/- 0.08 vs 0.7 +/- 0.02, p < 0.01). Additionally subacute OS resulted in dissociation of eNOS from ET(B) (0.8 +/- 0.09 vs 1.2 +/- 0.06, p < 0.05). Our findings indicate that acute and subacute oxidative stress result in the inhibition of induced nitric oxide synthase activity through distinct mechanisms dependent on caveolin-1 inhibition, ET(B) dissociation, and eNOS phosphorylation.  相似文献   

20.
The purpose of the present study was to examine the role of the T-786C endothelial nitric oxide synthase (eNOS) gene polymorphism on changes in renal hemodynamics and blood pressure due to Na(+) loading. Twenty-eight older (63+/-1 years), moderately obese (39+/-2 % fat) hypertensives had their glomerular filtration rate (GFR), renal plasma flow (RPF), blood pressure (BP) and plasma nitric oxide (NO(x)) levels determined after eight days of low (20 mEq) and high (200 mEq) Na(+) diets. The two Na(+) diets were separated by a 1-week washout period. Subjects were genotyped for the eNOS-786 site and were grouped on whether they were homozygous or heterozygous for the C allele (TC+CC, n=13) or only homozygous for the T allele (TT, n=15). The TC+CC genotype group had a significantly greater increase in diastolic (P=0.021) and mean arterial (P=0.018) BP and a significant decline in both RPF (P=0.007) and GFR (P=0.029) compared to the TT genotype group with Na(+) loading. Furthermore, Na(+) loading resulted in a significant (P=0.036) increase in plasma NO(x) in the TT, but not in the TC+CC genotype group as well as a trend (P=0.051) for an increase in urine NO(x) in TC+CC, but not in the TT genotype group. The increase in BP during Na(+) loading in older hypertensives was associated with the eNOS genotype and may be related to changes in renal hemodynamics due to changes in NO metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号