首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Plants produce two flavonoid O-pentoses, flavonoid O-xyloside and flavonoid O-arabinoside. However, analyzing their biological properties is difficult because flavonoids are not naturally produced in sufficient quantities. In this study, Escherichia coli was used to synthesize the plant-specific flavonoid O-pentosides quercetin 3-O-xyloside and quercetin 3-O-arabinoside. Two strategies were used. First, E. coli was engineered to express components of the biosynthetic pathways for UDP-xylose and UDP-arabinose. For UDP-xylose biosynthesis, two genes, UXS (UDP-xylose synthase) from Arabidopsis thaliana and ugd (UDP-glucose dehydrogenase) from E. coli, were overexpressed. In addition, the gene encoding ArnA (UDP-l-Ara4N formyltransferase/UDP-GlcA C-4″-decarboxylase), which competes with UXS for UDP-glucuronic acid, was deleted. For UDP-arabinose biosynthesis, UXE (UDP-xylose epimerase) was overexpressed. Next, we engineered UDP-dependent glycosyltransferases (UGTs) to ensure specificity for UDP-xylose and UDP-arabinose. The E. coli strains thus obtained synthesized approximately 160 mg/liter of quercetin 3-O-xyloside and quercetin 3-O-arabinoside.  相似文献   

2.
The dietary bioavailability of the isoflavone genistein is decreased in older rats compared to young adults. Since flavonoids are metabolized extensively by the UDP-glucuronosyltransferases (UGTs), we hypothesized that UGT flavonoid conjugating activity changes with age. The effect of age on flavonoid glucuronidation was determined using hepatic microsomes from male F344 rats. Kinetic models of UGT activity toward the flavonol quercetin and the isoflavone genistein were established using pooled hepatic microsomal fractions of rats at different ages, and glucuronidation rates were determined using individual samples. Intrinsic clearance (Vmax/Km) values in 4-, 18- and 28-month-old rats were 0.100, 0.078 and 0.087 ml/min/mg for quercetin-7-O-glucuronide; 0.138, 0.133 and 0.088 for quercetin-3′-O-glucuronide; and 0.075, 0.077 and 0.057 for quercetin-4′-O-glucuronide, respectively. While there were no differences in formation rates of total quercetin glucuronides in individual samples, the production of the primary metabolite, quercetin-7-O-glucuronide, at 30 μM quercetin concentration was increased from 3.4 and 3.1 nmol/min/mg at 4 and 18 months to 3.8 nmol/min/mg at 28 months, while quercetin-3′-O-glucuronide formation at 28 months declined by a similar degree (P≤.05). At 30 and 300 μM quercetin concentration, the rate of quercetin-4′-O-glucuronide formation peaked at 18 months at 0.9 nmol/min/mg. Intrinsic clearance values of genistein 7-O-glucuronide increased with age, in contrast to quercetin glucuronidation. Thus, the capacity for flavonoid glucuronidation by rat liver microsomes is dependent on age, UGT isoenzymes and flavonoid structure.  相似文献   

3.
The flavonoid pattern of the monotypic Turkish genus Leucocyclus consists of C-glycosylflavones (isovitexin; isoorientin and derivatives; several di-C-glycosylapigenins; schaftoside, isoschaftoside and vicenin-3; lucenin-2), of flavonol 3-O-glycosides (quercetin and kaempferol 3-O-rhamnoglucoside) and trace amounts of luteolin 7-O-rhamnoglucoside. The systematic significance of the flavonoid diversification within Leucocyclus as well as possible relationships to other genera of the Anthemideae are discussed.  相似文献   

4.
From the leaves of Aphananthe aspera (Thunb.) Planch. (Family: Cannabaceae), six flavonol glycosides, such as quercetin 3-O-β-glucopyranoside (1), kaempferol 3-O-β-glucopyranoside (2), quercetin 3-O-rutinoside (3), kaempferol 3-O-rutinoside (4), quercetin 3-O-neohesperidoside (5) and kaempferol 3-O-neohesperidoside (6) were isolated and identified. Structure elucidation of these compounds was performed on the basis of NMR spectral data. All these compounds were isolated for the first time from the genus Aphananthe. Chemotaxonomic significance and distribution of these flavonoid derivatives among the genera of Cannabaceae are explained in detail.  相似文献   

5.
Heterogaura is a monotypic genus of the tribe Onagreae of the Onagraceae. It is endemic to south western Oregon and California. Four flavonol glycosides, kaempferol 3-O-rhamnoside, quercetin 3-O-glucoside, quercetin 3-O-rhamnoglucoside and myricetin 3-O-glucoside, were found to occur in methanolic leaf extracts of each of the populations sampled. The presence of only flavonols is consistent with flavonoid analyses from other genera of the Onagreae, including Clarkia, the closest relative of Heterogaura.  相似文献   

6.
The flavonoids of an additional eight species of Clibadium have been determined. The compounds are derivatives of kaempferol, quercetin and quercetagetin. O-Methylated quercetagetin derivatives were found in several taxa with the possibility that 6-methoxykaempferol may also exist in one collection. Kaempferol and quercetin exist as 3-O-glucosides, galactosides, rhamnosides, rutinosides and diglucosides although not all glycosides occur in each taxon. Quercetagetin derivatives occur as 7-O-glucosides. Observations on these newly investigated species confirm previous work in the genus that three types of flavonoid profiles exist: (1) kaempferol and quercetin 3-glycosides; (2) kaempferol and quercetin 3-glycosides plus quercetagetin 7-glucoside; and (3) kaempferol and quercetin 3-glycosides plus quercetagetin 7-glucoside and O-methylated derivatives of quercetagetin.  相似文献   

7.
Sullivantia species were found to produce quercetin 3-O-glycosides, several of which contain glucuronic acid, as well as pedalitin (6-hydroxy-7-O-methyl luteolin), pedalitin 6-O-glycosides, and small amounts of luteolin. Sullivantia has a unique combination of compounds that distinguishes it from other genera in the Saxifraginae for which flavonoid data are available. The nature of the flavonoid compounds is in accordance with a general trend within the Saxifragaceae of reduction and replacement of flavonols by flavones.  相似文献   

8.
Cell-free extracts of calamondin orange (Citrus mitis) catalysed the O-methylation of almost all hydroxyls of a number of flavonoids, indicating the existence in citrus tissues of ortho, meta, para and 3-O-methyltransferases. The latter, hitherto unreported enzyme, catalysed the formation of 3-O-methyl ethers of galangin and quercetin. The stepwise O-methylation of a number of compounds, especially quercetin and quercetagetin, tends to suggest a coordinated sequence of O-methylations on the surface of a multienzyme complex. The methyl acceptor abilities of the flavonoid substrates used are discussed in relation to their hydroxyl substitution patterns and their negative electron density distribution.  相似文献   

9.
The flavonol glycosides of quercetin, isorhamnetin and kaempferol were isolated from Zea mays pollen. The most prominent flavonols were diglycosides of quercetin and isorhamnetin. Flavonol 3-O-glucosides of quercetin, isorhamnetin and kaempferol, and triglucosides of quercetin and isorhamnetin, were minor components. The flavonoid pattern of maize pollen is characterized by the accumulation of quercetin and isorhamnetin diglycosides and by the absence of flavones, which are common in other maize tissues.  相似文献   

10.
Widely distributed in plants, flavonoids reduce the incidence of cancer and cardiovascular disease. In this study, flavonoid content and composition in members of the Prunus genus were evaluated using liquid chromatography with diode array and electrospray ionization mass spectrometric detection (UPLC-DAD-ESI/QTOF-MS). Flavonoids in plants of the Prunus genus include the basic structures of kaempferol, quercetin, and catechin, and exist as mono-, di-, or tri-glycoside compounds mono-acylated with acetic acid. A total of 23 individual flavonoids were isolated and confirmed, three of which appear to be newly identified compounds: quercetin 3-O-(2″-O-acetyl)neohesperidoside, quercetin 3-O-(4″-O-acetyl)rutinoside, and kaempferol 3-O-(4″-O-acetyl)rutinoside. Japanese apricot and Chinese plum contained the highest amounts of flavonoids in the Prunus genus. During the ripening stage of Japanese apricot, the total flavonol content was reduced, while the catechin content was increased.  相似文献   

11.
Thirty-one accessions of nine species belonging to three subgenera of Ocimum (basil, family Lamiaceae) were surveyed for flavonoid glycosides. Substantial infraspecific differences in flavonoid profiles of the leaves were found only in O. americanum, where var. pilosum accumulated the flavone C-glycoside, vicenin-2, which only occurred in trace amounts in var. americanum and was not detected in cv. Sacred. The major flavonoids in var. americanum and cv. Sacred, and also in all other species investigated for subgenus Ocimum, were flavonol 3-O-glucosides and 3-O-rutinosides. Many species in subgenus Ocimum also produced the more unusual compound, quercetin 3-O-(6″-O-malonyl)glucoside, and small amounts of flavone O-glycosides. The level of flavonol glycosides produced was reduced significantly in glasshouse-grown plants, but levels of flavone glycosides were unaffected. A single species investigated from subgenus Nautochilus, O. lamiifolium, had a different flavonoid glycoside profile, although the major compound was also a flavonol O-glycoside. This was identified as quercetin 3-O-xylosyl(1‴→2″)galactoside, using NMR spectroscopy. The species investigated from subgenus Gymnocimum, O. tenuiflorum (=O. sanctum), was characterised by the accumulation of flavone O-glycosides. These were isolated, and identified as the 7-O-glucuronides of luteolin and apigenin. Luteolin 5-O-glucoside was found in all nine species of Ocimum studied, and is considered to be a key character for the genus.  相似文献   

12.
The main flavonoid glycoside from the pollen of Corylus avellana has been characterized as quercetin 3-O-(2″-O-β-d-glucopyranosyl)-β-d-galactopyranoside on the basis of UV, 1H NMR, 13C NMR and mass spectral data and GLC sugar analysis.  相似文献   

13.
The flavonoids of the Tiarella trifoliata L. complex consists of kaempferol, quercetin and myricetin-3-O-mono-, di- and triglycosides, kaempferol and quercetin-7-O-monoglycosides, kaempferol-3,7-O-monoglycosides and luteolin. Infrapopulationa and interpopulational variations were seen in the distribution of several of these types of compounds. The flavonoid data do not support recognition of separate species for the three taxa.  相似文献   

14.
Twenty-four different flavonoid glycosides were isolated from illuminated cell suspension cultures of parsley (Petroselinum hortense). The chemical structures of fourteen of these compounds were further characterized. The aglycones identified were the flavones apigenin, luteolin and chrysoeriol, and the flavonols quercetin and isorhamnetin. The flavones occurred either as 7-O-glucosides or as 7-O-apioglucosides, while the flavonols were 3-O-monoglucosides or 3,7-O-diglucosides. One-half of these glycosides were electrophoretically mobile and substituted with malonate residues.  相似文献   

15.
Various flavonoid glycosides are found in nature, and their biological activities are as variable as their number. In some cases, the sugar moiety attached to the flavonoid modulates its biological activities. Flavonoid glycones are not easily synthesized chemically. Therefore, in this study, we attempted to synthesize quercetin 3-O-glucosyl (1→2) xyloside and quercetin 3-O-glucosyl (1→6) rhamnoside (also called rutin) using two uridine diphosphate-dependent glycosyltransferases (UGTs) in Escherichia coli. To synthesize quercetin 3-O-glucosyl (1→2) xyloside, sequential glycosylation was carried out by regulating the expression time of the two UGTs. AtUGT78D2 was subcloned into a vector controlled by a Tac promoter without a lacI operator, while AtUGT79B1 was subcloned into a vector controlled by a T7 promoter. UDP-xyloside was supplied by concomitantly expressing UDP-glucose dehydrogenase (ugd) and UDP-xyloside synthase (UXS) in the E. coli. Using these strategies, 65.0 mg/L of quercetin 3-O-glucosyl (1→2) xyloside was produced. For the synthesis of rutin, one UGT (BcGT1) was integrated into the E. coli chromosome and the other UGT (Fg2) was expressed in a plasmid along with RHM2 (rhamnose synthase gene 2). After optimization of the initial cell concentration and incubation temperature, 119.8 mg/L of rutin was produced. The strategies used in this study thus show promise for the synthesis of flavonoid diglucosides in E. coli.  相似文献   

16.
In dill (Anethum graveolens) cell suspension cultures, quercetin 3-O-β-D-glucuronide is formed selectively as the predominant flavonoid in response to UV-B irradiation. Flavonoid synthesis is regulated via UV-induction of the enzymes involved. UV-Dependent appearance of a UDP-glucuronosyltransferase is shown. UV-Regulated flavonoid accumulation as an active protective mechanism is indicated.  相似文献   

17.
We examined the foliar flavonoids of Chrysanthemum arcticum subsp. arcticum and yezoense, and related Chrysanthemum species. Five flavonoid glycosides (luteolin 7-O-glucoside and 7-O-glucuronides of luteolin, apigenin, eriodictyol and naringenin) were isolated from these taxa. Luteolin 7-O-xylosylglucoside, luteolin, apigenin and quercetin 3-methyl ether were found in subsp. yezoense as very minor compounds that were not recognised by high-performance liquid chromatography/photodiode array (HPLC/PDA). The related species C. yezoense contained acacetin 7-O-rutinoside and some methoxylated flavone aglycones as major compounds. Thus, C. arcticum was distinguished from C. yezoense according to their flavonoid profiles.  相似文献   

18.
Regioselective glycosylation of flavonoids cannot be easily achieved due to the presence of several hydroxyl groups in flavonoids. This hurdle could be overcome by employing uridine diphosphate-dependent glycosyltransferases (UGTs), which use nucleotide sugars as sugar donors and diverse compounds including flavonoids as sugar acceptors. Quercetin rhamnosides contain antiviral activity. Two quercetin diglycosides, quercetin 3-O-glucoside-7-O-rhamnoside and quercetin 3,7-O-bisrhamnoside, were synthesized using Escherichia coli expressing two UGTs. For the synthesis of quercetin 3-O-glucoside-7-O-rhamnoside, AtUGT78D2, which transfers glucose from UDP-glucose to the 3-hydroxyl group of quercetin, and AtUGT89C1, which transfers rhamnose from UDP-rhamnose to the 7-hydroxyl group of quercetin 3-O-glucoside, were transformed into E. coli. Using this approach, 67 mg/L of quercetin 3-O-glucoside-7-O-rhamnoside was synthesized. For the synthesis of quercetin 3,7-O-bisrhamnoside, AtUGT78D1, which transfers rhamnose to the 3-hydroxy group of quercetin, and AtUGT89C1 were used. The RHM2 gene from Arabidopsis thaliana was coexpressed to supply the sugar donor, UDP-rhamnose. E. coli expressing AtUGT78D1, AtUGT89C1, and RHM2 was used to obtain 67.4 mg/L of quercetin 3,7-O-bisrhamnoside.  相似文献   

19.
Eight flavonoids were isolated from the leaves of Salix alba. One, apigenin 7-O-(4-p-coumarylglucoside), is a new natural compound; another, terniflorin, the 6-isomer, is an artefact. The others are quercetin 3-O-glucoside, quercetin 3-O-rutinoside, isorhamnetin 3-O-glucoside, isorhamnetin 3-O-rutinoside and quercetin 7,′3-dimethylether 3-O-glucoside.  相似文献   

20.
Glucosylation of anthocyanidin substrates at the 3-O-position is crucial for the red pigmentation of grape berries and wine. The gene that encodes the enzyme involved in this reaction has been cloned from Vitis labrusca cv. Concord, heterologously expressed, and the recombinant enzyme (rVL3GT) was characterized. VL3GT has 96% amino acid sequence identity with Vitis vinifera VV3GT and groups phylogenetically with several other flavonoid 3-O-glycosyltransferases. In vitro substrate specificity studies and kinetic analyses of rVL3GT indicate that this enzyme preferentially glucosylates cyanidin as compared with quercetin. Crude protein extracts from several Concord grape tissues were assayed for glucosyltransferase activity with cyanidin and quercetin as acceptor substrates. A comparison of the VL3GT activities toward with these substrates showed that the 3GT enzyme activity is consistent with the expression of VL3GT in these tissues and is coincident with the biosynthesis of anthocyanins in both location and developmental stages. Enzyme activities in grape mesocarp, pre-veraison exocarp, leaf, flower bud, and flower tissues glucosylated quercetin but not cyanidin at high rates, suggesting the presence of additional enzymes which are able to glucosylate the 3-O-position of flavonols with higher specificity than anthocyanidins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号