首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The duodenal glands of four marsupial species, the kangaroo, native cat, marsupial mouse, and bandicoot, form a narrow lobular collar immediately distal to the gastrointestinal junction. In two species, the koala and wombat, the duodenal glands are diffuse and scattered along the intestinal tract distal to the gastrointestinal junction for considerable distances. The glands of all species examined empty independently into the intestinal lumen. Histochemical studies indicate that the latter two species, the koala and wombat, elaborate an acid mucin whereas the former species produce a neutral mucosubstance. Ultrastructural examination shows that generally the duodenal glands are comprised of large pyramidal cells that show a definite polarity, with basally-placed nuclei and apically-situated secretory granules. Species differences, with regard both to the morphology and nature of the secretory granules and to the proportions of cell organelles, exist. The diversity of diet between species is discussed.  相似文献   

2.
Marsupial spermatozoa tolerate cold shock well, but differ in cryopreservation tolerance. In an attempt to explain these phenomena, the fatty acid composition of the sperm membrane from caput and cauda epididymides of the Eastern grey kangaroo, koala, and common wombat was measured and membrane sterol levels were measured in cauda epididymidal spermatozoa. While species-related differences in the levels of linolenic acid (18:3, n-6) and arachidonic acid (20:4, n-6) were observed in caput epididymal spermatozoa, these differences failed to significantly alter the ratio of unsaturated/saturated membrane fatty acids. However in cauda epididymidal spermatozoa, the ratio of unsaturated/saturated membrane fatty acids in koala and kangaroo spermatozoa was approximately 7.6 and 5.2, respectively; substantially higher than any other mammalian species so far described. Koala spermatozoal membranes had a higher ratio of unsaturated/saturated membrane fatty acids than that of wombat spermatozoa (t = 3.81; df = 4; p < or = 0.02); however, there was no significant difference between wombat and kangaroo spermatozoa. The highest proportions of DHA (22:6, n-3), the predominant membrane fatty acid in cauda epididymidal spermatozoa, were found in wombat and koala spermatozoa. While species-related differences in membrane sterol levels (cholesterol and desmosterol) were observed in cauda epididymidal spermatozoa, marsupial membrane sterol levels are very low. Marsupial spermatozoal membrane analyses do not support the hypothesis that a high ratio of saturated/unsaturated membrane fatty acids and low membrane sterol levels predisposes spermatozoa to cold shock damage. Instead, cryogenic tolerance appears related to DHA levels.  相似文献   

3.
4.
1. 1H NMR spectra were acquired from whole plasma, intact erythrocytes, and ultrafiltrates of erythrocytes from nine native and eight introduced (domestic) Australian animals; single-pulse, spin-echo and 2-dimensional spectra were obtained. The aim was to detect and at least semi-quantify metabolites in the samples and compare the profiles amongst the species. 2. The Australian natives that were studied were all marsupials: greater brown bandicoot; bettong; eastern grey kangaroo; red kangaroo; koala; possum; red necked pademelon; Tammar wallaby; and wombat. The introduced mammals that were studied were: cat; cattle; dog; goat; horse; pig; rabbit; and sheep. 3. Because of the range of habitats and diets amongst the animals, it was postulated that the concentrations of the common metabolites in the blood would show marked differences and that there would also be some metabolites that were peculiar to a given animal. There were several major differences in the spectra: in the spectra of plasma, the glycoprotein and lipoprotein resonances showed the largest inter-species variation, whereas the most dramatic finding from the spectra of erythrocytes was a very high concentration of lysine in the cells from the Tammar wallaby.  相似文献   

5.
The genomic nucleotide sequence and chromosomal position of the interleukin 5 (IL5) gene has been described for the model marsupial Macropus eugenii (tammar wallaby). A 272 base pair genomic IL5 polymerase chain reaction (PCR) product spanning exon 3, intron 3, and exon 4 was generated using stripe-faced dunnart (Sminthopsis macroura) DNA. This PCR product was used to isolate a genomic lambda clone containing the complete IL5 gene from a tammar wallaby EMBL3 lambda library. Sequencing revealed that the tammar wallaby IL5 gene consists of four exons separated by three introns. Comparison of the marsupial coding sequence with coding sequences from eutherian species revealed 61 to 69% identity at the nucleotide level and 48 to 63% identity at the amino acid (aa) level. A polymorphic complex compound microsatellite was identified within intron 2 of the tammar wallaby IL5 gene. This microsatellite was also found in other marsupials including the swamp wallaby, tree kangaroo, stripe-faced dunnart, South American opossum, brushtail possum, and koala. Fluorescence in situ hybridization using DNA from the IL5 clone on tammar wallaby chromosomes indicated that the IL5 gene is located on Chromosome 1.  相似文献   

6.
Previous structural characterizations of marsupial milk oligosaccharides had been performed in only two macropod species, the tammar wallaby and the red kangaroo. To clarify the homology and heterogeneity of milk oligosaccharides among marsupial species, which could provide information on their evolution, the oligosaccharides of the koala milk carbohydrate fraction were characterized in this study. Neutral and acidic oligosaccharides were separated from the carbohydrate fraction of milk of the koala, a non-macropod marsupial, and characterized by 1H-nuclear magnetic resonance spectroscopy. The structures of the neutral saccharides were found to be Gal(β1-4)Glc (lactose), Gal(β1-3)Gal(β1-4)Glc (3′-galactosyllactose), Gal(β1-3)Gal(β1-3)Gal(β1-4)Glc (3′,3″-digalactosyllactose), Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (lacto-N-novopentaose I) and Gal(β1-3){Gal(β1-4)[Fuc(α1-3)]GlcNAc(β1-6)}Gal(β1-4)Glc (fucosyl lacto-N-novopentaose I), while those of the acidic saccharides were Neu5Ac(α2-3)Gal(β1-4)Glc (3′-SL), Neu5Ac(α2-3)Gal(β1-3)Gal(β1-4)Gal (sialyl 3′-galactosyllactose), Neu5Ac(α2-3)Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (sialyl lacto-N-novopentaose a), Gal(β1-3)[Neu5Ac(α2-6)Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (sialyl lacto-N-novopentaose b), Gal(β1-3)[Neu5Ac(α2-3)Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (sialyl lacto-N-novopentaose c), and Neu5Ac(α2-3)Gal(β1-3){Gal(β1-4)[Fuc(α1-3)]GlcNAc(β1-6)}Gal(β1-4)Glc (fucosyl sialyl lacto-N-novopentaose a). The neutral oligosaccharides, other than fucosyl lacto-N-novopentaose I, a novel hexasaccharide, had been found in milk of the tammar wallaby, a macropod marsupial, while the acidic oligosaccharides, other than fucosyl sialyl lacto-N-novopentaose a had been identified in milk carbohydrate of the red kangaroo. The presence of fucosyl oligosaccharides is a significant feature of koala milk, in which it differs from milk of the tammar wallaby and the red kangaroo.  相似文献   

7.
The secretome of the pouch skin of the model marsupial the tammar wallaby, Macropus eugenii has been investigated using techniques of two-dimensional gel electrophoresis, in-gel trypsin digestion followed by nanoliquid chromatography coupled tandem mass spectrometry (LC-MS/MS). Differences in the patterns of secreted proteins were observed in the female pouch at three stages of maturity — reproductively immature; reproductively mature and active and mature, postreproductively active. Skin from the underarm area of mature females had a markedly different secreted protein profile. The greatest diversity of proteins was seen in the mature reproductive pouch and from an opportunistic sample collected from the pouch another mature female marsupial, the common wombat, Vombatus ursinus. A total of 20 proteins were confidently identified from the pouch skin secretions of the tammar wallaby and wombats, whilst 20 proteins were tentatively identified. In all skin secretomes, globins were the most abundant proteins whilst the antimicrobial, dermcidin was detected in the wombat sample. Some proteins such as keratin and actin could be sourced to sloughed and degraded skin cells. A number of proteins were present at such low concentrations that confident identification was not possible. This was compounded by the lack of a comprehensive database of marsupial proteins which constrains the reliability of automated identification protocols.  相似文献   

8.
The proteins of erythrocyte membranes from the red kangaroo, western grey kangaroo, eastern grey wallaroo (euro), red-necked wallaby, Tammar wallaby, and brush-tail possum have been fractionated on acrylamide gels in the presence of sodium dodecyl sulfate. The pattern of proteins was remarkably similar between the different marsupial species. The pattern of Coomassie blue-staining proteins in the membranes of these species was also very similar to that of the human erythrocyte membrane. However, the glycoproteins in the marsupial erythrocyte membranes were markedly less conspicuous than those of the human erythrocyte membrane. Furthermore, the mobilities of the glycoproteins from the marsupials were different from those of the human erythrocyte membrane. The erythrocytes of the western grey kangaroo, the eastern wallaroo and the red-necked wallaby showed pronounced resistance to hypotonic lysis compared with those of the Tammar wallaby and the human. This effect seems to be related to the size of the erythrocytes rather than to differences in their protein composition.  相似文献   

9.
Aim Australia lost a diverse assemblage of large marsupial herbivores in the late Pleistocene, with suggestions that the extinctions were biased towards browsers. In modern times two bovines, the Asian water buffalo (Bubalus bubalis) and banteng (Bos javanicus), have established feral populations in the Northern Territory, Australia. Buffalo have aggressively expanded throughout the savanna landscape, yet banteng remain near their point of introduction on the Cobourg Peninsula. We hypothesized that this difference is related to feeding ecology, possibly reflecting a legacy of the Pleistocene extinctions. Location Western Arnhem Land, Northern Territory, Australia. Methods Analysing a previously published dataset of body mass and feeding ecology of extinct and extant marsupial herbivores, we evaluated whether browsers were at greater risk of extinction than grazers. We compared the carbon isotope composition and nitrogen content of banteng and buffalo dung in order to evaluate the hypotheses that the differences in invasion success are related to feeding ecology, and that seasonal variation in browse consumption is linked to changing nutritional quality of grass. Results Controlling for body mass, the Pleistocene extinctions were clearly biased towards browsers. Introduced banteng appear to be primarily browsers, with their diets comprising 40% grass in the wet season and 15% in the late dry season. Buffalo have a more variable diet, with an increasing proportion of browse from the wet (30%) to the late dry season (75%), and can therefore be described as switching from grazer to browser. The decline of grass in the diet of both species appears to reflect the decline in the nutritional value of grass through the dry season, an inference supported by the negative relationship between δ13C values and the nitrogen content of dung. Main conclusions Banteng and buffalo are much larger than extant native herbivores, of which browsers are restricted to isolated rocky habitats. This suggests that banteng and buffalo have filled niches made vacant following the Pleistocene extinctions. The success of buffalo appears to be related to their greater dietary breadth, which enables them to graze and browse in eucalypt savannas, whilst the browsing banteng remain tethered to a mosaic of rain forest patches. The restriction of browsers may be a long‐range consequence of habitat transformations associated with Aboriginal landscape burning.  相似文献   

10.
11.

Behavioral foraging differences are known to aid in food resource partitioning in pinniped communities, but it is not known whether skull biomechanical efficiency also contributes to dietary niche partitioning. We tested this hypothesis in a community of four sympatric species of pinnipeds that co-occur along the coast of Baja California: California sea lion (Zalophus californianus), northern elephant seal (Mirounga angustirostris), harbor seal (Phoca vitulina), and Guadalupe fur seal (Arctocephalus townsendi). We tested whether their preferred prey items differed in resistivity to puncture and whether those differences were linked to the mass of the muscles of mastication and the biomechanical efficiency with which they can puncture prey items. For each prey species, we measure resistivity to puncture using texture profile analysis. We found that M. angustirostris consumes the most resistant prey and that A. townsendi consumes the least resistant. We estimated physiological cross-sectional area of the muscles of mastication for each pinniped and found that the same pair of species respectively has the largest and smallest theoretical value of muscular force. Finally, we estimated the bite force that each pinniped species requires to puncture its prey by solving Euler-Lagrange equations based on biomechanical lever model parameters measured from 3D digital models of the skulls. We also found differences in efficiency between the species. These data allowed us to classify the three ecomorphological types. Type 1 features a hydrodynamic skull with relatively low mandibular forces, characteristic of pelagic carnivore feeders such as A. townsendi. Type 2, represented by Z. californianus and M. angustirostris (both opportunistic feeders), is characterized by broad insertion areas for the mandibular muscles and strong teeth, permitting these predators to vary the prey target species as a function of prey availability. Type 3 features a less robust skull and a lower muscle efficiency, characteristic of benthic feeders such as P. vitulina. This evidence indicates that biomechanical differences between the species contribute to dietary niche construction.

  相似文献   

12.
The arrangement and distribution of oxytalan fibers in Australian marsupials has not previously been reported. Periodontal tissues of wombat, wallaby, possum, and marsupial mouse were examined to ascertain oxytalan fibre organization. Despite adaptation of the marsupial masticatory apparatus to different diets the oxytalan fibre organization in the periodontal ligament shows a basic pattern which corresponds with that reported in other animals. The oxytalan system forms a continuous meshwork of fine, branching fibres which completely invests each tooth root and connects adjacent teeth. Thick ribbon-like apico-occlusally orientated oxytalan fibres, thought to form by the coalescence of thinner fibres, are restricted to the periodontal ligament. The oxytalan fibres are embedded in cementum and attached to blood vessels in the periodontal ligament. Oxytalan fibres do not insert into alveolar bone. Histological evidence indicates functional remodelling of the oxytalan fibre system in continuously erupting teeth.  相似文献   

13.
Use of livestock guardian dogs (LGDs) to reduce predation on livestock is increasing. However, how these dogs influence the activity of wildlife, including predators, is not well understood. We used pellet counts and remote cameras to investigate the effects of free ranging LGDs on four large herbivores (eastern gray kangaroo, common wombat, swamp wallaby, and sambar deer) and one mesopredator (red fox) in Victoria, Australia. Generalized mixed models and one‐ and two‐species detection models were used to assess the influence of the presence of LGDs on detection of the other species. We found avoidance of LGDs in four species. Swamp wallabies and sambar deer were excluded from areas occupied by LGDs; gray kangaroos showed strong spatial and temporal avoidance of LGD areas; foxes showed moderately strong spatial and temporal avoidance of LGD areas. The effect of LGDs on wombats was unclear. Avoidance of areas with LGDs by large herbivores can benefit livestock production by reducing competition for pasture and disease transmission from wildlife to livestock, and providing managers with better control over grazing pressure. Suppression of mesopredators could benefit the small prey of those species. Synthesis and applications: In pastoral areas, LGDs can function as a surrogate top‐order predator, controlling the local distribution and affecting behavior of large herbivores and mesopredators. LGDs may provide similar ecological functions to those that in many areas have been lost with the extirpation of native large carnivores.  相似文献   

14.
To study the direction of jaw movements in the koala from wear facets on the molar teeth by scanning electron microscopy, gold coated epoxy resin replicas from the right maxillary and mandibular tooth quadrants were examined from 12 koala skulls. The progressive development and location of facets, the orientation of striae on them and directional data were recorded and transferred from electron micrographs to superimposable transparencies.
Polished facets with laterally oriented striations developed on the cristids and cristae progressively into dentine, where Greaves' effect indicated that the direction of the chewing stroke was labiolingual. Polished and pitted facets, aligned and striated in the parasagittal plane, occurred on the smooth interactive enamel surfaces of maxillary and mandibular cusps.
Labiolingual transit of the crislids over the cristae, with a slight anteromedial shift, was inferred to be the predominant chewing stroke on the working side with no contralateral balancing contact. A propalinal isognathous movement in which successive cusps made contact was also deduced.
Previous concepts of koala chewing and tooth wear were confirmed and amplified, and these may have application to studies of extinct marsupial jaw mechanisms.  相似文献   

15.
The Carnivora occupy a wide range of feeding niches in concordance with the enormous diversity in their skull and dental form. It is well established that differences in crown morphology are linked to variations in the material properties of the foods ingested and masticated. However, how tooth root form is related to dietary specialization is less well known. In the present study, we investigate the relationship between tooth root morphology and dietary specialization in terrestrial carnivores (canids, felids, hyaenids, and ursids). We specifically address the question of how variation in tooth root surface area is related to bite force potentials as one of the crucial masticatory performance parameters in feeding ecology. We applied computed tomography imaging to reconstruct and quantify dental root surface area in 17 extant carnivore species. Moreover, we computed maximal bite force at several tooth positions based on a dry skull model and assessed the relationship of root surface area to skull size, maximal bite force, food properties, and prey size. We found that postcanine tooth root surface areas corrected for skull size serve as a proxy for bite force potentials and, by extension, dietary specialization in carnivores. Irrespective of taxonomic affinity, species that feed on hard food objects have larger tooth roots than those that eat soft or tough foods. Moreover, carnivores that prey on large animals have larger tooth root surface areas. Our results show that tooth root morphology is a useful indicator of bite force production and allows inferences to be made about dietary ecology in both extant and extinct mammals. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105, 456–471.  相似文献   

16.

Unlike their reptile-like ancestors with continuous tooth replacement, mammals have evolved to replace each tooth either only once, or not at all. In previous large-scale comparative studies, it has been suggested that this tooth replacement only occurs from a successional dental lamina produced lingually to the primary tooth. This study aims to document the complete tooth development and replacement pattern of the tammar wallaby (Macropus eugenii). The tammar wallaby is a diprotodont marsupial, a group defined by their two procumbent lower incisors. To provide a comprehensive documentation of the spatio-temporal pattern of tooth development, we used Lugol’s Iodine staining and microCT scanning (diceCT) of embryos and pouch young into adulthood, resulting in high resolution 3D models for both soft and mineralised stages of development for all tooth positions. Our results reveal that the eponymous lower incisors are the successional generation at the third incisor locus, where the primary dentition initiates but never erupts. Furthermore, we track the development of the only replacement tooth, the permanent third premolar (P3), from initiation to eruption, and found it develops from the primary dental lamina, mesial to the dP3. This is contrary to the conventional view of lingual replacement from successional lamina in mammals. Our findings indicate that no functional tooth replacement occurs in the tammar wallaby, and expands the diversity of tooth replacement patterns found in mammals. We also conclude that since almost all marsupial and placental mammals produce replacement teeth from the distalmost deciduous premolar, this tooth should be considered homologous in these two groups.

  相似文献   

17.
Kangaroos and kin (superfamily Macropodoidea) are the principal endemic herbivores of Australia and the most diverse radiation of marsupial herbivores ever to have evolved. As is typical of other herbivore groups (e.g. bovids), dietary niches span fruit, fungi, dicot leaves and monocot grasses in both specialists and generalists, but to date dietary classification has been largely ad hoc and poorly tied to actual dietary ecological data. Here we provide a simple dietary classification of the Macropodoidea based on an extensive literature survey. Intake of four major dietary items – grasses, dicot leaves, fruits and seeds, and fungi – was assessed using proportional intake for 19 species and categorical (ranked intake) data for 37 species. Statistical comparisons with cluster and principal components analyses aligned species into four dietary groups. Members of the first group have diets that primarily consist of fungi and fruits. Relative proportions of grasses to dicot leaves separate the remaining species into browser (more than 70% dicots), grazer (more than 70% grasses) and mixed feeder groups. Comparison of our diet‐based classification with a prevailing scheme based on dental morphology suggests that most species with what has traditionally been viewed as a ‘browser‐grade dentition’ are actually mixed feeders. This suggests that either morphology and diet are not tightly linked or that morphological differences between the dentitions of browsers and mixed feeders are subtle and have been overlooked. A positive correlation was found between body mass and average proportional intake of grass in the diet of macropodoids. This parallels the situation found in bovids, as well as the percentage cut‐off between dietary groups. These trends suggest that some underlying ecophysiological constraints may influence food choice in mammalian herbivores providing useful pointers to the diets of extinct taxa.  相似文献   

18.
This study contrasts the actual conservation spending and the Australian public’s demand for conservation funding for two Australian mammal species, the koala and the northern hairy-nosed wombat. It involves a survey of 204 members of the Australian public. Willingness to fund conservation action to protect the northern hairy-nosed wombat was found to be higher than that for the koala despite the koala’s immense popularity. The critically endangered status of the northern-hairy nosed wombat and the more secure conservation status of the koala is a factor likely to have influenced the comparative willingness-to-pay decisions. Actual annual conservation expenditure for both species is lower than the estimated aggregate willingness-to-pay for their conservation. Furthermore, conservation funding for the koala is much more than that for the northern hairy-nosed wombat even though the estimated public willingness-to-pay (demand) for funding koala conservation was less than for this wombat species. Reasons for this are suggested. They may also help to explain misalignment between demand for conservation funding of other species involving differences in charisma and endangerment.  相似文献   

19.
Foraging herbivores face twin threats of predation and parasite infection, but the risk of predation has received much more attention. We evaluated, experimentally, the role of olfactory cues in predator and parasite risk assessment on the foraging behaviour of a population of marked, free-ranging, red-necked wallabies (Macropus rufogriseus). The wallabies adjusted their behaviour according to these olfactory cues. They foraged less, were more vigilant and spent less time at feeders placed in the vicinity of faeces from dogs that had consumed wallaby or kangaroo meat compared with that of dogs feeding on sheep, rabbit or possum meat. Wallabies also showed a species-specific faecal aversion by consuming less food from feeders contaminated with wallaby faeces compared with sympatric kangaroo faeces, whose gastrointestinal parasite fauna differs from that of the wallabies. Combining both parasite and predation cues in a single field experiment revealed that these risks had an additive effect, rather than the wallabies compromising their response to one risk at the expense of the other.  相似文献   

20.
Finite elements stress analysis (FESA) was used to investigate the flow of compressive forces which occur if a homogenous, three-dimensional body representing the skull is loaded by simulated bite forces against the tooth row. Model 1 represents the snout alone. Bite forces are applied simultaneously, but increase rearward. Stresses in the model concentrate along the anterior contour and the lower surface of the model, leaving unstressed a nasal opening and a wide naso-oral connection. Model 2 represents the facial region, as far as the temporomandibular joint. The orbits and the nasal cavity are assumed to be present a priori. Model 3 applies reactions to the bite forces in the temporal fossa, corresponding to the origins of the masticatory muscles. Regions of the model under compressive stress correspond closely to the arrangement of bony material in a hominoid skull. If only the stress-bearing finite elements on each section are combined, and the stress-free parts neglected, the resulting three-dimensional shape is surprisingly similar to a hominoid skull. If bite forces are applied to parts of the tooth row only, the stress patterns are lower, asymmetrical and do not spread into all regions that are stress-bearing in simultaneous biting on all teeth. In model 2, the highest stresses occur at the tooth roots and along the forehead on top of the nasal roof. There are no marked stress concentrations on top of the orbits. The resulting shape resembles that of an orang-utan. In model 3, the highest stresses also occur at the tooth roots, but the circles of force mostly close below the brain case, so that the stress concentration in the forehead region remains much less marked. In this model, however, the stress concentrations are very similar to hollow brow ridges. The entire resulting shape resembles that of gorilla or chimpanzee skulls. A typical gracile australopithecine skull (STS-5) also shows clear similarities to the patterns of stress flow in our models. Compared to our earlier study of the modern human skull, differences relate to: the relative length and width of the dental arcade, the relative size of the brain case and the position of the arcade relative to the brain case. It seems that these traits are the points of attack of selective pressures, while all other morphological details are simply consequences of stress flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号