首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Leukotriene A4 epoxide hydrolase from dog lung, a soluble enzyme catalyzing the hydrolysis of leukotriene A4 (LTA4) to leukotriene B4 (LTB4) was partially purified by anion exchange HPLC. The enzymatic reaction obeys Michaelis- Menten kinetics. The apparent Km ranged between 15 and 25 μM and the enzyme exhibited an optimum activity at pH 7.8. An improved assay for the epoxide hydrolase has been developed using bovine serum albumin and EDTA to increase the conversion of LTA4 to LTB4. This method was used to produce 700 mg of LTB4 from LTA4 methyl ester. The partial by purified enzyme was found to be uncompetitively inhibited by divalent cations. Ca2+, Mn+, Fe2+, Zn+2 and Cu+2 were found to have inhibitor constants (Ki) of 89 mM, 3.4 mM, 1.1 mM, 0.57 mM, and 28 μM respectively Eicosapentaenoic acid was shown to be a competitive inhibitor of this enzyme with a Ki of 200 μM. From these inhibition studies, it can be theorized that the epoxide hydrolae has at least one hydrophobic and one hydrophilic binding site.  相似文献   

2.
The present study was carried out to further characterize the role of non-inflammatory cells in the inflammatory process. More specifically, we have investigated whether human epithelial cells can generate inflammatory lipid mediators via activation of the 5-lipoxygenase pathway. The cells were stimulated with the calcium ionophore A23187 (5 μM) for different periods of time, after which the production of eicosanoids was determined by gradient reverse-phase high performance liquid chromatography (RP-HPLC) and rapid spectral detection, permitting continuous ultraviolet spectroscopy. In both non-prelabeled cells and cells prelabeled with [1-14Carachidonic acid, cell stimulation for 30 min or more resulted in the production of two important 5-lipoxygenase products: 5-hydroxyeicosatetraenoic acid (5-HETE) and leukotriene B4 (LTB4). Stimulation for 15 min or less, however, led solely to the formation of 5-HETE. The identities of 5-HETE and LTB4 were confirmed by HPLC retention times and UV spectra, as well as by gas chromatography-mass spectrometry for 5-HETE and radioimmunoassay for LTB4. It can therefore be concluded that human epithelial cells in general can produce important inflammatory mediators, which suggests that epithelial cells may play a more active role in the inflammatory process than is normally assumed.  相似文献   

3.
The novel metabolites of arachidonic acid, leukotriene (LT) A4, B4, C4, D4 and E4 have potent myotropic activity on guinea-pig lung parenchymal strip . The receptors responsible for their action were characterized using desensitization experiments and the selective SRS-A antagonist, FPL-55712. During the continuous infusion of LTB4, the tissues became desensitized to LTB4 but were still responsive to histamine, LTA4, LTC4, LTD4 and LTE4. When LTD4 was infused continuously, the lung strips contracted to LTB4 and histamine but were no longer responsive to LTA4, LTC4, LTD4 and LTE4. Furthermore, FPL-55712 (10 ng ml−1− 10 ug ml−1) produced dose-dependent inhibitions of LTA4, LTC4, LTD4 and LTE4 without inhibiting the contraction to LTB4 and histamine. On the basis of these results, it appears that the guinea-pig lung parenchyma may have one type of receptor for LTB4 and another for LTD4; LTA4, LTC4 and LTE4 probably act on the LTD4 receptor.  相似文献   

4.
A method for the preparation of a highly purified sample of rabbit blood monocytes is described. The metabolism of arachidonic acid (AA) in these cells was studied. Mononuclear cells were prepared by centrifugation on Ficoll-Paque gradients and the monocytes were obtained by further centrifugation and adherence onto plastic culture dishes. These procedures provided a preparation which contained 95% monocytes (non-specific esterase positive). Incubation of [1-14C]-AA with these cells produced four major metabolites which were separated by TLC; these corresponded to prostaglandin (PG) D2, thromboxane (TX) B2, 12-hydroxyheptadecatrienoic acid (HHT) and 12-/15- hydroxyeicosatetraenoic acid (HETE). A minor product which co-migrated with PGE2 was also detected but neither 6-keto-PGF nor PGF were detected. Also, there was no evidence of the formation of 5-lipoxygenase products (5-HETE and LTB4) by rabbit monocytes with or without calcium-ionophore A23187-stimulation. The production of PGD2, TXB2 and PGE2 was further confirmed by analyzing [3H]-AA metabolites using high-performance liquid chromatography (HPLC) with tritiated standards as references. The biosynthesis of these compounds from endogenous substrate in A23187-stimulated monocytes was confirmed by specific radioimmunoassays with or without prior HPLC separation. The synthesis of immunoreactive LTB4 and LTC4 by A23187-stimulated cells was also monitored and found to be relatively low. The synthesis of PGD2, TXB2 and PGE2 from both exogenous and endogenous substrate was suppressed by treatment of the monocytes with indomethacin (10−6 M).  相似文献   

5.
The products of arachidonic acid metabolism in the 15,000xg supernatant of sonicated rat PMN are described. Only products derived from 5-lipoxygenase are observed. These products are 5-HETE and products derived from hydrolysis of LTA4, particularly LTB4. Some minor products derived from decomposition of 5-HPETE are also observed. The dependence of the activity of 5-lipoxygenase on enzyme and on substrate concentrations is presented and discussed in terms of a kinetic model that includes enzyme inactivation during turnover and substrate inhibition. The 5-lipoxygenase activity is stimulated by Ca++ and ATP.  相似文献   

6.
Obesity results in increased macrophage recruitment to adipose tissue that promotes a chronic low-grade inflammatory state linked to increased fatty acid efflux from adipocytes. Activated macrophages produce a variety of pro-inflammatory lipids such as leukotriene C4 (LTC4) and 5-, 12-, and 15-hydroxyeicosatetraenoic acid (HETE) suggesting the hypothesis that fatty acids may stimulate eicosanoid synthesis. To assess if eicosanoid production increases with obesity, adipose tissue of leptin deficient ob/ob mice was analyzed. In ob/ob mice, LTC4 and 12-HETE levels increased in the visceral (but not subcutaneous) adipose depot while the 5-HETE levels decreased and 15-HETE abundance was unchanged. Since macrophages produce the majority of inflammatory molecules in adipose tissue, treatment of RAW264.7 or primary peritoneal macrophages with free fatty acids led to increased secretion of LTC4 and 5-HETE, but not 12- or 15-HETE. Fatty acid binding proteins (FABPs) facilitate the intracellular trafficking of fatty acids and other hydrophobic ligands and in vitro stabilize the LTC4 precursor leukotriene A4 (LTA4) from non-enzymatic hydrolysis. Consistent with a role for FABPs in LTC4 synthesis, treatment of macrophages with HTS01037, a specific FABP inhibitor, resulted in a marked decrease in both basal and fatty acid-stimulated LTC4 secretion but no change in 5-HETE production or 5-lipoxygenase expression. These results indicate that the products of adipocyte lipolysis may stimulate the 5-lipoxygenase pathway leading to FABP-dependent production of LTC4 and contribute to the insulin resistant state.  相似文献   

7.
5-Oxo-(7E,9E,11Z,14Z)-eicosatetraenoic acid (5-oxo-ETE) has been identified as a non-enzymatic hydrolysis product of leukotriene A4 (LTA4) in addition to 5,12-dihydroxy-(6E,8E,10E,14Z)-eicosatetraenoic acids (5,12-diHETEs) and 5,6-dihydroxy-(7E,9E,11Z,14Z)-eicosatetraenoic acids (5,6-diHETEs). The amount of 5-oxo-ETE detected in the mixture of the hydrolysis products of LTA4 was found to be pH-dependent. After incubation of LTA4 in aqueous medium, the ratio of 5-oxo-ETE to 5,12-diHETE was 1:6 at pH 7.5, and 1:1 at pH 9.5. 5-Oxo-ETE was isolated from the alkaline hydrolysis products of LTA4 in order to evaluate its effects on human polymorphonuclear (PMN) leukocytes. 5-Oxo-ETE induced a rapid and dose-dependent mobilization of calcium in PMN leukocytes with an EC50 of 250 nM, as compared to values of 3.5 nM for leukotriene B4 (LTB4) and >500 nM for 5(S)-hydroxy-(6E,8Z,11Z,14Z)-eicosatetraenoic acid (5-HETE). Pretreatment of the cells with LTB4 totally abolished the calcium response induced by 5-oxo-ETE. In contrast, the preincubation with 5-oxo-ETE did not affect the calcium mobilization induced by LTB4. The calcium response induced by 5-oxo-ETE was totally inhibited by the specific LTB4 receptor antagonist LY223982. These data demonstrate that 5-oxo-ETE can induce calcium mobilization in PMN leukocyte via the LTB4 receptor in contrast to the closely related analog 5-oxo-(6E,8Z,11Z,14Z)-eicosatetraenoic acid which is known to activate human neutrophils by a mechanism independent of the receptor for LTB4.  相似文献   

8.
15-Hydroxy-eicosatetraenoic acid (15-HETE), a product of arachidonic acid, has no proinflammatory capacity, but can inhibit the formation and the chemotactic response of neutrophils to leukotriene B4 (LTB4), a potent mediator of inflammation. The purpose of the present study was to determine whether intraarticular administration of 15-HETE in carragheenan-induced acute arthritis might decrease the levels of LTB4 in synovial fluid and modify the arthritis. A bilateral acute knee joint arthritis was established in 7 dogs by intraarticular injections of carragheenan every third day. To the right joints, 15-HETE was administered both concomitantly with the carragheenan injections and continously via an osmotic pump. In samples of synovial fluid obtained on day 0, 3 and 10 PGE2 and LTB4 were determined using reversed phase high performance liquid chromatography combined with radioimmunoassays and neutrophil chemokinesis. In the presence of 15-HETE the clinical severity of arthritis was significantly reduced and the volume synovial effusate was decreased on an average by 42%. Furthermore, the relative number of neutrophils in histological sections of synovial tissue was decreased by 58%. Intaarticular carragheenan injection induced LTB4 formation, and maximum levels were obtained on day 3 (279.2 ± 148.2 pg/joint). PGE2 was also present on a day 3, but maximum levels were detected on day 10 (9.5 ± 4.8 ng/joint). In joints injected with both carragheenan and 15-HETE the levels of LTB4 on days 3 and 10 were inhibited by 90% and 83%, respectively. For PGE2 a small but significant decrease was found on both day 3 and on day 10. These results show that LTB4 may be an important mediator of acute arthritis induced by carragheenan in dogs, and that intraarticular administration of 15- HETE can modify this arthritis by inhibiting LTB4 formation.  相似文献   

9.
Cumulative dose-response curyes to leukotriene C4 (LTC4) and leukotriene D4 (LTD)4 were obtained on indomethacin (5 μM) treated isolated guinea pig tracheal spiral strips. LTC4 curves, in the presence of either glutathione (GSH; 10 mM) or L-serine borate (SB; 45 mM), were not antagonized by FPL-55712 (3 μM), a selective LTD4 receptor antagonist. LTC4 curves on trachea treated with a lower concentration of GSH (1 mM), and LTD4 curves were competitively antagonized by FPL-55712. LTC, curves on GSH (10 mM) treated trachea were 2 fold to the left of those on SB treated tissues. This effect of GSH was blocked by pretreatment with nordihydro-guiaretic acid (30 μM), an inhibitor of 5-lipoxygenase.GSH (10 μM) and SB (45 mM) are effective inhibitors of conversion of LTC4 into functionally important levels of LTD4 by the guinea pig trachea. In addition, GSH appeares to enhance LTC4 responsiveness by increasing synthesis of a contractile 5-lipoxygenase product(s), possibly LTC4. From the data it is suggested that for inhibition of LTC4 metabolism, SB may be more usefull when examining responses to exogenously applied LTC4, while GSH (10 mM) may be useful when examining responses to endogenously generated LTC4.  相似文献   

10.
In view of the likely production of monohydroxyeicosatetraenoic acid (HETE's) in bronchial asthma, the role of these lipoxygenase products in the development of a classical clinical element of airway disease, namely airway hyperreactivity, has been investigated. Tracheas removed from guinea-pigs actively sensitized to ovalbumin produced, upon antigenic challenge (0.01 μg/ml), a 17-fold increase (0.97 ± 0.34 ng/ml to 16.73 ± 1.58 ng/ml) in the amount of 5-hydroxyeicosatetraenoic acid (5-HETE) as measured by radioimmunoassay of the tissue-bath fluid, indicating that this tissue is capable of producing 5-HETE. While 5-HETE alone, at concentrations equal to or greater than those found during the above antigenic response (0.001 to 1.0 μM), failed to produce intrinsic contractions of normal, nonsensitized guinea-pig trachea, a 30 min pretreatment with 5-HETE (1.0 μM) enhanced subsequent LTD4-induced contractions. Pretreatment with either 12- or 15-HETE, at similar concentrations and conditions, failed to potentiate LTD4 concentration-response curves. The effect of 5-HETE was time-dependent, since pretreatment for either 15 or 60 min had little or no effect on subsequent LTD4 responses. Also, the 5-HETE-induced enhancement seemed specific fot LTD4, since contractions to LTC4 (in the presence of l-serine borate), acetylcholine, histamine, PGD2 or U-46619 were unaffected by 5-HETE. Therefore, 5-HETE may have a role in the development of airway hyperreactivity by interacting with released LTD4 to exacerbate airway smooth muscle contraction in asthma.  相似文献   

11.
Human platelets are devoid of 5-lipoxygenase activity but convert exogenous leukotriene A4 (LTA4) either by a specific LTC4 synthase to leukotriene C4 or via a 12-lipoxygenase mediated reaction to lipoxins. Unstimulated platelets mainly produced LTC4, whereas only minor amounts of lipoxins were formed. Platelet activation with thrombin, collagen or ionophore A23187 increased the conversion of LTA4 to lipoxins and decreased the leukotriene production. Maximal effects were observed after incubation with ionophore A23187, which induced synthesis of comparable amounts of lipoxins and cysteinyl leukotrienes (LTC4, LTD4 and LTE4). Chelation of intra- and extracellular calcium with quin-2 and EDTA reversed the ionophore A23187-induced stimulation of lipoxin synthesis from LTA4 and inhibited the formation of 12-hydroxyeicosatetraenoic acid (12-HETE) from endogenous substrate. However, calcium did not affect the 12-lipoxygenase activity in the 100 000 × g supernatant of sonicated platelet suspensions. Furthermore, the stimulatory effect on lipoxin formation induced by platelet agonists could be mimicked in intact platelets by the addition of low concentrations of arachidonic acid, 12-hydroperoxyeicosatetraenoic acid (12-HPETE) or 13-hydroperoxyoctadecadienoic acid (13-HPODE). The results indicate that the elevated lipoxin synthesis during platelet activation is due to stimulated 12-lipoxygenase activity induced by endogenously formed 12-HPETE.  相似文献   

12.
[3H] Leukotriene B4 (LTB4) binds concentration dependency to intact human polymorophonuclear leukocytes (PMN's). The binding is saturable, reaches equilibrium in 10 min at 4°C, and is readily reversible. Mathematical modeling analysis reveals biphasic binding of [3H] LTB4 indicating two discrete populations of binding sites. The high affinity binding sites have a dissociation constant of 0.46 × 10−9M and Bmax of 1.96 × 104 sites per neutrophil; the low affinity binding sites have a dissociation constant of 541 × 10−9M and a Bmax of 45.6 × 104 sites per neutrophil. Competitive binding experiments with structural analogues of LTB4 demonstrate that the interaction between LTB4 and the binding site is stereospecific, and correlates with the relative biological activity of the analogs. At 25°C[3H] LTB4 is rapidly dissociated from the binding site and metabolized to 20-OH and 20-COOH-LTB4. Purification of neutrophils in the presence of 5-lipoxygenase inhibitors significantly increases specific [3H] LTB4 binding, suggesting that LTB4 is biosynthesized during the purification procedure. These data suggest that stereospecific binding and metabolism of LTB4 in neutrophils are tightly coupled processes.  相似文献   

13.
We have evaluated the biosynthesis, characterization and inhibition of Leukotrien (LT) B4 in unstimulated and in A23187-stimulated human whole blood. LTB4 was assayed by radioimmunoassay (RIA) both in unextracted serum and after extraction and thin-layer chromatography (TLC). Unstimulated human whole blood allowed to clot at 37°C for 60 min produced only trace amounts of LTB4 (0.16±0.05 ng/ml, mean±SD, n=3). LTB4-like immunoreactivity (ir-LTB4) detectable in unstimulated serum samples was largely overestimated by direct RIA, most likely because of interfering substance(s) unrealed to cyclooxygenasep or lipoxygenase activity. Incubation of human whole blood with A23187 (2–10 μM) resulted in a concentration-dependent stimulation of LTB4 production. At 10 μM A23187, ir-LTB4 was 18±2.4 ng/ml (mean±SEM, n=28). In A23187-stimulated serum samples, LTB4 concentrations measured by direct RIA correlated in a statistically significant fashion with those measured after extraction and TLC. Nafazatrom added caused a dose-dependent inhibition of A23187-stimulated ir-LTB4 production with an IC50 of 17 μM.  相似文献   

14.
Characterization of leukotriene A4 and B4 biosynthesis   总被引:4,自引:0,他引:4  
We have studied LTA4 and LTB4 synthesis in a cell-free system from RBL-1 cells. All the enzymes leading to the formation of LTB4 from arachidonic acid are localized in the soluble fraction (100,000 x g supernatant) of these cells. The formation of LTA4 and LTB4 is complete by 10 min. When we varied the arachidonic acid concentration from 1 to 300 microM, the synthesis of LTB4 leveled off at 30 microM and of LTA4 at 100 microM while 5-HETE had not reached a plateau at 300 microM. This enzyme system has the capacity to generate relatively large amounts of 5-HETE and LTA4 and only a relatively small amount of LTB4. Therefore, the rate limiting step is not the 5-lipoxygenase, the first step in the pathway, but the conversion of LTA4 to LTB4. This is in contrast to cyclooxygenase pathway where the first step is rate limiting. A second addition of arachidonic acid at submaximal concentration for LTA4 synthesis did not produce any additional LTA4 or LTB4. Further study of this phenomenon showed that the 5-lipoxygenase and LTA-synthase were inactivated with time by preincubation with arachidonic acid and that peroxy fatty acids seem to be the inactivating species.  相似文献   

15.
Leukotriene B4 (LTB4) is an inflammatory lipid mediator produced from arachidonic acid by multiple reactions catalyzed by two enzymes 5-lipoxygenase (5-LOX) and LTA4 hydrolase (LTA4H). The two receptors for LTB4 have been identified: a high-affinity receptor, BLT1, and a low-affinity receptor, BLT2. Our group identified 12(S)-hydroxy-5Z,8E,10E-heptadecatrienoic acid (12-HHT) as a high-affinity BLT2 ligand. Numerous studies have revealed critical roles for LTB4 and its receptors in various systemic diseases. Recently, we also reported the roles of LTB4, BLT1 and BLT2 in the murine ophthalmic disease models of mice including cornea wound, allergic conjunctivitis, and age-related macular degeneration. Moreover, other groups revealed the evidence of the ocular function of LTB4. In the present review, we introduce the roles of LTB4 and its receptors both in ophthalmic diseases and systemic inflammatory diseases. LTB4 and its receptors are putative novel therapeutic targets for systemic and ophthalmic diseases.  相似文献   

16.
A leukotriene B4 (LTB4) analog, 20-trifluoromethyl LTB4 (20CF3−LTB4), has been synthesized and evaluated with human neutrophils for effects on chemotaxis and degranulation. 20CF3−LTB4 was equipotent to LTB4 as a chemoattractant (EC50, 3 nM), produced 50% of maximal activity of LTB4, and competed with [H] LTB4 for binding to intact human neutrophil LTB4 receptors. In contrast to chemotactic activity, 20CF3−LTB4 in nanomolar concentrations exhibited antagonist activity without agonist activity up to 10 μM on LTB4-induced degranulation. The analog had no significant effect on degranulation induced by the chemoattractant peptide, N-formyl-methionyl-leucyl-phenylalanine (fMLP). Like LTB4, 20CF3−LTB4 induced neutrophil desensitization to degranulation by LTB4. The results indicate that hydrogen atoms at C-20 of LTB4 are critical for its intrinsic chemotactic and degranulation activities. The fact that 20CF3−LTB4 is a partial agonist for chemotaxis and an antagonist for degranulation syggests that different LTB4 receptor subtypes are coupled to these neutrophil functions. Desensitization of the neutrophil degranulation response to LTB4 can result from receptor occupancy by an antagonist, and therefore, the desensitization is not specific for an agonist.  相似文献   

17.
Leukotrienes are lipid mediators that are produced primarily by certain types of leukocytes. The synthesis of the leukotriene LTB4 is initiated by the enzyme 5-lipoxygenase and completed by LTA4 hydrolase. Epithelial cells constitutively express LTA4 hydrolase but normally lack 5-lipoxygenase. In this study, we report that the stratified squamous epithelial cells from inflamed or hyperplastic tissues of palatine and pharyngeal tonsils (nasopharyngeal-associated lymphoid tissue) express 5-lipoxygenase protein. The localization of 5-lipoxygenase was indicated by immunohistochemical staining and presence confirmed by immunoblot. Positive staining for 5-lipoxygenase in infiltrating leukocytes in inflamed tissues served as internal positive controls for immunohistochemical staining. Staining for 5-lipoxygenase in appendix tissue was negative for epithelial cells while positive for polymorphonuclear leukocytes, indicating that 5-lipoxygenase expression is not a general feature of epithelial cells in mucosa-associated lymphoid tissue. In tonsils, 5-lipoxygenase staining was pronounced in broad regions but reduced or absent in others, suggesting regional regulation of expression. Epithelial cells of tonsils were also positive for 5-lipoxygenase activating protein and leukotriene A4 hydrolase, indicating a capacity to produce LTB4. Taken together, these results suggest that the specialized epithelial cells of the mucosa-associated lymphoid tissue of human tonsils can synthesize LTB4. This lipid mediator may serve to modulate the function of cells within the lymphoid tissue as well as promote an inflammatory response.  相似文献   

18.
The activity of synthetic LTB4 and PGE2, in increasing vascular permeability was tested simultaneously in seventeen different organs in the rat. Rats were injected in the aortic arch through a cannula in the carotid artery with 125-I-albumin, 51Cr-erythrocytes, and 57Co-EDTA. The rats were then injected through the carotid artery cannula with LTB4, PGE2 or a combination of LTB4 and PGE2. Eight minutes later the rats were killed and the activity of 125I, 51Cr, and 57Co measured in different organs. Changes in vascular permeability were infered from changes in the ratios of the isotope activities. LTB4 (15 μg/kg) induced enhanced permeability in caecum, small bowel, skin, fat pad, stomach, pancreas, and aorta, but not in the heart, brain, colon, testes, diaphragm, forelimb, cremaster muscle, lung, kidney or eye. A lower dose of LTB4, 3 μg/kg, enhanced vascular permeability in caecum, small bowel, skin, stomach, and aorta. PGE2 (1 μg/kg) enhanced vascular permeability only in the caecum. A combination of LTB4 (3 μg/kg) and PGE2 (1 μg/kg) was more potent than either alone. Rats depleted of neutrophils with anti-neutrophil serum were less sensitive to LTB4 than intact rats. These findings suggest that the vasculatures of different tissues in the rat vary markedly in their susceptibility to LTB4 induced increases in permeability.  相似文献   

19.
Monosodium urate (MSU)-induced synovitis in the dog's stifle (knee joint) is similar to an acute gouty attack in man in which a loss of function of the joint correlates with massive influx of neutrophils and the release of an assortment of inflammatory mediators (e.g. histamine, bradykinin, lysosomal enzymes, complement and eicosanoids) into the synovial space. We found in the urate-induced inflammatory exudates 3 hr post MSU the following: 88 million leukocytes/ml (95% neutrophils) and eicosanoid concentrations of LTB4, LTC4, and PGE2 of < 0.1, 1.4 and 20 ng/ml, respectively. Isotonic saline injected knee joints at 3 hr contained 5 million leukocytes/ml (95% neutrophils) and concentrations of LTB4, LTC4, and PGE2 of < 0.1, 0.7 and 0.2 ng/ml, respectively. Intrasynovial injections of 1 μg LTB4, 10 μg PGE2 or the combination of LTB4 and PGE2 produced no reduction of paw pressure for up to 3 hr. Leukocyte concentrations measured at 3 hr in joints injected with these arachidonic acids metabolites were similar to saline controls. These results question the role of LTB4 as a chemotactic and inflammatory mediator in urate-induced synovitis in the dog but confirm the importance of PGE2 and possibly LTC4 in this model.  相似文献   

20.
Immunological (ovalbumin) and non-immunological (calcium ionophore A23187) stimulation of guinea pig trachea induces a prolonged contraction that is enhanced by indomethacin (8.5 μM) and inhibited by nordihydroguaiaretic acid (50 μM) pretreatment of the tissue. The mediator released by the above stimuli was identified as leukotriene C4 by reverse-phase high performance liquid chromatography, and quantitated by bioassay. Indomethacin, and/or arachidonic acid (32.8 μM) did not enhance the release, whereas nordihydrolguaiaretic acid reduced the contraction and release of LTC4. The results demonstrate the hitherto unproved capability of the large airways to synthesize leukotrienes and emphasize the importance of examining their role in asthma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号