首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is important to quantify and understand the consequences of elevated temperature and carbon dioxide (CO2) on reproductive processes and yield to develop suitable agronomic or genetic management for future climates. The objectives of this research work were (a) to quantify the effects of elevated temperature and CO2 on photosynthesis, pollen production, pollen viability, seed‐set, seed number, seeds per pod, seed size, seed yield and dry matter production of kidney bean and (b) to determine if deleterious effects of high temperature on reproductive processes and yield could be compensated by enhanced photosynthesis at elevated CO2 levels. Red kidney bean cv. Montcalm was grown in controlled environments at day/night temperatures ranging from 28/18 to 40/30 °C under ambient (350 µmol mol?1) or elevated (700 µmol mol?1) CO2 levels. There were strong negative relations between temperature over a range of 28/18–40/30 °C and seed‐set (slope, ? 6.5% °C?1) and seed number per pod (? 0.34 °C?1) under both ambient and elevated CO2 levels. Exposure to temperature > 28/18 °C also reduced photosynthesis (? 0.3 and ? 0.9 µmol m?2 s?1 °C?1), seed number (? 2.3 and ? 3.3 °C?1) and seed yield (? 1.1 and ? 1.5 g plant?1 °C?1), at both the CO2 levels (ambient and elevated, respectively). Reduced seed‐set and seed number at high temperatures was primarily owing to decreased pollen production and pollen viability. Elevated CO2 did not affect seed size but temperature > 31/21 °C linearly reduced seed size by 0.07 g °C?1. Elevated CO2 increased photosynthesis and seed yield by approximately 50 and 24%, respectively. There was no beneficial interaction of CO2 and temperature, and CO2 enrichment did not offset the negative effects of high temperatures on reproductive processes and yield. In conclusion, even with beneficial effects of CO2 enrichment, yield losses owing to high temperature (> 34/24 °C) are likely to occur, particularly if high temperatures coincide with sensitive stages of reproductive development.  相似文献   

2.
It is important to understand the effects of environmental conditions during plant growth on longevity and temperature response of pollen. Objectives of this study were to determine the influence of growth temperature and/or carbon dioxide (CO2) concentration on pollen longevity and temperature response of peanut and grain sorghum pollen. Plants were grown at daytime maximum/nighttime minimum temperatures of 32/22, 36/26, 40/30 and 44/34 °C at ambient (350 μmol mol−1) and at elevated (700 μmol mol−1) CO2 from emergence to maturity. At flowering, pollen longevity was estimated by measuring in vitro pollen germination at different time intervals after anther dehiscence. Temperature response of pollen was measured by germinating pollen on artificial growth medium at temperatures ranging from 12 to 48 °C in incubators at 4 °C intervals. Elevated growth temperature decreased pollen germination percentage in both crop species. Sorghum pollen had shorter longevity than peanut pollen. There was no influence of CO2 on pollen longevity. Pollen longevity of sorghum at 36/26 °C was about 2 h shorter than at 32/22 °C. There was no effect of growth temperature or CO2 on cardinal temperatures (Tmin, Topt, and Tmax) of pollen in both crop species. The Tmin, Topt, and Tmax identified at different growth temperatures and CO2 levels were similar at 14.9, 30.1, and 45.6 °C, respectively for peanut pollen. The corresponding values for sorghum pollen were 17.2, 29.4, and 41.7 °C. In conclusion, pollen longevity and pollen germination percentage was decreased by growth at elevated temperature, and pollen developed at elevated temperature and/or elevated CO2 did not have greater temperature tolerance.  相似文献   

3.
Iron (Fe) and zinc (Zn) deficiencies are a global human health problem that may worsen by the growth of crops at elevated atmospheric CO2 concentration (eCO2). However, climate change will also involve higher temperature, but it is unclear how the combined effect of eCO2 and higher temperature will affect the nutritional quality of food crops. To begin to address this question, we grew soybean (Glycine max) in a Temperature by Free‐Air CO2 Enrichment (T‐FACE) experiment in 2014 and 2015 under ambient (400 μmol mol?1) and elevated (600 μmol mol?1) CO2 concentrations, and under ambient and elevated temperatures (+2.7°C day and +3.4°C at night). In our study, eCO2 significantly decreased Fe concentration in soybean seeds in both seasons (?8.7 and ?7.7%) and Zn concentration in one season (?8.9%), while higher temperature (at ambient CO2 concentration) had the opposite effect. The combination of eCO2 with elevated temperature generally restored seed Fe and Zn concentrations to levels obtained under ambient CO2 and temperature conditions, suggesting that the potential threat to human nutrition by increasing CO2 concentration may not be realized. In general, seed Fe concentration was negatively correlated with yield, suggesting inherent limitations to increasing seed Fe. In addition, we confirm our previous report that the concentration of seed storage products and several minerals varies with node position at which the seeds developed. Overall, these results demonstrate the complexity of predicting climate change effects on food and nutritional security when various environmental parameters change in an interactive manner.  相似文献   

4.
Branches of 22-year-old loblolly pine (Pinus taeda, L.) trees growing in a plantation were exposed to ambient CO2, ambient + 165 μmol mol?1 CO2 or ambient + 330 μmol mol?1 CO2 concentrations in combination with ambient or ambient + 2°C air temperatures for 3 years. Field measurements in the third year indicated that net carbon assimilation was enhanced in the elevated CO2 treatments in all seasons. On the basis of A/Ci, curves, there was no indication of photosynthetic down-regulation. Branch growth and leaf area also increased significantly in the elevated CO2 treatments. The imposed 2°C increase in air temperature only had slight effects on net assimilation and growth. Compared with the ambient CO2 treatment, rates of net assimilation were ~1·6 times greater in the ambient + 165 μmol mol?1 CO2 treatment and 2·2 times greater in the ambient + 330 μmol mol?1 CO2 treatment. These ratios did not change appreciably in measurements made in all four seasons even though mean ambient air temperatures during the measurement periods ranged from 12·6 to 28·2°C. This indicated that the effect of elevated CO2 concentrations on net assimilation under field conditions was primarily additive. The results also indicated that the effect of elevated CO2 (+ 165 or + 330 μmol mol?1) was much greater than the effect of a 2°C increase in air temperature on net assimilation and growth in this species.  相似文献   

5.
While previous studies have examined the growth and yield response of rice to continued increases in CO2 concentration and potential increases in air temperature, little work has focused on the long-term response of tropical paddy rice (i.e. the bulk of world rice production) in situ, or genotypic differences among cultivars in response to increasing CO2 and/or temperature. At the International Rice Research Institute, rice (cv IR72) was grown from germination until maturity for 4 field seasons, the 1994 and 1995 wet and the 1995 and 1996 dry seasons at three different CO2 concentrations (ambient, ambient + 200 and ambient + 300 μL L–1 CO2) and two air temperatures (ambient and ambient + 4 °C) using open-top field chambers placed within a paddy site. Overall, enhanced levels of CO2 alone resulted in significant increases in total biomass at maturity and increased seed yield with the relative degree of enhancement consistent over growing seasons across both temperatures. Enhanced levels of temperature alone resulted in decreases or no change in total biomass and decreased seed yield at maturity across both CO2 levels. In general, simultaneous increases in air temperature as well as CO2 concentration offset the stimulation of biomass and grain yield compared to the effect of CO2 concentration alone. For either the 1995 wet and 1996 dry seasons, additional cultivars (N-22, NPT1 and NPT2) were grown in conjunction with IR72 at the same CO2 and temperature treatments. Among the cultivars tested, N-22 showed the greatest relative response of both yield and biomass to increasing CO2, while NPT2 showed no response and IR72 was intermediate. For all cultivars, however, the combination of increasing CO2 concentration and air temperature resulted in reduced grain yield and declining harvest index compared to increased CO2 alone. Data from these experiments indicate that (a) rice growth and yield can respond positively under tropical paddy conditions to elevated CO2, but that simultaneous exposure to elevated temperature may negate the CO2 response to grain yield; and, (b) sufficient intraspecific variation exists among cultivars for future selection of rice cultivars which may, potentially, convert greater amounts of CO2 into harvestable yield.  相似文献   

6.
High-temperature stress is a major environmental stress and there are limited studies elucidating its impact on soybean (Glycine max L. Merril.). The objectives of present study were to quantify the effect of high temperature on changes in leaf thickness, number of stomata on adaxial and abaxial leaf surfaces, gas exchange, chlorophyll fluorescence parameters and seed yield in soybean. Twelve soybean genotypes were grown at day/night temperatures of 30/22, 34/24, 38/26 and 42/28?°C with an average temperature of 26, 29, 32 and 35?°C, respectively, under greenhouse conditions. One set was also grown under ambient temperature conditions where crop season average maximum, minimum and mean temperatures were 28.0, 22.4 and 25.2?°C, respectively. Significant negative effect of temperature was observed on specific leaf weight (SLW) and leaf thickness. Rate of photosynthesis, stomatal conductance and water use efficiency declined as the growing temperatures increased; whereas, intercellular CO2 and transpiration rate were increased. With the increase in temperature chlorophyll fluorescence parameters such as Fv/Fm, qP and PhiPSII declined while there was increase in qN. Number of stomata on both abaxial and adaxial surface of leaf increased significantly with increase in temperatures. The rate of photosynthesis, PhiPSII, qP and SPAD values were positively associated with leaf thickness and SLW. This indicated that reduction in photosynthesis and associated parameters appears to be due to structural changes observed at higher temperatures. The average seed yield was maximum (13.2 g/pl) in plants grown under ambient temperature condition and declined by 8, 14, 51 and 65% as the temperature was increased to 30/22, 34/24, 38/26 and 42/28?°C, respectively.  相似文献   

7.
To determine the effects of elevated CO2 concentration ([CO2]) on the temperature‐dependent photosynthetic properties, we measured gas exchange and chlorophyll fluorescence at various leaf temperatures (15, 20, 25, 30, 35 and 40°C) in 1‐year‐old seedlings of the Japanese white birch (Betula platyphylla var. japonica), grown in a phytotron under natural daylight at two [CO2] levels (ambient: 400 µmol mol?1 and elevated: 800 µmol mol?1) and limited N availability (90 mg N plant?1). Plants grown under elevated [CO2] exhibited photosynthetic downregulation, indicated by a decrease in the carboxylation capacity of Rubisco. At temperatures above 30°C, the net photosynthetic rates of elevated‐CO2‐grown plants exceeded those grown under ambient [CO2] when compared at their growth [CO2]. Electron transport rates were significantly lower in elevated‐CO2‐grown plants than ambient‐CO2‐grown ones at temperatures below 25°C. However, no significant difference was observed in the fraction of excess light energy [(1 ? qP)× Fv′/Fm′] between CO2 treatments across the temperature range. The quantum yield of regulated non‐photochemical energy loss was significantly higher in elevated‐CO2‐grown plants than ambient, when compared at their respective growth [CO2] below 25°C. These results suggest that elevated‐CO2‐induced downregulation might not exacerbate the temperature‐dependent susceptibility to photoinhibition, because reduced energy consumption by electron transport was compensated for by increased thermal energy dissipation at low temperatures.  相似文献   

8.
Richard Sicher 《Planta》2013,238(2):369-380
Soybean (Glycine max [Merr.] L.) was grown in indoor chambers with ambient (38 Pa) and elevated (70 Pa) CO2 and day/night temperature treatments of 28/20, 32/24 and 36/28 °C. We hypothesized that CO2 enrichment would mitigate the deleterious effects of elevated growth temperatures on metabolites in soybean leaflets. Net CO2 assimilation rates increased incrementally with growth temperature and were enhanced up to 24 % on average by CO2 enrichment. Stomatal conductance about doubled from the lowest to highest temperature but this was partially reversed by CO2 enrichment. Metabolites were measured thrice daily and 19 and 28 of 43 total leaf metabolites were altered by the 32/24 and 36/28 °C temperature treatments, respectively, in both CO2 treatments. Polyols, raffinose and GABA increased and 23 nonstructural carbohydrates, organic acids and amino acids decreased when the temperature was increased from 28 to 36 °C under ambient CO2. Citrate, aconitate and 2-oxoglutarate decreased over 90 % in the 36/28 °C compared to the 28/20 °C temperature treatment. Temperature-dependent changes of sugars, organic acids and all but three amino acids were almost completely eliminated by CO2 enrichment. The above findings suggested that specific TCA cycle intermediates were highly depleted by heat stress under ambient CO2. Mitigating effects of CO2 enrichment on soybean leaflet metabolites were attributed to altered rates of photosynthesis, photorespiration, dark respiration, the anaplerotic pathway and to possible changes of gene expression.  相似文献   

9.
Peanut (Arachis hypogaea L. cv. Florunner) was grown from seed sowing to plant maturity under two daytime CO2 concentrations ([CO2]) of 360 μmol mol−1 (ambient) and 720 μmol mol−1 (elevated) and at two temperatures of 1.5 and 6.0 °C above ambient temperature. The objectives were to characterize peanut leaf photosynthesis responses to long-term elevated growth [CO2] and temperature, and to assess whether elevated [CO2] regulated peanut leaf photosynthetic capacity, in terms of activity and protein content of ribulose bisphosphate carboxylase-oxygenase (Rubisco), Rubisco photosynthetic efficiency, and carbohydrate metabolism. At both growth temperatures, leaves of plants grown under elevated [CO2] had higher midday photosynthetic CO2 exchange rate (CER), lower transpiration and stomatal conductance and higher water-use efficiency, compared to those of plants grown at ambient [CO2]. Both activity and protein content of Rubisco, expressed on a leaf area basis, were reduced at elevated growth [CO2]. Declines in Rubisco under elevated growth [CO2] were 27–30% for initial activity, 5–12% for total activity, and 9–20% for protein content. Although Rubisco protein content and activity were down-regulated by elevated [CO2], Rubisco photosynthetic efficiency, the ratio of midday light-saturated CER to Rubisco initial or total activity, of the elevated-[CO2] plants was 1.3- to 1.9-fold greater than that of the ambient-[CO2] plants at both growth temperatures. Leaf soluble sugars and starch of plants grown at elevated [CO2] were 1.3- and 2-fold higher, respectively, than those of plants grown at ambient [CO2]. Under elevated [CO2], leaf soluble sugars and starch, however, were not affected by high growth temperature. In contrast, high temperature reduced leaf soluble sugars and starch of the ambient-[CO2] plants. Activity of sucrose-P synthase, but not adenosine 5′-diphosphoglucose pyrophosphorylase, was up-regulated under elevated growth [CO2]. Thus, in the absence of other environmental stresses, peanut leaf photosynthesis would perform well under rising atmospheric [CO2] and temperature as predicted for this century.  相似文献   

10.
Using controlled environmental growth chambers, whole plants of soybean, cv. ‘Clark’, were examined during early development (7–20 days after sowing) at both ambient (≈ 350 μL L–1) and elevated (≈ 700 μL L–1) carbon dioxide and a range of air temperatures (20, 25, 30, and 35 °C) to determine if future climatic change (temperature or CO2 concentration) could alter the ratio of carbon lost by dark respiration to that gained via photosynthesis. Although whole-plant respiration increased with short-term increases in the measurement temperature, respiration acclimated to increasing growth temperature. Respiration, on a dry weight basis, was either unchanged or lower for the elevated CO2 grown plants, relative to ambient CO2 concentration, over the range of growth temperatures. Levels of both starch and sucrose increased with elevated CO2 concentration, but no interaction between CO2 and growth temperature was observed. Relative growth rate increased with elevated CO2 concentration up to a growth temperature of 35 °C. The ratio of respiration to photosynthesis rate over a 24-h period during early development was not altered over the growth temperatures (20–35 °C) and was consistently less at the elevated relative to the ambient CO2 concentration. The current experiment does not support the proposition that global increases in carbon dioxide and temperature will increase the ratio of respiration to photosynthesis; rather, the data suggest that some plant species may continue to act as a sink for carbon even if carbon dioxide and temperature increase simultaneously.  相似文献   

11.
Winter wheat (Triticum aestivum L., cv. Mercia) was grown at two different atmospheric CO2 concentrations (350 and 700 μmol mol−1), two temperatures [ambient temperature (i.e. tracking the open air) and ambient +4°C] and two rates of nitrogen supply (equivalent to 489 kg ha−1 and 87 kg ha−1). Leaves grown at 700 μmol mol−1 CO2 had slightly greater photosynthetic capacity (10% mean increase over the experiment) than those grown at ambient CO2 concentration, but there were no differences in carboxylation efficiency or apparent quantum yield. The amounts of chlorophyll, soluble protein and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) per unit leaf area did not change with long-term exposure to elevated CO2 concentration. Thus winter wheat, grown under simulated field conditions, for which total biomass was large compared to normal field production, did not experience loss of components of the photosynthetic system or loss of photosynthetic competence with elevated CO2 concentration. However, nitrogen supply and temperature had large effects on photosynthetic characteristics but did not interact with elevated CO2 concentration. Nitrogen deficiency resulted in decreases in the contents of protein, including Rubisco, and chlorophyll, and decreased photosynthetic capacity and carboxylation efficiency. An increase in temperature also reduced these components and shortened the effective life of the leaves, reducing the duration of high photosynthetic capacity.  相似文献   

12.
Atmospheric CO2 concentration ([CO2]) and temperature are likely to increase in the future and may change plant growth and composition characteristics. Rhizoma peanut (Arachis glabrata Benth.) and bahiagrass (Paspalum notatum Flügge) were grown on a natural field soil in temperature-gradient greenhouses to evaluate the effects of elevated [CO2] and temperature on tissue composition and digestibility during the establishment year. Carbon dioxide levels were maintained at 365 (ambient) and 640 μL CO2 L–1 air. The temperature-gradient greenhouses were regulated to obtain air temperature sectors of 0.2, 1.5, 2.9, and 4.5 °C above ambient. Samples were taken of previously undefoliated herbage at 57, 86, 121, 148, and 217 days after planting and entire plots were harvested at 218 days after planting. Elevated [CO2] increased total nonstructural carbohydrate concentration in rhizoma peanut leaves by almost 50%. Rhizoma peanut leaf N concentration was 6% lower at elevated than at ambient [CO2]. The N concentration in new rhizomes of rhizoma peanut was increased by high [CO2], while the N concentration in bahiagrass was not affected by temperature or [CO2]. No effects of [CO2] and temperature were found on neutral detergent fibre in rhizoma peanut leaves or stems; however, elevated [CO2] increased neutral detergent fibre in bahiagrass leaves. Only at season end was in vitro organic matter digestion of rhizoma peanut higher at ambient (623 g kg–1) than at elevated [CO2] (609 g kg–1). Elevated [CO2] had a greater effect on tissue composition of rhizoma peanut than of bahiagrass. These data suggest that elevated temperature and CO2-induced changes in chemical composition of forage species adapted to humid subtropics will be relatively small, particularly for C4 species.  相似文献   

13.
The frequency and intensity of heat waves are predicted to increase. This study investigates whether heat waves would have the same impact as a constant increase in temperature with the same heat sum, and whether there would be any interactive effects of elevated [CO2] and soil moisture content. We grew Quercus rubra seedlings in treatment chambers maintained at either ambient or elevated [CO2] (380 or 700 μmol CO2 mol?1) with temperature treatments of ambient, ambient +3 °C, moderate heat wave (+6 °C every other week) or severe heat wave (+12 °C every fourth week) temperatures. Averaged over a 4‐week period, and the entire growing season, the three elevated temperature treatments had the same average temperature and heat sum. Half the seedlings were watered to a soil water content near field capacity, half to about 50% of this value. Foliar gas exchange measurements were performed morning and afternoon (9:00 and 15:00 hours) before, during and after an applied heat wave in August 2010. Biomass accumulation was measured after five heat wave cycles. Under ambient [CO2] and well‐watered conditions, biomass accumulation was highest in the +3 °C treatment, intermediate in the +6 °C heat wave and lowest in the +12 °C heat wave treatment. This response was mitigated by elevated [CO2]. Low soil moisture significantly decreased net photosynthesis (Anet) and biomass in all [CO2] and temperature treatments. The +12 °C heat wave reduced afternoon Anet by 23% in ambient [CO2]. Although this reduction was relatively greater under elevated [CO2], Anet values during this heat wave were still 34% higher than under ambient [CO2]. We concluded that heat waves affected biomass growth differently than the same amount of heat applied uniformly over the growing season, and that the plant response to heat waves also depends on [CO2] and soil moisture conditions.  相似文献   

14.
Abstract: Growth in elevated CO2 led to an increase in biomass production per plant as a result of enhanced carbon uptake and lower rates of respiration, compared to ambient CO2-grown plants. No down-regulation of photosynthesis was found after six months of growth under elevated CO2. Photosynthetic rates at 15°C or 35 °C were also higher in elevated than in ambient CO2-grown plants, when measured at their respective CO2 growth condition. Stomata of elevated CO2-grown plants were less responsive to temperature as compared to ambient CO2 plants. The after effect of a heat-shock treatment (4 h at 45 °C in a chamber with 80% of relative humidity and 800–1000 tmol m-2 s-1 photon flux density) on Amax was less in elevated than in ambient CO2-grown plants. At the photochemical level, the negative effect of the heat-shock treatment was slightly more pronounced in ambient than in elevated CO2-grown plants. A greater tolerance to oxidative stress caused by high temperatures in elevated CO2-grown plants, in comparison to ambient CO2 plants, is suggested by the increase in superoxide dismutase activity, after 1 h at 45 °C, as well as its relatively high activity after 2 and 4 h of the heat shock in the elevated CO2-grown plants in contrast with the decrease to residual levels of superoxide dismutase activity in ambient CO2-grown plants immediately after 1 h at 45 °C. The observed increase in catalase after 1 h at 45 °C in both ambient and elevated CO2-grown plants, can be ascribed to the higher rates of photorespiration and respiration under this high temperature.  相似文献   

15.
Axillary buds and the apical portion of shoots of soybean [Glycine max (L.) Merr. cultivar Turchina] plants were trimmed to investigate long-term regulation of photosynthesis by sink demand at ambient CO2 and 22 °C. Also, in intact and trimmed shoots, the CO2 level was increased to 660 μmol mol?1 and temperature was lowered to 5°C to examine the superimposed short-term responses of photosynthesis to low sink demand. Under growth conditions, trimming the shoots increased leaf photosynthesis and the levels of sucrose, glucose-6-phosphate (G6P) and 3-phosphoglycerate (PGA), as well as the G6P/fructose-6-phosphate (F6P) and sucrose/starch ratios, while it decreased the level of starch and the triose-phosphate (glyceraldehyde 3-phosphate and dihydroxyacetone phosphate, TP)/PGA ratio. Photosynthesis enhancement was accompanied by increased chlorophyll contents and ribulose-l,5-bisphosphate carboxylase oxygenase (Rubisco) activity. Sink removal consistently increased photosynthesis measured under a variety of conditions (growth CO2 or a short-term change to 660 μmol mol-1 CO2; growth temperature or a short-term change to 5 °C), except when low temperature was combined with ambient CO2; the increase in photosynthesis was higher under short-term elevated CO2 than at ambient CO2. In contrast with its effect at ambient CO2, shoot trimming increased the levels of TP and ribulose-1,5-bisphosphate (RuBP) and the TP/PGA ratio under high-CO2 conditions.  相似文献   

16.
The temperature optimum of photosynthesis coincides with the average daytime temperature in a species’ native environment. Moderate heat stress occurs when temperatures exceed the optimum, inhibiting photosynthesis and decreasing productivity. In the present study, the temperature response of photosynthesis and the potential for heat acclimation was evaluated for Camelina sativa, a bioenergy crop. The temperature optimum of net CO2 assimilation rate (A) under atmospheric conditions was 30–32?°C and was only slightly higher under non-photorespiratory conditions. The activation state of Rubisco was closely correlated with A at supra-optimal temperatures, exhibiting a parallel decrease with increasing leaf temperature. At both control and elevated temperatures, the modeled response of A to intercellular CO2 concentration was consistent with Rubisco limiting A at ambient CO2. Rubisco activation and photochemical activities were affected by moderate heat stress at lower temperatures in camelina than in the warm-adapted species cotton and tobacco. Growth under conditions that imposed a daily interval of moderate heat stress caused a 63?% reduction in camelina seed yield. Levels of cpn60 protein were elevated under the higher growth temperature, but acclimation of photosynthesis was minimal. Inactivation of Rubisco in camelina at temperatures above 35?°C was consistent with the temperature response of Rubisco activase activity and indicated that Rubisco activase was a prime target of inhibition by moderate heat stress in camelina. That photosynthesis exhibited no acclimation to moderate heat stress will likely impact the development of camelina and other cool season Brassicaceae as sources of bioenergy in a warmer world.  相似文献   

17.
A field experiment was conducted to investigate the effects of elevated atmospheric CO2 concentration and temperature, singly and in combination, on grain yield and the distribution of nitrogen (N) in different rice organs. The rice ‘Wuyunjing 23’ was planted under four treatments: ambient CO2 and temperature (ACT), elevated CO2 (200 μmol mol?1 higher than ambient CO2) (EC), elevated temperature (1 °C above the ambient temperature) (ET), and the combination of elevated CO2 and temperature (ECT) under T-FACE (temperature and CO2 free air controlled enrichment) system. CO2-induced increment and temperature-induced reduction in grain yield was 6.0 and 25.2% in 2013, and that was 9.8 and 10.8% in 2014, respectively. Dry matter (DM) production in different organs increased under EC at vegetative stage but decreased under ET at reproductive stage. The negative effects of temperature on grain yield and DM was weakened when combined with CO2 enrichment. And the trends of decrease for yield and DM under ET and ECT in 2013 were more obvious than those in 2014 due to the annual temperature differences. Furthermore, ET led to greater distribution of N in root and stem but not for panicle than that under ACT. These mainly demonstrated that the rice production would be suffered varying degree of loss under global warming in future although the CO2 enrichment could alleviate the effects of high temperature on rice growth.  相似文献   

18.
Greenhouse experiments were conducted to investigate the impact of predicted climate change (elevated CO2, 700 μmol CO2 mol?1 air vs. ambient; elevated temperature, 28/18°C vs. 24/14°C, day/night; and partial irrigation, 40% of field capacity vs. well-irrigated) on grape berry quality characteristics during ripening. Grapevine (Vitis vinifera L. cv. Tempranillo) fruiting cuttings were used as experimental plant material. Climate change shortened the time between grape veraison and full maturity. At harvest time, many of the grape quality parameters determined were affected by the different grape maturity. The data were re-grouped according to total soluble solids to factor out changes due to the shortened time to maturity, and the effects on grape quality were then re-examined. Under current CO2 and temperature conditions, partial irrigation decreased berry malic acid concentration and facilitated anthocyanins extractability. Elevated CO2 and temperature decreased berry malic acid and total anthocyanins potential in well-irrigated plants and increased tonality index, irrespective of water availability. In partial irrigation conditions, elevated CO2 and temperature hindered the anthocyanins extractability. In summary, results indicate that climate change (elevated CO2, high temperature and partial irrigation) affects phenology and berry quality.  相似文献   

19.
Increases in growth temperature have been observed to affect photosynthesis differently under long-term exposure to ambient- and twice ambient-air CO2 concentrations. This study investigates the causes of this interaction in wheat (Triticum aestivum L.) grown in the field over two consecutive years under temperature gradient chambers in ambient (370 μmol mol−1) or elevated (700 μmol mol−1) atmospheric CO2 concentrations and at ambient or ambient +4°C temperatures, with either a low or a high nitrogen supply. The photosynthesis-internal CO2 response curves and the activity, activation state, kcat and amount of Ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) were measured, as well as the soluble protein concentration in flag leaves at ear emergence and 8–15 days after anthesis. A high nitrogen supply increased Vcmax, the Rubisco amount and activity and soluble protein contents, but did not significantly change the Rubisco kcat. Both elevated CO2 and above ambient temperatures had negative effects on Vcmax and Rubisco activity, but at elevated CO2, an increase in temperature did not decrease Vcmax or Rubisco activity in relation to ambient temperature. The amounts of Rubisco and soluble protein decreased with elevated CO2 and temperature. The negative impact of elevated CO2 on Rubisco properties was somewhat counteracted at elevated temperatures by an increase in kcat. This effect can diminish the detrimental effects on photosynthesis of combined increases of CO2 and temperature.  相似文献   

20.
Climate change factors interact to modify plant growth and development. The objective of this study was to evaluate the response to temperature of big bluestem (Andropogon gerardii Vitman) development, growth, reproduction and biomass partitioning under low and high carbon dioxide concentrations ([CO2]) grown in controlled environmental conditions. Ten sunlit soil–plant–atmosphere-research (SPAR) chambers were used to study the effects of two [CO2] of low (360 μL L−1) and high (720 μL L−1), and five different day/night temperatures of 20/12, 25/17, 30/22, 35/27 and 40/32 °C. Big bluestem cv. Bonelli seeds were sown in pure, fine sand, in 11 rows at equal spacing and after emergence were thinned to 10 plants per row. At maturity, individual plants were harvested and divided into leaves, stems, panicles and roots. Biomass decreased either above or below the optimum temperature of 30/22 °C. The effect of high [CO2] on biomass accumulation (12–30% increase) was visible at less than optimum temperature (30/22 °C) and absent at two high temperatures. With increase in temperature, irrespective of the [CO2], biomass partitioned to leaves increased (35%) where as that to stems decreased (33%). Panicle weight was 6–7% of biomass at 25/17 °C and fell to 1.6% at 40/32 °C. The biomass partitioned to roots, across the temperatures, was constant for plants grown at low [CO2] but decreased by 7% for those grown at high [CO2]. The decrease in panicle/seed production at two high temperatures (>30/22 °C) might reduce this species population and dominance in tallgrass prairies. The temperature response functions at different [CO2] will be useful to improve the predictive capabilities of dynamic global vegetation models in simulating dynamics of rangelands, where big bluestem is the dominant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号