首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Trifolium tomentosum and T. glomeratum are small (< 0·5 mg) seeded pasture legumes which are considered to be waterlogging tolerant and intolerant, respectively. The root porosity of the two species was compared for plants raised for 10 d in aerated nutrient solution and then transferred to either aerated (0·25 mol O2 m–3) or ‘hypoxic’ (0·031–0·069 mol O2 m–3) solutions for a further 7 and 21 d. After 21 d, T. tomentosum developed a root porosity of 11·2% in ‘hypoxic’ solution, which was significantly higher than the 6·1% developed by T. glomeratum. When grown in aerated solution, T. tomentosum also had a larger constitutive porosity (6·7%) than T. glomeratum (3·9%). Cylindrical root-sleeving O2 electrodes were used to measure the rates of radial O2 loss (ROL) from roots of the two species when in an O2-free medium. In general, roots previously grown in ‘hypoxic’ solution had higher rates of ROL than roots grown in aerated solution. Moreover, the rates of ROL along the main root of T. tomentosum were ≈ 5-fold faster than from equivalent locations along roots of T. glomeratum. Manipulations of the shoot O2 concentration resulted in rapid changes in ROL near the root tip of T. tomentosum plants raised in aerated or ‘hypoxic’ solutions, whereas for T. glomeratum ROL only increased for roots of plants raised in ‘hypoxic’ solution. Thus, the cortical air spaces in roots of both species raised in ‘hypoxic’ solution formed a continuous, low resistance pathway for O2 diffusion from the shoots to the roots. ROL from the lateral roots was also evaluated and it was 3-fold faster from T. tomentosum than from T. glomeratum. Moreover, ROL from lateral roots of T. tomentosum was 10–20-fold higher than from a position on the primary root axis the same distance from the root/shoot junction. Relatively, high rates of ROL were also recorded for young (40 mm in length) lateral roots of T. glomeratum which were previously grown in ‘hypoxic’ solution, but the ROL was low for the older lateral roots of this species. The substantial amounts of ROL from the lateral roots may limit O2 supply to the lower parts of the primary root axis, so that the laterals probably become the main functional root system in waterlogged soils.  相似文献   

2.
Three rice varieties, cv. Norin 36, cv. Norin 37 and cv. Yubae, were grown in a loam with a 20 cm water-table which gave aerobic conditions to a depth of not less than 15 to 17 cm. Under these conditions Norin 36 grew more vigorously and tillered more frequently than the other two varieties. The rates of oxygen diffusion at 23°C from roots up to 11 cm in length were however appreciably lower for Norin 36 (4.3 × 10?8g · cm?2 of root surface · min?1) than for Norin 37 or Yubae (c. 7.8 × 10?8g). A considerable increase (up to 200 %) in the oxygen diffusion rate (ODR) from the roots occurred if they were cooled to 3°C, and at this temperature differences in ODR between the varieties were not significant. For a purely physical system, because of the decrease in the diffusion coefficient of oxygen in water, and, the increase in oxygen solubility, a drop of c. 20 % in ODR should accompany the above 20°C drop in temperature. A 16 % drop was recorded for artificial ‘roots’ under these conditions. It was concluded that respiratory activity at the higher temperature must have been responsible for the low readings and intervarietal differences observed at 23°C. By increasing the 3°C values by 25 % a mean value of 14.2 × 10?8g · cm?2 of root surface · min?1 was recorded for the three varieties, being the probable ODR at 23°C in the absence of a respiratory factor. Calculations show that respiratory activity removed enough oxygen to reduce the ODR for Norin 36 by more than 9 × 10?8g, and for Norin 37 and Yubae by c. 6.7 × 10?8g · cm?2 of root surface · min?1. Anatomical investigations showed that cortical breakdown was always extensive at 4 to 4.5 cm from the apex of the roots. In some cases however breakdown had not occurred in the basal segment of the root. No opinion could be formed as to whether differences in the amount of cortical breakdown between the varieties might have occasioned the respiratory differences observed. An interesting feature of the root anatomy was the failure of breakdown in those regions of the roots through which lateral roots emerged.  相似文献   

3.
Myriophyllum spicatum and Potamogeton crispus are common species of shallow eutrophic lakes in north-eastern Germany, where a slow recovery of the submersed aquatic vegetation was observed. Thus, the characterisation of the root oxygen release (ROL) as well as its implication for geochemical processes in the sediment are of particular interest. A combination of microelectrode measurements, methylene blue agar and a titanium(III) redox buffer was used to investigate the influence of the oxygen content in the water column on ROL, diel ROL dynamics as well as the impact of sediment milieu. Oxygen gradients around the roots revealed a maximum oxygen diffusion zone of up to 250 μm. During a sequence with a light/dark cycle as well as alternating aeration of the water column, maximum ROL with up to 35% oxygen saturation at the root surface occurred under light/O2-saturated conditions. A decrease to about 30% was observed under dark/O2-saturated conditions, no ROL was detected at dark/O2-depleted conditions and only a weak ROL with 5–10% oxygen saturation at the root surface was measured under light but O2-depleted water column. These results indicate, that during darkness, ROL is supplied by oxygen from the water column and even during illumination and active photosynthesis production, ROL is modified by the oxygen content in the water column. Visualisation of ROL patterns revealed an enhanced ROL for plants which were grown in sulfidic littoral sediment in comparison to plants grown in pure quartz sand. For both plant species grown in sulfidic littoral sediment, a ROL rate of 3–4 μmol O2 h−1 plant−1 was determined with the Ti(III) redox buffer. For plants grown in pure quartz sand, the ROL rate decreased to 1–2 μmol O2 h−1 plant−1. Hence, aside from the oxygen content in the water column, the redox conditions and microbial oxygen demand in the sediment has to be considered as a further major determinant of ROL.  相似文献   

4.
Internal transport of gases is crucial for vascular plants inhabiting aquatic, wetland or flood‐prone environments. Diffusivity of gases in water is approximately 10 000 times slower than in air; thus direct exchange of gases between submerged tissues and the environment is strongly impeded. Aerenchyma provides a low‐resistance internal pathway for gas transport between shoot and root extremities. By this pathway, O2 is supplied to the roots and rhizosphere, while CO2, ethylene, and methane move from the soil to the shoots and atmosphere. Diffusion is the mechanism by which gases move within roots of all plant species, but significant pressurized through‐flow occurs in stems and rhizomes of several emergent and floating‐leaved wetland plants. Through‐flows can raise O2 concentrations in the rhizomes close to ambient levels. In general, rates of flow are determined by plant characteristics such as capacity to generate positive pressures in shoot tissues, and resistance to flow in the aerenchyma, as well as environmental conditions affecting leaf‐to‐air gradients in humidity and temperature. O2 diffusion in roots is influenced by anatomical, morphological and physiological characteristics, and environmental conditions. Roots of many (but not all) wetland species contain large volumes of aerenchyma (e.g. root porosity can reach 55%), while a barrier impermeable to radial O2 loss (ROL) often occurs in basal zones. These traits act synergistically to enhance the amount of O2 diffusing to the root apex and enable the development of an aerobic rhizosphere around the root tip, which enhances root penetration into anaerobic substrates. The barrier to ROL in roots of some species is induced by growth in stagnant conditions, whereas it is constitutive in others. An inducible change in the resistance to O2 across the hypodermis/exodermis is hypothesized to be of adaptive significance to plants inhabiting transiently waterlogged soils. Knowledge on the anatomical basis of the barrier to ROL in various species is scant. Nevertheless, it has been suggested that the barrier may also impede influx of: (i) soil‐derived gases, such as CO2, methane, and ethylene; (ii) potentially toxic substances (e.g. reduced metal ions) often present in waterlogged soils; and (iii) nutrients and water. Lateral roots, that remain permeable to O2, may be the main surface for exchange of substances between the roots and rhizosphere in wetland species. Further work is required to determine whether diversity in structure and function in roots of wetland species can be related to various niche habitats.  相似文献   

5.
6.
Nine species from the tribe Triticeae – three crop, three pasture and three ‘wild’ wetland species – were evaluated for tolerance to growth in stagnant deoxygenated nutrient solution and also for traits that enhance longitudinal O2 movement within the roots. Critesion marinum (syn. Hordeum marinum) was the only species evaluated that had a strong barrier to radial O2 loss (ROL) in the basal regions of its adventitious roots. Barriers to ROL have previously been documented in roots of several wetland species, although not in any close relatives of dryland crop species. Moreover, the porosity in adventitious roots of C. marinum was relatively high: 14% and 25% in plants grown in aerated and stagnant solutions, respectively. The porosity of C. marinum roots in the aerated solution was 1·8–5·4‐fold greater, and in the stagnant solution 1·2–2·8‐fold greater, than in the eight other species when grown under the same conditions. These traits presumably contributed to C. marinum having a 1·4–3 times greater adventitious root length than the other species when grown in deoxygenated stagnant nutrient solution or in waterlogged soil. The length of the adventitious roots and ROL profiles of C. marinum grown in waterlogged soil were comparable to those of the extremely waterlogging‐tolerant species Echinochloa crus‐galli L. (P. Beauv.). The superior tolerance of C. marinum, as compared to Hordeum vulgare (the closest cultivated relative), was confirmed in pots of soil waterlogged for 21 d; H. vulgare suffered severe reductions in shoot and adventitious root dry mass (81% and 67%, respectively), whereas C. marinum shoot mass was only reduced by 38% and adventitious root mass was not affected.  相似文献   

7.
This study investigated aerenchyma formation and function in adventitious roots of wheat (Triticum aestivum L.) when only a part of the root system was exposed to O2 deficiency. Two experimental systems were used: (1) plants in soil waterlogged at 200 mm below the surface; or (2) a nutrient solution system with only the apical region of a single root exposed to deoxygenated stagnant agar solution with the remainder of the root system in aerated nutrient solution. Porosity increased two‐ to three‐fold along the entire length of the adventitious roots that grew into the water‐saturated zone 200 mm below the soil surface, and also increased in roots that grew in the aerobic soil above the water‐saturated zone. Likewise, adventitious roots with only the tips growing into deoxygenated stagnant agar solution developed aerenchyma along the entire main axis. Measurements of radial O2 loss (ROL), taken using root‐sleeving O2 electrodes, showed this aerenchyma was functional in conducting O2. The ROL measured near tips of intact roots in deoxygenated stagnant agar solution, while the basal part of the root remained in aerated solution, was sustained when the atmosphere around the shoot was replaced by N2. This illustrates the importance of O2 diffusion into the basal regions of roots within an aerobic zone, and the subsequent longitudinal movement of O2 within the aerenchyma, to supply O2 to the tip growing in an O2 deficient zone.  相似文献   

8.
A Method to Estimate Practical Radial Oxygen Loss of Wetland Plant Roots   总被引:1,自引:0,他引:1  
The estimation of practical radial oxygen loss (ROL) of wetland plant roots was attempted in this study. We have devised a new method to measure ROL of wetland plant roots. The whole root system was bathed in an anoxic nutrient solution. Oxygen released from the root was removed immediately by introducing oxygen-free nitrogen gas (O2 < 4 nmol L−1) to mimic natural habitats where released oxygen is consumed rapidly due to chemical and biological oxidation processes. Oxygen removed from the root-bathing chamber was simultaneously detected colorimetrically by use of the highly oxygen-sensitive anthraquinone radical anion (AQ·) in a cell outside the root-bathing chamber, which decolorized by a rapid reaction with oxygen. An emergent macrophyte Typha latifolia L. was incubated, and its ROL was measured by both the new method and one of the conventional methods, the closed chamber/electrode method, by which the ROL of Typha latifolia L. had not yet been measured. The new method succeeded in detecting the ROL, whereas the conventional method was not able to detect oxygen, due to the level being below the detection limit of the oxygen electrode. The oxygen supply via the seedlings of Typha latifolia L. was ca. 10 times higher compared with control measurements without plant. Light illumination significantly enhanced the ROL of Typha latifolia L. (0.33 nmol O2 g−1 root dry weight s−1 under light and 0.18 nmol O2 g−1 root dry weight s−1 in the dark). Theses values fall between those previously reported by the closed chamber/titanium citrate method and the open chamber/electrode method.  相似文献   

9.

Background and Aims

Many wetland species form aerenchyma and a barrier to radial O2 loss (ROL) in roots. These features enhance internal O2 diffusion to the root apex. Barrier formation in rice is induced by growth in stagnant solution, but knowledge of the dynamics of barrier induction and early anatomical changes was lacking.

Methods

ROL barrier induction in short and long roots of rice (Oryza sativa L. ‘Nipponbare’) was assessed using cylindrical root-sleeving O2 electrodes and methylene blue indicator dye for O2 leakage. Aerenchyma formation was also monitored in root cross-sections. Microstructure of hypodermal/exodermal layers was observed by transmission electron microscopy (TEM).

Key Results

In stagnant medium, barrier to ROL formation commenced in long adventitious roots within a few hours and the barrier was well formed within 24 h. By contrast, barrier formation took longer than 48 h in short roots. The timing of enhancement of aerenchyma formation was the same in short and long roots. Comparison of ROL data and subsequent methylene blue staining determined the apparent ROL threshold for the dye method, and the dye method confirmed that barrier induction was faster for long roots than for short roots. Barrier formation might be related to deposition of new electron-dense materials in the cell walls at the peripheral side of the exodermis. Histochemical staining indicated suberin depositions were enhanced prior to increases in lignin.

Conclusions

As root length affected formation of the barrier to ROL, but not aerenchyma, these two acclimations are differentially regulated in roots of rice. Moreover, ROL barrier induction occurred before histochemically detectable changes in putative suberin and lignin deposits could be seen, whereas TEM showed deposition of new electron-dense materials in exodermal cell walls, so structural changes required for barrier functioning appear to be more subtle than previously described.  相似文献   

10.
Radial oxygen loss (ROL) from the roots of two semiaquatic rushes, Juncus effusus L. and Juncus inflexus L., was studied in reducing titanium citrate buffer, using both closed incubations and a flow-through, titrimetric system. In closed experiments, roots released oxygen at a constant rate over a wide range of external oxygen demands, with the ROL rate only depending on sink strength at low demands, and no oxygen release into oxidized solutions. In the titrimetric experiments, roots continued to release oxygen at constant rates when provided with a constant external oxygen demand. ROL was higher in J. effusus (9·5 ± 1 × 10?7 mol O2 h?1 root?1) than in J. inflexus (4·5 ± 0·5 × 10?7 mol O2 h?1 root?1). Light and dark changes around the shoots did not affect the ROL rate in J. inflexus, whereas in J. effusus ROL was ≈ 1·75 times higher in the light than in the dark, presumably due to changes in stomatal aperture. These results suggest that ROL is controlled by the external oxygen demand at low to moderate reducing intensities, but that structural limitations to oxygen diffusion rates prevent ROL from continuing to increase at higher external oxygen demands.  相似文献   

11.
Enhancement of oxygen transport from shoot to root tip by the formation of aerenchyma and also a barrier to radial oxygen loss (ROL) in roots is common in waterlogging‐tolerant plants. Zea nicaraguensis (teosinte), a wild relative of maize (Zea mays ssp. mays), grows in waterlogged soils. We investigated the formation of aerenchyma and ROL barrier induction in roots of Z. nicaraguensis, in comparison with roots of maize (inbred line Mi29), in a pot soil system and in hydroponics. Furthermore, depositions of suberin in the exodermis/hypodermis and lignin in the epidermis of adventitious roots of Z. nicaraguensis and maize grown in aerated or stagnant deoxygenated nutrient solution were studied. Growth of maize was more adversely affected by low oxygen in the root zone (waterlogged soil or stagnant deoxygenated nutrient solution) compared with Z. nicaraguensis. In stagnant deoxygenated solution, Z. nicaraguensis was superior to maize in transporting oxygen from shoot base to root tip due to formation of larger aerenchyma and a stronger barrier to ROL in adventitious roots. The relationships between the ROL barrier formation and suberin and lignin depositions in roots are discussed. The ROL barrier, in addition to aerenchyma, would contribute to the waterlogging tolerance of Z. nicaraguensis.  相似文献   

12.
COLMER  T. D. 《Annals of botany》2003,91(2):301-309
The present study evaluated waterlogging tolerance, root porosityand radial O2 loss (ROL) from the adventitious roots, of sevenupland, three paddy, and two deep-water genotypes of rice (Oryzasativa L.). Upland types, with the exception of one genotype,were as tolerant of 30 d soil waterlogging as the paddyand deep-water types. In all but one of the 12 genotypes, thenumber of adventitious roots per stem increased for plants grownin waterlogged, compared with drained, soil. When grown in stagnantdeoxygenated nutrient solution, genotypic variation was evidentfor root porosity and rates of ROL, but there was no overalldifference between plants from the three cultural types. Adventitiousroot porosity increased from 20–26 % for plants grownin aerated solution to 29–41 % for plants grown instagnant solution. Growth in stagnant solution also induceda ‘tight’ barrier to ROL in the basal regions ofadventitious roots of five of the seven upland types, all threepaddy types, and the two deep-water types. The enhanced porosityprovided a low resistance pathway for O2 movement to the roottip, and the barrier to ROL in basal zones would have furtherenhanced longitudinal O2 diffusion towards the apex, by diminishinglosses to the rhizosphere. The plasticity in root physiology,as described above, presumably contributes to the ability ofrice to grow in diverse environments that differ markedly insoil waterlogging, such as drained upland soils as well as waterloggedpaddy fields.  相似文献   

13.
Growth in stagnant, oxygen‐deficient nutrient solution increased porosity in adventitious roots of two monocotyledonous (Carex acuta and Juncus effusus) and three dicotyledonous species (Caltha palustris, Ranunculus sceleratus and Rumex palustris) wetland species from 10 to 30% under aerated conditions to 20–45%. The spatial patterns of radial oxygen loss (ROL), determined with root‐sleeving oxygen electrodes, indicated a strong constitutive ‘barrier’ to ROL in the basal root zones of the two monocotyledonous species. In contrast, roots of the dicotyledonous species showed no significant ‘barrier’ to ROL when grown in aerated solution, and only a partial ‘barrier’ when grown in stagnant conditions. This partial ‘barrier’ was strongest in C. palustris, so that ROL from basal zones of roots of R. sceleratus and R. palustris was substantial when compared to the monocotyledonous species. ROL from the basal zones would decrease longitudinal diffusion of oxygen to the root apex, and therefore limit the maximum penetration depth of these roots into anaerobic soil. Further studies of a larger number of dicotyledonous wetland species from a range of substrates are required to elucidate the ecophysiological consequences of developing a partial, rather than a strong, ‘barrier’ to ROL.  相似文献   

14.
The amount of oxygen released from the roots of Phragmites australis was quantified to examine the effects of airflow through dead culms, radiation, and temperature on radial oxygen loss (ROL). To investigate the effect of dead culms on ROL quantitatively, the ROL of individual plants with open dead culms was compared to that of plants with sealed dead culms as a function of light intensity and temperature. The relationship between ROL and plant morphology (aboveground biomass, shoot diameter, shoot height) was investigated. When exposed to 300, 600, and 900 μmol m−2 s−1 light, the ROL was 15.6, 22.5, and 30.9 μmol O2 g−1 dry root day−1, respectively, from plants with open dead culms and 11.0, 16.4, and 23.3 μmol O2 g−1 dry root day−1, respectively, from plants with sealed dead culms. The ROL from plants with open dead culms was obviously higher than that from plants with sealed dead culms in every condition. The ROL from plants with open culms was 37% and 30% higher than that from plants with sealed culms at 20°C and 30°C, respectively. The effects of plant-specific parameters such as leaf area and shoot diameter on radial oxygen loss were evident. From the point of view of rhizosphere oxidation during the growing season, the existence of open dead culms should be taken into consideration for optimal plant management in constructed wetlands. This study provides a theoretical understanding of the effects of open dead culms, light conditions, and temperature on radial oxygen loss. Handling editor: S. M. Thomaz  相似文献   

15.
The time-course for adjustments in the rate of extension of wheat (Triticum aestivum L. cv. Alexandria) roots, and the activity and capacity of respiratory pathways in the root apex, were determined after pruning the shoot to the ligule of the first leaf. Leaf pruning reduced the extension rate of both seminal and lateral roots. The onset of the response occurred within 1 h of pruning for laterals and between 2 and 3 h for seminals. The reduction in rate appears to be the result of a decrease in carbohydrate availability because (1) in seminal roots it was preceded by a decrease in soluble sugar content of the apical part of the growth zone (0–5 mm behind the root apex) and (2) supplying glucose (50 mM) to the roots of plants defoliated 24 h earlier led to a steady increase in extension rate of both seminal and lateral roots compared to non-fed controls. Supplying 3-O-methyl glucose had no effect. The reduction in extension rate of seminal roots was accompanied (or slightly preceded) by a reduction in respiratory O2 uptake in the apical part of the growth zone (0–5 mm). Changes in respiratory activity in the basal part of the growth zone (5–10 mm) only occurred several hours later. At the time root extension rate was reduced, the rate of O2 uptake could be stimulated with FCCP, which indicates that respiration was under the fine control of adenylates. From these results we suggest the following sequence of events occurs after defoliation. Firstly, defoliation reduces the supply of sugars to the root apex, this leads to a reduction in rate of extension through some form of coarse control by carbohydrates on cell division and expansion, which in turn reduces the rate of respiratory O2 uptake because of a smaller demand for ATP. The results also indicate that there is a rapid (<1.5 h) reduction in respiratory capacity in the root apex after defoliation which occurs before any change in the overall rate of respiration.  相似文献   

16.
Metal (Pb, Zn and Fe2+) tolerances, root anatomy and profile of radial oxygen loss (ROL) along the root (i.e., spatial pattern of ROL) were studied in 10 emergent wetland plants. The species studied could be classified into three groups. Group I included Alternanthera philoxeroides, Beckmannia syzigachne, Oenanthe javanica and Polypogon fugax, with high ROL along the whole length of root (‘partial barrier’ to ROL). Group II included Cyperus flabelliformis, Cyperus malaccensis, Juncus effusus, Leersia hexandra and Panicum paludosum, ROL of which was remarkably high just behind the root apex, but decreased significantly at relatively basal regions (‘tight barrier’ to ROL). Group III consisted of only Neyraudia reynaudiana, with extremely low ROL along the length of root. The results indicated that metal tolerance in wetland plants was related to root anatomy and spatial pattern of ROL. Co-evolution of metal (Fe and Zn) tolerance and flood tolerance possibly developed in wetland plants since species showing a ‘tight barrier’ to ROL (a common trait of flood-tolerant species) in basal root zones had higher Fe and Zn tolerances than those showing a ‘partial barrier’. Root anatomy such as lignin and suberin deposition contributed to a ‘tight barrier’ in root and conferred to exclusion ability in tolerant species.  相似文献   

17.
A radial oxygen loss (ROL) barrier in roots of waterlogging‐tolerant plants promotes oxygen movement via aerenchyma to the root tip, and impedes soil phytotoxin entry. The molecular mechanism and genetic regulation of ROL barrier formation are largely unknown. Zea nicaraguensis, a waterlogging‐tolerant wild relative of maize (Zea mays ssp. mays), forms a tight ROL barrier in its roots when waterlogged. We used Z. nicaraguensis chromosome segment introgression lines (ILs) in maize (inbred line Mi29) to elucidate the chromosomal region involved in regulating root ROL barrier formation. A segment of the short‐arm of chromosome 3 of Z. nicaraguensis conferred ROL barrier formation in the genetic background of maize. This chromosome segment also decreased apoplastic solute permeability across the hypodermis/exodermis. However, the IL and maize were similar for suberin staining in the hypodermis/exodermis at 40 mm and further behind the root tip. Z. nicaraguensis contained suberin in the hypodermis/exodermis at 20 mm and lignin at the epidermis. The IL with ROL barrier, however, did not contain lignin in the epidermis. Discovery of the Z. nicaraguensis chromosomal region responsible for root ROL barrier formation has improved knowledge of this trait and is an important step towards improvement of waterlogging tolerance in maize.  相似文献   

18.
The relationship between ethylene production, 1-aminocyclopropane-l-carboxylic acid (ACC) concentration and aerenchyma formation (ethylene-promoted cavitation of the cortex) was studied using nodal roots of maize (Zea mays L. cv. LG11) subjected to various O2 treatments. Ethylene evolution was 7–8 fold faster in roots grown at 3 kPa O2 than in those from aerated solution (21 kPa O2), and transferring roots from aerated solution to 3 kPa O2 enhanced ethylene synthesis within less than 2 h. Ethylene production and ACC accumulation were closely correlated in different zones of hypoxic roots, regardless of whether O2 was furnished to the roots through aerenchyma or external solution. Both ethylene production and ACC concentrations (fresh weight basis) were more than 10-fold greater in the distal 0–10 mm than in the fully expanded zone of roots at 3 kPa O2. Aerenchyma formation occurred in the apical 20 mm of these roots. Roots transferred from air to anoxia accumulated less than 0. 1 nmol ACC (mg protein)-1 for the first 1.75 h; no ethylene was produced in this time. The subsequent rise in ACC levels shows that ACC can reach high concentrations even in the absence of O2, presumably due to a de-repression of ACC synthase. The hypothesis was therefore tested that anoxia in the apical region of the root caused enhanced synthesis of ACC, which was transported to more mature regions (10–20 mm behind the apex), where ethylene could be produced and aerenchyma formation stimulated. Surprisingly, exposure of intact root tips to anoxia inhibited aerenchyma formation in the mature root axis. High osmotic pressures around the growing region or excision of apices had the same effect, demonstrating that a growing apex is required for high rates of aerenchyma formation in the adjacent tissue.  相似文献   

19.
不同渗氧能力水稻品种对砷的耐性和积累   总被引:2,自引:0,他引:2  
水稻是目前世界上(尤其是东南亚)最主要的粮食作物之一,也是砷(As)通过食物链进入人体的主要途径。日益加剧的土壤砷污染,严重影响了稻米的产量和品质,进而威胁着人体健康。通过温室实验,研究CNT 87059-3、玉香油占和巴西陆稻3种不同渗氧能力的水稻品种在不同砷浓度处理下的生长情况和砷积累特征,结果表明:(1)渗氧能力强的玉香油占砷耐性指数最高,砷处理浓度为2 mg/L时耐性指数高达0.71,而CNT 87059-3的耐性指数为0.55,巴西陆稻仅有0.17;(2)随着砷处理浓度的升高,3种水稻品种的生物量呈现下降趋势,但渗氧能力强的玉香油占较其它两品种生物量的下降幅度小;(3)在不同砷浓度处理下水稻地下部分的砷含量有显著性差异(P0.001),且同种砷浓度处理下不同水稻品种的地下部分砷含量也存在显著性差异(P0.01),渗氧能力较强的水稻品种与渗氧能力较弱的品种相比能显著降低砷在根部(地下部分)的积累。水稻渗氧能力与其砷耐性和砷积累有显著相关性,渗氧能力越强,水稻的砷耐性越强,砷的积累量越少。因此,通过筛选渗氧能力强的水稻品种,有望降低污染农田水稻的砷含量和健康风险。  相似文献   

20.
Reactive oxygen species (ROS) play a crucial role in the early response to plant biotic and abiotic stresses. In this study, bacterial wilt‐resistant and wilt‐susceptible eggplants were inoculated with Ralstonia solanacearum and the ROS content was analysed. The result revealed an increased accumulation of hydrogen peroxide (H2O2) and superoxide (O2?) in resistant and susceptible eggplant roots after R. solanacearum inoculation. H2O2 and O2? accumulation increased earlier in the inoculated resistant eggplant root than in the inoculated susceptible eggplant root. Real‐time polymerase chain reaction results revealed that respiratory burst oxidase homologue (Rboh) A, RbohB, RbohF and PR1 expression levels increased in inoculated resistant eggplant roots at an early stage (0–60 h postinoculation) and were at higher expression levels than those in susceptible eggplant roots. Ascorbate peroxidase, peroxidase and catalase activities were higher in inoculated resistant eggplant roots than in susceptible eggplant roots at the early stage. Hence, an early ROS burst positively regulates bacterial wilt resistance in eggplant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号