首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The anatomical distribution of neurons containing galanin has been studied in the central nervous system of the chicken by means of immunocytochemistry using antisera against rat galanin. Major populations of immunostained perikarya were detected in several brain areas. The majority of galanin-immunoreactive cell bodies was present in the hypothalamus and in the caudal brainstem. Extensive groups of labeled perikarya were found in the paraventricular, periventricular, dorsomedial and tuberal hypothalamic nuclei, and in the nucleus of the solitary tract in the medulla oblongata. In the telencephalon, immunoreactive perikarya were observed in the preoptic area, in the lateral septal nucleus and in the hippocampus. The mesencephalon contained only a few galanin-positive perikarya located in the interpeduncular nucleus. Immunoreactive nerve fibers of varying density were detected in all subdivisions of the brain. Dense accumulations of galanin-positive fibers were seen in the preoptic area, periventricular region of the diencephalon, the ventral hypothalamus, the median eminence, the central gray of the brainstem, and the dorsomedial caudal medulla. The distributional pattern of galanin-immunoreactive neurons suggests a possible involvement of a galanin-like peptide in several neuroregulatory mechanisms.  相似文献   

2.
Summary The distribution of gamma-aminobutyric acid (GABA) immunoreactivity was studied in the forebrain (tel-and diencephalon) of the goldfish by means of immunocytochemistry on Vibratome sections using antibodies against GABA. Positive perikarya were detected in the olfactory bulbs and in all divisions of the telencephalon, the highest density being found along the midline. In the diencephalon, GABA-containing cell bodies were found in the hypothalamus, in particular in the preoptic and tuberal regions. The inferior lobes, the nucleus recessus lateralis, and more laterodorsal regions, such as the nucleus glomerulosus and surrounding structures, also exhibited numerous GABA-positive perikarya. Cell bodies were also noted in the thalamus, in particular in the dorsomedial, dorsolateral and ventromedial nuclei. The relative density of immunoreactive fibers was evaluated for each brain nucleus and classified into five categories. This ubiquitous distribution indicates that, as in higher vertebrates, GABA most probably represents one of the major neurotransmitters in the brain of teleosts.  相似文献   

3.
Summary Developmental changes of thyrotropin-releasing hormone (TRH)-immunoreactive structures in the brain of mallard embryos were studied by means of immunocytochemistry (PAP technique). The primary antibody was generated against synthetic TRH. Immunoreactive neurons were first detected in the hypothalamus of 14-day-old embryos. By day 20, increasing numbers of immunoreactive perikarya were observed in the paraventricular nucleus, anterior preoptic region and supraoptic region. Immunoreactive fiber projections were seen in the median eminence as early as embryonic day 20; they occurred also in some extrahypothalamic regions (lateral septum, accumbens nucleus). The number and staining intensity of the cell bodies increased up to hatching, and continued to increase during the first week after hatching.  相似文献   

4.
GnRH-associated peptide (GAP)-like immunonreactive elements located in the human hypothalamus were investigated by PAP immunocytochemistry using specific antiserum against [pro-GnRH (14-69) OH]. Immunoreactive neuronal perikarya were distributed in the MPOA, PVN and infundibular nucleus, with the largest numbers of GAP-like immunoreactive perikarya found in the infundibular nucleus. We also detected the coexistence of GAP-like and GnRH-like immunoreactivities in the same neuronal perikarya in the MPOA by using a double immunolabelling procedure. In addition to the above regions immunoreactive neuronal perikarya were present in the region dorsal to the medial mammillary nucleus. GAP-like immunoreactive fibers were distributed in same areas that immunoreactive perikarya were observed. Many immunoreactive terminals were found adjacent to capillaries in the infundibulum. Immunoreactive dots, presumably terminals, were observed in the posterior pituitary and these were particularly evident along the margin adjacent to the anterior pituitary. The distribution pattern and density of GAP-like immunoreactive neuronal elements are compared with those of other mammalian species. We also compared GAP-like immunoreactive elements with that of GnRH as has been previously observed in the human hypothalamus.  相似文献   

5.
Summary GnRH-associated peptide (GAP)-like immunoreactive elements located in the human hypothalamus were investigated by PAP immunocytochemistry using specific antiserum against [pro-GnRH (14–69) OH]. Immunoreactive neuronal perikarya were distributed in the MPOA, PVN and infundibular nucleus, with the largest numbers of GAP-like immunoreactive perikarya found in the infundibular nucleus. We also detected the coexistence of GAP-like and GnRH-like immunoreactivities in the same neuronal perikarya in the MPOA by using a double immunolabelling procedure. In addition to the above regions immunoreactive neuronal perikarya were present in the region dorsal to the medial mammillary nucleus. GAP-like immunoreactive fibers were distributed in same areas that immunoreactive perikarya were observed. Many immunoreactive terminals were found adjacent to capillaries in the infundibulum. Immunoreactive dots, presumably terminals, were observed in the posterior pituitary and these were particularly evident along the margin adjacent to the anterior pituitary. The distribution pattern and density of GAP-like immunoreactive neuronal elements are compared with those of other mammalian species. We also compared GAP-like immunoreactive elements with that of GnRH as has been previously observed in the human hypothalamus.  相似文献   

6.
An antiserum raised against the synthetic tripeptide pyroglutamyl-histidyl-proline (free acid) was used to localize thyrotropin-releasing hormone (TRH) in the rat central nervous system (CNS) by immunocytochemistry. The distribution of TRH-immunoreactive structures was similar to that reported earlier; i.e., most of the TRH-containing perikarya were located in the parvicellular part of the hypothalamic paraventricular nucleus, the suprachiasmatic portion of the preoptic nucleus, the dorsomedial nucleus, the lateral basal hypothalamus, and the raphe nuclei. Several new locations for TRH-immunoreactive neurons were also observed, including the glomerular layer of the olfactory bulb, the anterior olfactory nuclei, the diagonal band of Broca, the septal nuclei, the sexually dimorphic nucleus of the preoptic area, the reticular thalamic nucleus, the lateral reticular nucleus of the medulla oblongata, and the central gray matter of the mesencephalon. Immunoreactive fibers were seen in the median eminence, the organum vasculosum of the lamina terminalis, the lateral septal nucleus, the medial habenula, the dorsal and ventral parabrachial nuclei, the nucleus of the solitary tract, around the motor nuclei of the cranial nerves, the dorsal vagal complex, and in the reticular formation of the brainstem. In the spinal cord, no immunoreactive perikarya were observed. Immunoreactive processes were present in the lateral funiculus of the white matter and in laminae V-X in the gray matter. Dense terminal-like structures were seen around spinal motor neurons. The distribution of TRH-immunoreactive structures in the CNS suggests that TRH functions both as a neuroendocrine regulator in the hypothalamus and as a neurotransmitter or neuromodulator throughout the CNS.  相似文献   

7.
The expression patterns of Tac2 and NK3 mRNA and of pep2, the neurokinin B (NKB) precursor protein, were compared in rats and mice. Pep2 immunoreactivity was observed in fibers, terminals, and perikarya in the brains of both species, but the number of NKB-immunoreactive cells was generally smaller in mice than in the corresponding nuclei in rats. Congruent distribution patterns of Tac2 mRNA and NKB were found in many nuclei of the thalamus and hypothalamus (habenula, anterodorsal nucleus, preoptic area, arcuate nucleus, paraventricular nucleus). However, mice expressed Tac2 mRNA neither in the hippocampus nor in the nucleus of the lateral olfactory tract, in contrast to rats. Accordingly, mice showed no NKB in the projection areas of these nuclei, such as the olfactory tubercle, whereas a clear NKB signal was present in rat tissues. Surprisingly, we found nearly identical NK3 mRNA expression patterns in both species, despite the species differences in NKB expression. Thus, although the expression patterns of Tac2 and NKB are similar in rats and mice, noteworthy differences exist. Our results have important implications for the interpretation of behavioral results concerning the NKB/NK3 system in these species. This study was supported by a grant from the Deutsche Forschungsgemeinschaft (FOR425/TPII)  相似文献   

8.
Summary Immunoreactive neuropeptide Y and dynorphin have been localized in the brain and pituitary gland of the platyfish, Xiphophorus maculatus, at different ages and stages of development from birth to sexual maturity. Immunoreactive neuropeptide Y was found in perikarya and tracts of the nucleus olfactoretinalis, telencephalon, ventral tegmentum and in the neurohypophysis and in the three regions of the adenohypophysis. Immunoreactive dynorphin was found in nerve tracts in the olfactory bulb and in cells of the pars intermedia and the rostral pars distalis of the pituitary gland.  相似文献   

9.
Antarctic notothenioids have developed unique freezing-resistance adaptations, including brain diversification, to survive in the subzero waters of the Southern Ocean surrounding Antarctica. In this study we have investigated the anatomical distribution of neuropeptide tyrosine (NPY)-like immunoreactive elements in the brain of the Antarctic fish Trematomus bernacchii, by using an antiserum raised against porcine NPY. Perikarya exhibiting NPY-like immunoreactivity were observed in distinct regions of the brain. The most rostral group of immunoreactive perikarya was found in the telencephalon, within the entopeduncular nucleus. In the diencephalon, three groups of NPY-like immunoreactive perikarya were found in the hypothalamus. Two groups of positive cell bodies were found in distinct populations of the preoptic nucleus, whereas the other group was found in the nucleus of the lateral recess. More caudally, NPY immunoreactivity was detected in large neurons located in the subependymal layers of the dorsal tegmentum of the mesencephalon, medially to the torus semicircularis. NPY-like immunoreactive nerve fibres were more widely distributed throughout the telencephalon to the rhombencephalon. High densities of nerve fibres and terminals were observed in several regions of the telencephalon, olfactory bulbs, hypothalamus, tectum of the mesencephalon and in the ventral tegmentum of the rhombencephalon. The distribution of NPY-like immunoreactive structures suggests that, in Trematomus, this peptide may be involved in the control of several brain functions, including olfactory activity, feeding behaviour, and somatosensory and visual information. In comparison with other neuropeptides previously described in the brain of Antarctic fish, NPY is more widely distributed. Our data also indicate the existence of differences in the brain distribution of NPY between Trematomus and other teleosts. In contrast with previous results reported in other fish, Trematomus contains positive fibres in the olfactory bulbs and immunoreactive perikarya in the nucleus of the lateral recess, whereas NPY-immunopositive cell bodies are absent in the thalamus and rhombencephalon, and no NPY immunoreactivity is present in the pituitary. These differences could be related to the Antarctic ecological diversity of notothenioids living at subzero temperatures.  相似文献   

10.
Summary The localization and distribution of prolactinlike-immunoreactive perikarya and nerve fibers in the rat central nervous system have been studied by a preembedding immunoperoxidase method using well-characterized specific immunsera to rat prolactin. Although the localization of labeled neuronal structures in a number of brain areas correlates with the data of previous immunocytochemical studies, we found prolactin-immunoreactive neurons in various regions not previously reported. In untreated animals, the highest concentrations of prolactinfibers were observed: (i) in the external layers of the median eminence where they exhibited close contact with blood vessels, and (ii) in the bed nucleus of the stria terminalis and in the central nucleus of the amygdala where they closely surrounded unlabeled perikarya. Dense networks of finely varicose prolactin fibers were also observed in the organum vasculosum of the lamina terminalis, in the subfornical organ, and in the dorsolateral regions of the medulla oblongata and the spinal cord. Lastly, a number of large, varicose, intensely immunoreactive fibers were found in the olfactory bulb, the cingulum, and the periventricular regions of the hypothalamus and central gray, whereas isolated fibers could be detected in the caudate nucleus and in the cerebral cortex. In animals treated with colchicine, prolactin-immunoreactive perikarya were essentially located within the periventricular and perifornical regions of the hypothalamus, and within the bed nucleus of the stria terminalis. Although corticotropin (ACTH 17-39)-immunoreactive fibers could be detected in several regions found to contain prolactin fibers, the distribution and organization of both fiber types clearly differed in numerous brain regions, and the regions containing the corresponding perikarya did not overlap. The ultrastructural organization of the prolactin-immunoreactive fibers revealed by electronmicroscopic immunocytochernistry in various brain regions, allowed the characterization of two main types of prolactinergic neurons including: (i) endocrine neurons, whose axons terminated in close vicinity to portal blood vessels in the external median eminence, and (ii) neurons projecting to extrahypothalamic regions, whose axons formed typical synaptic connections with unidentified neuronal units.  相似文献   

11.
Summary The distribution of aromatase-immunoreactive cells was studied by immunocytochemistry in the mouse forebrain using a purified polyclonal antibody raised against human placental aromatase. Labeled perikarya were found in the dorso-lateral parts of the medial and tuberal hypothalamus. Positive cells filled an area extending between the subincertal nucleus in the dorsal part, the ventromedial hypothalamic nucleus in the ventral part, and the internal capsule and the magnocellular nucleus of the lateral hypothalamus in the lateral part. The same distribution was seen in the two strains of mice that were studied (Jackson and Swiss), and the number of immunoreactive perikarya did not seem to be affected by castration or testosterone treatment. No immunoreactivity could be detected in the medial regions of the preoptic area and hypothalamus; these were expected to contain the enzyme based on assays of aromatase activity performed in rats and on indirect autoradiographic evidence in mice. Our data raise questions concerning the distribution of aromatase in the brain and the mode of action of the centrally produced estrogens.  相似文献   

12.
Summary The organization of Gn-RH systems in the brain of teleosts has been investigated previously by immunohistochemistry using antibodies against the mammalian decapeptide which differs from the teleostean factor. Here, we report the distribution of immunoreactive Gn-RH in the brain of goldfish using antibodies against synthetic teleost peptide.Immunoreactive structures are found along a column extending from the rostral olfactory bulbs to the pituitary stalk. Cell bodies are observed within the olfactory nerves and bulbs, along the ventromedial telencephalon, the ventrolateral preoptic area and the latero-basal hypothalamus. Large perikarya are detected in the dorsal midbrain tegmentum, immediately caudal to the posterior commissure. A prominent pathway was traced from the cells located in the olfactory nerves through the medial olfactory tract and along all the perikarya described above to the pituitary stalk. In the pituitary, projections are restricted to the proximal pars distalis. A second immunoreactive pathway ascends more dorsally in the telencephalon and arches to the periventricular regions of the diencephalon. Part of this pathway forms a periventricular network in the dorsal and posterior hypothalamus, whereas other projections continue caudally to the medulla oblongata and the spinal cord. Lesions of the ventral preoptic area demonstrate that most of the fibers detected in the pituitary originate from the preoptic region.  相似文献   

13.
Summary The distribution of salmon gonadotrophin-releasing hormone (sGnRH) was studied in the brain and pituitary of two-year-old immature sea bass (Dicentrarchus labrax) by means of an enzymoimmunoassay (EIA) for sGnRH and immunocytochemistry. The EIA for sGnRH is a competitive assay using a tracer made of sGnRH coupled to acetylcholinesterase from an electric eel. The separation of free and bound tracer is achieved by coating the plates with mouse anti-rabbit IgG monoclonal antibodies. Displacement curves generated by sGnRH and extracts from pituitary and different brain regions showed a good parallelism allowing the assay to be used for sGnRH measurements in this species. Although all parts of the brain contained measurable levels of sGnRH, the highest concentrations were found in the pituitary, the olfactory bulbs and the telencephalon. These data were confirmed by immunocytochemistry. Cell bodies were found in the olfactory bulbs, ventral telencephalon, preoptic region and mediobasal hypothalamus. Immunoreactive fibers could be observed in all parts of the brain including the optic tectum, the cerebellum (corpus and valvula), the vagal lobe, the medulla oblongata and the rostral spinal cord. In most cases, these fibers do not form well defined bundles; however, there was clearly a continuum of immunoreactive fibers, extending from the olfactory bulbs to the pituitary, and along which all the cell bodies described above were located. In the ventral telencephalon and the preoptic region, clear pictures of varicose positive fibers contacting immunoreactive perikarya could be observed. These data indicate that sGnRH is most likely an endogenous peptide in the brain of the sea bass, although the presence of other forms of GnRH cannot be excluded at this point. This study also demonstrates that the general organization of the GnRH systems in the sea bass is highly similar to what has been described in most freshwater teleost species, and provides basis for further studies on the neuroendocrine control of gonadotrophin release in this commercially important species.  相似文献   

14.
Glucagon-like peptide-1 (GLP-1), structurally similar to glucagon, synthesized from the precursor proglucagon, is a well known anorexigenic peptide in the brain of several animal species. However, there are no previous reports concerning GLP-1-containing neurons in the chick brain. The aim of the present study was to investigate the distribution of proglucagon mRNA and GLP-1-immunoreactive (GLI) perikarya in various regions of the chick brain. We detected proglucagon mRNA in the brainstem, and to a lesser extent in the telencephalon. In the brainstem, a study using immunohistochemistry revealed that GLI perikarya were present in the nucleus motorius nervi facialis pars dosalis, nucleus motoris dorsalis nervi vagi and nucleus tractus solitarii. Furthermore, we found that proglucagon mRNA expression in the brainstem decreased after 24 h fasting. The present findings support the idea that endogenous GLP-1 is involved in feeding behavior of chicks.  相似文献   

15.
Summary The avidin-biotin peroxidase technique was used to determine the distribution of natriuretic peptides in the hearts and brains of the dogfishSqualus acanthias and the Atlantic hagfishMyxine glutinosa. Three antisera were used: one raised against porcine brain natriuretic peptide which cross-reacts with atrial natriuretic and C-type natriuretic peptides (termed natriuretic peptide-like immunoreactivity); the second raised against porcine brain natriuretic peptide which cross-reacts with C-type natriuretic peptide, but not with atrial natriuretic peptide (termed porcine brain natriuretic peptide-like immunoreactivity); and the third raised against rat atrial natriuretic peptide (termed rat atrial natriuretic peptide-like immunoreactivity). Only natriuretic peptide-like immunoreactivity was observed in the heart ofS. acanthias which was most likely due to the antiserum cross-reacting with C-type natriuretic peptide. No immunoreactivity was found in theM. glutinosa heart. In the brain ofS. acanthias, natriuretic peptide-like immunoreactive fibres were located in many areas of the telencephalon, diencephalon, mesencephalon, rhombencephalon, and spinal cord. Extensive immunoreactivity was observed in the hypothalamo-hypophyseal tract and the neurointermediate lobe of the hypophysis. Natriuretic peptide-like immunoreactive perikarya were found in ventromedial regions of the telencephalon and in the nucleus preopticus. Most perikarya had short, thick processes which extended toward the ventricle. Another group of perikarya was observed in the rhombencephalon. Porcine brain natriuretic peptide-like immunoreactive fibres were observed in the telencephalon, diencephalon, mesencephalon, and rhombencephalon, but perikarya were only present in the preoptic area. In theM. glutinosa brain, natriuretic peptide-like immunoreactive fibres were present in all regions. Immunoreactive perikarya were observed in the pallium, primordium hippocampi, pars ventralis thalami, pars dorsalis thalami, nucleus diffusus hypothalami, nucleus profundus, nucleus tuberculi posterioris, and nucleus ventralis tegmenti. Procine brain natriuretic peptide-like immunoreactive perikarya and fibres had a similar, but less abundant distribution than natriuretic peptide-like immunoreactive structures. Although the chemical structures of natriuretic peptides in the brains of dogfish and hagfish are unknown, these observations show that a component of the natriuretic peptide complement is similar to porcine brain natriuretic peptide or porcine C-type natriuretic peptide. The presence of natriuretic peptides in the brain suggest they could be important neuromodulators and/or neurotransmitters. Furthermore, there appears to be divergence in the structural forms of natriuretic peptides in the hearts and brains of dogfish and hagfish.  相似文献   

16.
Summary The distribution of immunoreactive thyrotropin-releasing hormone (TRH) in the central nervous system of the domestic mallard was studied by means of the peroxidase-antiperoxidase technique. After colchicine pretreatment, the highest number of TRH-immunoreactive perikarya was found in the parvocellular subdivision of the paraventricular nucleus and in the preoptic region; a smaller number of immunostained perikarya was observed in the lateral hypothalamic area and in the posterior medial hypothalamic nucleus. TRH-immunoreactive nerve fibers were detected throughout the hypothalamus, forming a dense network in the periventricular area, paraventricular nucleus, preoptic-suprachiasmatic region, and baso-lateral hypothalamic area. TRH-containing nerve fibers and terminals occurred in the organon vasculosum of the lamina terminalis and in the external zone of the median eminence in juxtaposition with hypophyseal portal vessels. Scattered fibers were also seen in the internal zone of the median eminence and in the rostral portion of the neural lobe. Numerous TRH-immunoreactive fibers were detected in extra-hypothalamic brain regions: the highest number of immunoreactive nerve fibers was found in the lateral septum, nucleus accumbens, olfactory tubercle, and parolfactory lobe. Moderate numbers of fibers were located in the basal forebrain, dorsomedial thalamic nuclei, hippocampus, interpeduncular nucleus, and the central gray of the mesencephalon. The present findings suggest that TRH may be involved in hypophysiotropic regulatory mechanisms and, in addition, may also act as neuromodulator or neurotransmitter in other regions of the avian brain.  相似文献   

17.
Endozepines are a family of peptides capable of displacing benzodiazepines from their specific binding sites, to which belong the diazepam-binding inhibitor and the octadecaneuropeptide (ODN). This paper reports the distribution of ODN-related peptides, investigated for the first time by immunocytochemistry, in different brain and pituitary regions of the Atlantic hagfish, Myxine glutinosa. Immunoreactive ODN-like material was found in the telencephalon at the level of bundles of different olfactory nerve fibres. Moreover, at the level of the pallium, immunoreactive multipolar neurons were observed in the pars parvocellularis of the stratum griseum superficialis. Similar immunopositive nerve cell bodies were found in the nucleus medialis of the central prosencephalic complex. In the mesencephalon, few immunoreactive neurons lining and contacting the mesencephalic ventricle were detected; such nerve cells could be involved in the regulation of cerebrospinal fluid homeostasis. Dorsally in the mesencephalon, numerous ODN-containing cell bodies were present in the area praetectalis. The rhomboencephalon was immunostained only in the octavolateral area and in the nucleus motorius magnocellularis of the trigeminal nerve. Furthermore, ODN immunoreactivity was also present in the nerve cells of ganglia of the ophthalmic division of the trigeminal nerve complex. The immunocytochemical patterns described here in the brain of M. glutinosa suggest an involvement of ODN-like peptides as neuromodulators in sensory pathways, such as olfactory and visual. Finally, ODN-like substances were localized in discrete populations of adenohypophysial cells and in tanycytes lining the neurohypophyseal walls, suggesting for endozepines a paracrine and/or endocrine control of pituitary hormones release and a neurohormone role respectively. These results could give new insights into the chemioarchitecture of the brain of myxinoids.  相似文献   

18.
Abstract: Transketolase (TK; EC 2.2.1.1) is a key pentose phosphate shunt enzyme that plays an important role in the production of reducing equivalents and pentose sugars. TK activity declines in the brains of patients with Alzheimer's disease or Wernicke-Korsakoff syndrome, as well as in thiamine-deficient rats. Understanding the role of TK in the pathophysiology of these neurodegenerative conditions requires knowledge of its regional, cellular, and subcellular distribution within the brain. The current study employed in situ hybridization and immunocytochemistry to examine the distribution of TK mRNA and its encoded protein in adult rat brain. TK mRNA and protein were widely distributed throughout the brain. However, they were enriched in selective perikarya in the piriform cortex, nucleus of the diagonal band, red nucleus, dorsal raphe, pontine nucleus, locus coeruleus, trapezoid, inferior olive, and several cranial nerve nuclei. Lower expression of TK mRNA and protein occurred in layer V of cortex, olfactory tubercle, ventral pallidum, medial septal nucleus, hippocampus, thalamic and hypothalamic nuclei, mammillary body, central gray, and the substantia nigra. TK immunoreactivity also occurred in the nuclei of ubiquitously distributed glial cells, as well as ependymal cells. The heterogeneous distribution of TK may reflect a variety of metabolic activities among different brain regions but does not provide a simple molecular explanation for selective cell death in either thiamine deficiency or other conditions where TK is reduced.  相似文献   

19.
Summary The distribution of somatostatin (SRIF) — and corticotropin-releasing factor (CRF)-like — immunoreactive material was studied in the brain of four amphibian species (Ambystoma mexicanum, Pleurodeles waltlii, Xenopus laevis, Rana ridibunda) by use of immunocytochemistry. A wide network of SRIF-immunoreactive fibers and numerous perikarya were observed in all amphibians examined, with a dense accumulation of nerve endings in the external layer of the median eminence (ELME). In the representatives of the four amphibian species the CRF-like system was more circumscribed. Immunoreactive perikarya were present in the preoptic area, mainly in a ventrobasal position, and in the interpeduncular nucleus. The tract running along the ventral part of the tuber cinereum ends in the ELME facing the rostroventral lobe of the pars distalis that contains corticotrophs. CRF fibers were scarce or absent in the neural lobe. In all species studied in the present work, CRF fibers end in the area of the ELME close to the pituitary lobe containing corticotrophs. This correlation is similar to that reported for the Japanese quail and several teleosts.This work was supported by a grant from the Belgian Nationaal Fonds voor Geneeskundig Wetenschappelijk Onderzoek and the CNRS  相似文献   

20.
Summary The distribution of the molluscan cardioexcitatory tetrapeptide FMRFamide (Phe-Met-Arg-Phe-NH2) in the brain of the cloudy dogfish, Scyliorhinus torazame, was examined by immunocytochemistry. FMRFamide-like immunoreactivity was demonstrated to occur extensively in various regions of the dogfish brain, except for the corpus cerebelli. Immunoreactive neuronal perikarya were located in the ganglion of the nervus terminalis, the preoptic area, and the hypothalamic periventricular gray matter consisting of the nucleus medius hypothalamicus, the nucleus lateralis tuberis, and the nucleus lobi lateralis. some of the immunoreactive cells in the hypothalamus were identified as cerebrospinal fluid-contacting neurons. The bulk of the immunostained fibers in the nervus terminalis penetrated into the midventral portion of the telencephalon and ran dorsocaudally toward the basal telencephalon and hypothalamus, showing radial projections or ramifications. The labeled fibers were abundant in the midbasal part of the telencephalon and in the hypothalamus, where some fibers were found in loose networks around the cell bodies of the nucleus septi and hypothalamic periventricular nuclei. The fibers demonstrated in the hypothalamus terminated around the vascular wall of the primary capillary plexus of the median eminence or penetrated deeply into the pars intermedia of the hypophysis. These results suggest that, in the dogfish, an FMRFamide-like substance participates in the regulation of adenohypophysial function. This molecule may have a role as a neurotransmitter and/or neuromodulator in the central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号