首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Hematopoietic stem cells interact with a complex microenvironment both in vivo and in vitro. In association with this microenvironment, murine stem cells are maintained in vitro for several months. Fibroblast-like stromal cells appear to be important components of the microenvironment, since several laboratories have demonstrated that cloned stromal cell lines support hematopoiesis in vitro. The importance of the tissue of origin of such cell lines remains unknown, since systematic generation of stromal cell lines from adult tissues has never been accomplished. In addition, the capacity of stromal cell lines to support reconstituting stem cell has not been examined. We have previously described an efficient and rapid method for the immortalization of primary bone marrow stromal cell lines (Williams et al., Mol. Cell. Biol. 8:3864-3871, 1988) which can be used to systematically derive cell lines from multiple tissues of the adult mouse. Here we report the immortalization of primary murine lung, kidney, skin, and bone marrow stromal cells using a recombinant retrovirus vector (U19-5) containing the simian virus large T antigen (SV40 LT) and the neophosphotransferase gene. The interaction of these stromal cells with factor-dependent cells Patterson-Mix (FDCP-Mix), colony forming units-spleen (CFU-S), and reconstituting hematopoietic stem cells was studied in order to analyze the ability of such lines to support multipotent stem cells in vitro. These studies revealed that stromal cell lines from these diverse tissues were morphologically and phenotypically similar and that they quantitatively bound CFU-S and FDCP-Mix cells equally well. However, only those cell lines derived from bone marrow-supported maintenance of day 12 CFU-S in vitro. One lung-derived stromal cell line, ULU-3, supported the survival of day 8 CFU-S, but not the more primitive CFU-S12. A bone marrow-derived stromal cell line, U2, supported the survival of long-term reconstituting stem cells for up to 3 weeks in vitro as assayed by reconstitution 1 year post-transplant. These studies suggest that adherence of HSC to stromal cells is necessary but not sufficient for maintenance of these stem cell populations and that bone marrow provides specific signals relating to hematopoietic stem cell survival and proliferation.  相似文献   

2.
Xyloside supplementation of long-term bone marrow cultures (LTBMCs) has been reported to result in greatly enhanced proliferation of hematopoietic stem cells. This was presumed to be the result of xyloside-mediated perturbation of proteoglycan synthesis by marrow-derived stromal cells. To investigate this phenomenon, we first studied the effects of xyloside supplementation on proteoglycan synthesis by D2XRadII bone marrow stromal cells, which support hematopoietic stem cell proliferation in vitro. D2XRadII cells were precursor labelled with 35S-sulfate, and proteoglycans separated by ion exchange chromatography, isopyknic CsCl gradient centrifugation, and gel filtration HPLC. Xyloside-supplemented cultures showed an approximately fourfold increase in total 35S incorporation, mainly as free chondroitin-dermatan sulfate (CS/DS) glycosaminoglycan chains in the culture media. Both xyloside supplemented and nonsupplemented cultures synthesized DS1, DS2, and DS3 CS/DS proteoglycans as previously described. In contrast to previous reports, xyloside was found to inhibit hematopoietic cell growth in LTBMC. Inhibitory effects were observed both in cocultures of IL-3-dependent hematopoietic cell lines with supportive stromal cell lines and in primary murine LTBMCs. Xyloside was found to have a marked inhibitory effect on the growth of murine hematopoietic stem cells and IL-3-dependent hematopoietic cell lines in clonal assay systems and in suspension cultures. In contrast, dialyzed concentrated conditioned media from LTBMCs had no such inhibitory effects. These findings suggest that xyloside-mediated inhibition of hematopoietic cell growth in LTBMC resulted from a direct effect of xyloside on proteoglycan synthesis by hematopoietic cells.  相似文献   

3.
Y Akasaka 《Human cell》1990,3(3):193-200
Bone marrow and spleen are the major hematopoietic tissue in adult mice. However, little is known about the specific mechanism regulating hematopoiesis within these tissues. Since Dexter et al. first described conditions to maintain bone marrow hematopoiesis, long term bone marrow culture (LTBMC) has been developed in order to analyze the mechanism of the maintenance of proliferation and differentiation of hematopoietic stem cells in vitro. Furthermore, several stromal cell lines which are able to support the growth and differentiation of hematopoietic lineage, has been established from LTBMC. Although it is well known that bone marrow stromal cell lines are able to produce colony stimulating factors, it has been suggested that the stromal cell factors which involve membrane bound moieties must have a key role in the regulation of hematopoiesis. We expect that monoclonal antibodies to the surface of bone marrow stromal cells could detect such a critical stroma-associated protein that bounds the cell surface of the bone marrow stroma.  相似文献   

4.
Multipotent marrow stromal cell line is able to induce hematopoiesis in vivo.   总被引:12,自引:0,他引:12  
Several murine marrow stromal cells were established from murine bone marrow cultures. Stromal cell lines transfected with a tumor-inducing polyoma virus middle T antigen (MTAg) were inoculated into nude mice subcutaneously. KUSA-MTAg cells, one of these cell lines, led to the rapid local development of bone marrow consisting of trilineage hematopoietic cells and bone; other cell lines produced spindle cell sarcoma or hemangiosarcoma. These results suggested that a single stromal cell line, KUSA-MTAg cells, may induce hematopoietic stem cells or early progenitors of three lineages of hematopoietic cells in vivo. Interestingly, untransfected KUSA cells expressed three new mesenchymal phenotypes, osteocytes, adipocytes, and myotubes, after treatment with 5-azacytidine.  相似文献   

5.
The functional capacities of stromal cell lines to support stem cell activity are heterogeneous and the mechanism of how they support bone marrow cultures remains unclear. Recently, we reported a strategy of functional analysis in which a genetic approach is combined with phenotype-based complementation screening to search for a novel secreted growth factor from mouse bone marrow stroma called ShIF that supported proliferation of bone marrow cells. To investigate the role of stromal cells in hemopoiesis, we extended this strategy to search for stroma-derived proteins that induce cell proliferation by establishing stroma-dependent Ba/F3 mutants of three stroma cell lines from two mouse tissues. Seven stroma-dependent Ba/F3 mutants were used as responder cells to identify cDNAs from stroma cell lines whose products supported proliferation not only to the mutant cells but also to hemopoietic progenitor cells in vitro.  相似文献   

6.
Nitric oxide (NO) signaling is important for the regulation of hematopoiesis. However, the role of individual NO synthase (NOS) isoforms is unclear. Our results indicate that the neuronal NOS isoform (nNOS) regulates hematopoiesis in vitro and in vivo. nNOS is expressed in adult bone marrow and fetal liver and is enriched in stromal cells. There is a strong correlation between expression of nNOS in a panel of stromal cell lines established from bone marrow and fetal liver and the ability of these cell lines to support hematopoietic stem cells; furthermore, NO donor can further increase this ability. The number of colonies generated in vitro from the bone marrow and spleen of nNOS-null mutants is increased relative to wild-type or inducible- or endothelial NOS knockout mice. These results describe a new role for nNOS beyond its action in the brain and muscle and suggest a model where nNOS, expressed in stromal cells, produces NO which acts as a paracrine regulator of hematopoietic stem cells.  相似文献   

7.
本实验对基质细胞造血刺激因子-1(SHF-1)的体外生物活性进行了研究。结果表明,SHF-1可刺激小鼠骨髓CFU-E、BFU-E、CFU-GM、CFU-Mix集落的形成,它产生的这些广泛造血刺激作用是其自身所具活性的直接影响。正常小鼠骨髓细胞与SHF-1在体外孵育4h,其中CFU-S的自杀率可提高约10%,显示它对造血干细胞也有诱导增殖作用。  相似文献   

8.
Bone marrow stromal microenvironment is essential for the maintenance of the hematopoietic stem cell renewal both by cell-cell interaction and cytokine production. However, stromal cells also exhibit drug metabolizing activities and they may accumulate the drug and successively affect hematopoietic progenitors by a retarded release. Our study investigated the role of both primary culture of murine bone marrow stroma and established stromal cells (SR-4987) in modulating the "in vitro" toxic activity of Doxorubicin (DXR) against murine granulocyte-macrophage progenitors (CFU-GM). The main part of the study has been performed by a "in vitro" agar bilayer technique based on the CFU-GM assay performed over a feederlayer of stromal cells. The results suggest that bone marrow stromal cells play also an important role in decreasing the toxicity of Doxorubicin. Further SR-4987 stromal cells produce a Doxorubicin metabolite (not belonging to the series of metabolites described in literature) which is completely ineffective in inhibiting the growth of CFU-GM and the activity of topoisomerase I. Our data suggest that bone marrow stromal cells must be considered as a cell population having opposite pharmacological roles in modulating the drug toxicity on hematopoietic progenitors. In our model a mechanism of detoxification concerns the capacity of SR-4987 stromal cells to inactivate the drug. For a better prediction of drug hematotoxicity, it is very important to develop "in vitro" cell models able to discriminate between positive and negative modulation of drug toxicity that stromal cells can exert in the bone marrow microenvironment.  相似文献   

9.
Interleukin 3-dependent hematopoietic progenitor cell lines   总被引:11,自引:0,他引:11  
Several biological phenotypes of growth factor-dependent cell lines have been described in recent years, including those with T lymphocyte, neutrophil granulocyte, basophil/mast cell, B lymphocyte, and multipotential stem cell properties. The growth factors for each cell lineage are a subject of intense study. Continuous mouse bone marrow cultures infected with RNA type C viruses (retroviruses) produce nonadherent hematopoietic cells over a longer duration than control cultures. Marrow cultures derived from strains with spontaneously induced ecotropic endogenous retrovirus demonstrate a greater longevity than those from strains with no replicating virus. Cultures infected with murine leukemia virus also generate a greater number, compared with controls, of cloned permanent suspension cell lines dependent for growth on a 41,000-dalton glycoprotein (interleukin 3 [IL 3]). Some are multipotential with capacity for differentiation to erythroid, neutrophil, eosinophil, and basophil/mast cell types. Other cloned IL 3-dependent cell lines are committed to a single pathway. Studies with Friend spleen focus-forming virus indicate that the first effect in the marrow culture is mediated through a subset of adherent hematopoietic stem cells. Bone marrow culture-derived IL 3-dependent cell lines provide a model with which to study the role of viral genes in the control of differentiation and self-renewal capacity of hematopoietic stem cells.  相似文献   

10.
Bone marrow stromal cell lines have been isolated that directly support B lymphopoiesis in vitro. Single B-lineage precursors proliferate and differentiate on certain of these stromal cell lines to establish long-term B-lineage cultures. These lymphopoietic stromal cells produce novel soluble factors that support proliferation of in vitro established pre-B cell populations. Lymphoid populations established on lymphopoietic stromal cell lines lack surface Ig-bearing cells, but give rise to surface Ig+ cells when transferred to mixed bone marrow feeder layers. Several stromal lines expressed a B-lineage neoplasia marker detected by the monoclonal antibody MAb6C3. Remarkably, only the 6C3Aghi stromal lines supported long-term proliferation of B-lineage cells. We propose that the 6C3 antigen-bearing molecule may play a role in stromal cell-dependent, pre-B cell proliferation, as well as in neoplastic proliferation of pre-B leukemias.  相似文献   

11.
12.
Ontogeny-specific differences in hematopoietic behavior may be influenced by unique adhesive interactions between hematopoietic cells and the microenvironment, such as that mediated by vascular cell adhesion molecule-1 (VCAM-1, CD 106). Although VCAM-1 is variably expressed during vertebrate development, we hypothesized that VCAM-1 expression might be linked to the enhanced capacity of the fetal liver microenvironment to support hematopoiesis. To test this we used immortalized murine stromal cell lines derived from midgestation fetal liver and adult bone marrow to compare the functional expression of VCAM-1. Molecular analysis of VCAM-1 expression was performed on stromal cell lines using Northern blot analysis, immunoprecipitation studies, and solid-phase enzyme-linked immunosorbent assay. Hematopoietic studies were performed by coculturing fetal liver cells with stromal cell lines, and the functional readout was determined by high-proliferative potential colony-forming cell (HPP-CFC) adherence assays. In contrast to our initial hypothesis, we observed greater expression of VCAM-1 messenger ribonucleic acid and protein on an adult marrow stromal cell line. In functional studies, anti-VCAM-1 antibody inhibited the binding of nearly half of the HPP-CFCs to adult marrow stroma but had a minimal effect on their binding to fetal liver stroma, despite the greater adherence of HPP-CFCs to fetal stroma. We conclude that VCAM-1 influences the hematopoietic supportive capacity of immortalized murine stroma derived from adult bone marrow. Our studies suggest that cellular interactions other than those mediated by VCAM-1 are involved in the increased adhesive capacity of immortalized murine stroma derived from fetal liver.  相似文献   

13.
Adipogenesis in a myeloid supporting bone marrow stromal cell line.   总被引:3,自引:0,他引:3  
The bone marrow stroma contains pre-adipocyte cells which are part of the hemopoietic microenvironment. Cloned stromal cell lines differ both in their ability to support myeloid and lymphoid development and in their ability to undergo adipocyte differentiation in vitro. These processes have been examined in the +/+2.4 murine stromal cell line and compared to other stromal and pre-adipocyte cell lines. In long-term cultures, the +/+2.4 stromal cells support myeloid cell growth, consistent with their expression of macrophage-colony stimulating factor mRNA. However, despite the presence of mRNA for the lymphoid supportive cytokines interleukins 6 and 7, +/+2.4 cells failed to support stromal cell dependent B lineage lymphoid cells in vitro, suggesting that these stromal cells exhibit only a myelopoietic support function. The +/+2.4 cells differentiate into adipocytes spontaneously when cultured in 10% fetal bovine serum. The process of adipogenesis can be accelerated by a number of agonists based on morphologic and gene marker criteria. Following induction with hydrocortisone, methylisobutylxanthine, indomethacin, and insulin in combination, a time dependent increase in the steady state mRNA and enzyme activity levels of the following adipocyte specific genes was observed: adipocyte P2, adipsin, CAAT/enhancer binding protein, and lipoprotein lipase. In contrast, adipogenesis was accompanied by a slight decrease in the signal intensity of the macrophage-colony stimulating factor mRNA level, similar to that which has been reported in other bone marrow stromal cell lines. These data demonstrate that although the lympho-hematopoietic support function of pre-adipocyte bone marrow stromal cell lines is heterogeneous, they share a common mechanism of adipogenesis.  相似文献   

14.
The adherent stromal layer in long-term bone marrow cultures (LTBMC) provides the cellular environment necessary for the in vitro proliferation and differentiation of pluripotential hematopoietic stem cells. The role of humoral hematopoietic growth factors, colony-stimulating factors (CSF) in the regulation of hematopoietic cell production in this system is poorly understood. We have recently isolated and cloned an adherent cell line, D2XRII, derived from murine LTBMC. Plateau phase 25 cm2 cultures of 2 X 10(6) D2XRII cells in 8.0 ml produced CSF-1 (M-CSF) at around 100-150 units/0.1 ml medium. Following X-irradiation there was a dose-dependent decrease in the production of CSF-1 to a plateau of 50% of control levels at 10,000 rad. Higher doses did not produce a further decrease. The X-ray dose reducing CSF-1 production to 50% was 100-fold above the lethal dose as measured by clonagenic survival following trypsinization and replating. Trypsinized replated viable adherent but nondividing X-irradiated D2XRII cells were maintained for up to 8 weeks after irradiation and demonstrated continuous production of CSF-1. The data indicate significant divergence of two biologic effects of X-irradiation on plateau-phase marrow stromal cells: physiologic function of adherence and CSF-1 production, versus proliferative integrity. This divergence of effects may be very relevant to understanding the mechanism of X-irradiation-associated marrow suppression and leukemogenesis.  相似文献   

15.
We derived stromal cell lines from mouse thymus using methods previously established for bone marrow stroma. Two main morphologically distinct groups of cell strains emerged: epithelioid and mixed fibroblast-macrophage. Transmission electron microscopy revealed frequent junctional-complex formations between adjacent cells, a feature that characterized almost all of the thymus stromal lines, but was confined to only one of the five distinct subtypes of cell lines from bone marrow. In contrast to marrow stromal cells, the thymus-derived cell lines were all negative with fat-detecting reagents, had low acid phosphatase and no basic phosphatase activities and were unable to support the in vitro proliferation of myeloid progenitor cells (CFU-gm). Leukemia cell inhibitory activity (LCIA) was detected in one of the thymus stromal cell lines. The differences observed between cell lines derived from the stroma of the thymus and those from bone marrow may relate to the functional specificities of these organs.  相似文献   

16.
17.
Stromal cell lines derived from murine bone marrow support the growth of immature pre-B cells and produce cytokines that affect the growth and differentiation of other hematopoietic precursors. Conditioned medium (CM) from one such line (TC-1) stimulated marked proliferation of B cells previously activated by anti-Ig (anti-Ig blasts). Proliferation of anti-Ig blasts was not induced by purified cytokines known to be produced by TC-1 (CSF-1, GM-CSF, or G-CSF) or by IL-1, IL-2, IL-3, IL-4, IL-5, or IL-6. Furthermore, IL-2, IL-4, and IL-5, alone or in combination, failed to support proliferation or differentiation of anti-Ig blasts. TC-1 CM enhanced proliferation of B cells that were co-cultured with LPS, anti-Ig, or dextran sulfate; co-stimulation with anti-Ig was unaffected by the presence of monoclonal anti-IL-4. Proliferation of low, but not high, density B cells isolated from spleen was directly stimulated by TC-1 CM. These results suggest that bone marrow stromal cells produce a novel B cell stimulatory factor (BSF-TC) that induces proliferation of activated B cells.  相似文献   

18.
Summary Long-term cultures (LTC) producing dendritic cells (DC) have been previously established from spleen. LTC support the development of nonadherent cells comprising small DC progenitors and immature DC. Similarly, the splenic stroma STX3, derived from a LTC which ceased DC production, can support DC development from precursors in overlaid bone marrow. The STX3 stroma is an immortalised mixed population of endothelial cells and elongated spindle-shaped cells, thought to be fibroblasts. The stromal cell components of STX3 have been studied here. A panel of 102 cell lines was established by single-cell sorting. A range of clone morphology, including cobblestone cells and elongated spindle-shaped cells, was reflective of heterogeneity in STX3. However, similar expression levels for the endothelial genes ACVRL1/ALK1, COL18A1, and MCAM in 13 splenic stromal cell lines suggested that both cell types had endothelial origin. The hematopoietic support function of stromal clones was tested in coculture assays with a bone marrow cell overlay. Splenic stromal cell lines with different morphology were both supporters and nonsupporters of hematopoiesis, in terms of foci formation or release of suspension cells. Cloning of STX3 led to the isolation of a panel of splenic endothelial cell lines heterogeneous in terms of morphology and hematopoietic support function.  相似文献   

19.
Modification of expression of stem cell factor by various cytokines.   总被引:6,自引:0,他引:6  
The local production of stem cell factor (SCF) may be an important mechanism for regulating proliferation, differentiation, and migration of various cells bearing c-kit receptors, and might be susceptible to the cytokines that serve in inflammation and tissue repair. We have demonstrated that in three murine cell lines, Balb/3T3A31, MC3T3-E1, and C3H-2K, which constitutively produced SCF with different quantity, the SCF mRNA expression was greatly enhanced in response to basic fibroblast growth factor (bFGF) or transforming growth factor beta1 (TGF-beta1). The study was carried out by in situ hybridization utilizing nonradioactive oligonucleotide probes and quantitative image analysis. Leukemia inhibitory factor (LIF) or interleukin-4 (IL-4) moderately increased SCF mRNA in all cell lines, but IL-3 did not. The dot-blot enzyme-linked immunosorbent assay (ELISA) further confirmed that SCF protein production in these cell lines and bone marrow stromal cells was markedly enhanced by TGF-beta1, although TGF-beta1 suppressed the proliferation of all these cells. bFGF also enhanced the SCF production in these cell lines, but did not in bone marrow stromal cells, suggesting a difference in their susceptibility to the cytokine. Our results suggest that TGF-beta1 and bFGF potentially modulate the biological function of cells bearing c-kit receptors through the modulation of SCF production in fibroblasts.  相似文献   

20.
Bone marrow stromal cell lines (TBR cell lines) established from temperature-sensitive Simian Virus 40 T-antigen gene transgenic mice exhibited myogenic, osteogenic, and adipogenic differentiation. The effect of oncostatin M (OSM) on such mesenchymal cell differentiation of marrow stromal cell lines was examined. One of those stromal cell lines, TBRB, differentiated into skeletal muscle, and its differentiation was stimulated by OSM, whereas differentiation of TBR10-1 into smooth muscle was inhibited by OSM. TBR31-2 is a bipotent progenitor for adipocytes and osteoblasts, and OSM stimulated osteogenic differentiation while inhibiting adipogenic differentiation. On the other hand, TBR cell lines exhibited various potentials for supporting hematopoiesis in culture. When hematopoietic progenitor cells were cocultured with OSM-stimulated stromal cell lines, TBR10-1 and TBR31-2 exhibited enhanced hematopoietic supportive activity. As responsible molecules for stromal cell dependent hematopoiesis, expression of stem cell factor (SCF) (a ligand of c-Kit), vascular cell adhesion molecule (VCAM-1) (a ligand of VLA-4), and secretion of interleukin (IL)-6 were increased by OSM. OSM affected mesenchymal cell differentiation and promoted the hematopoietic supportive activity of marrow stromal cell lines. As OSM production is induced by cytokines from hematopoietic cells, OSM may be a key factor in mutual regulation between hematopoietic cells and stromal cells in the bone marrow. OSM may play a role as a regulator in maintaining the hematopoietic microenvironment in marrow by coordinating mesenchymal differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号