首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
One of the intriguing questions about complex organisms is, What holds them together? One of the principal answers is the rough, fibrous material known as collagen. A related question is, How is collagen made? The biosynthesis of the protein has several unusual features. One is the extensive use of the principle of spontaneous self-assembly seen in the formation of crystals. The three polypeptide chains of the protein fold into a triple-helical conformation by a process that begins with the formation of a small nucleus of triple helix at the C-terminus of the molecule and then propagation of the nucleus in a zipper-like fashion. Also, the self-assembly of the collagen monomers into fibrils is an entropy driven, crystallization-like process. Why do some of them fall apart? Mutations that alter the expression or primary structure of collagen are the predominant causes of severe skeletal defects such as osteogenesis imperfecta and chondrodysplasias. Mutations that have milder effects on the synthesis or structure of the protein are found in a subset of patients with more common diseases such as osteoporosis and early onset osteoarthritis. What can we do about the defects in collagen? Recent results have emphasized the importance of earlier observations that bone marrow contains a small subset of cells that are progenitors of osteoblasts, chondroblasts and several other types of non-hematopoietic cells. After systemic infusion into irradiated mice, the infused cells slowly replace a small fraction of the cells in bone, cartilage, lung and several other tissues. Therefore, the results suggest that the cells, known as mesenchymal stem cells or marrow stromal cells, can be used for both cell and gene therapy of diseases in which bone, cartilage and other connective tissues fall apart.  相似文献   

3.
Nitric oxide inhibits wound collagen synthesis   总被引:3,自引:0,他引:3  
Nitric oxide (NO) is a messenger molecule which regulates many physiological functions like immunity, vascular tone and serves as a neurotransmitter. Although it is known to participate in healing process, its role in collagen synthesis is not clear. Therefore, the present investigation was done to study the role of NO in wound collagen synthesis. Rats received full thickness, circular (8 mm), transdermal wounds which were treated with NO releaser, sodium nitroprusside (SNP, 0.001 100 M) topically for 5 days. Wound collagen content estimated in terms of hydroxyproline (HP) and confirmed histochemically was decreased significantly by all SNP doses. L-Arginine, a substrate for nitric oxide synthase (NOS) when applied topically decreased collagen content of the wounded tissues. N-Nitro-L-arginine methyl ester (L-NAME), a competitive inhibitor of NOS, increased wound collagen content significantly as compared to untreated and SNP treated animal wounds when administered intraperitoneally at the doses 3, 10 and 30 mg/kg. Furthermore, histological findings also demonstrated laying down of thick collagen bundles and proliferation of fibroblasts together with prominent angiogenesis in L-NAME treated wound tissues as compared to untreated and SNP treated tissues. N-nitro-D-arginine methyl ester, an inactive isomer, was found to have no effect on wound collagen levels. When L-arginine was administered in L-NAME pretreated rats, it significantly elevated wound HP content. The results indicate that NO plays an important role in regulating the collagen biosynthesis in skin model of a healing wound.  相似文献   

4.
Recent studies have indicated that maternal skeletal metabolism undergoes significant changes during gestation. The agents that are responsible for eliciting these changes in bone turnover during pregnancy have yet to be defined. We therefore sought to investigate whether chaperonin 10 (Cpn10), a homolog of early-pregnancy factor, or human placental lactogen (PL) were capable of influencing the synthesis of type I collagen by human osteoblasts in vitro. Both Cpn10 and PL are major components of the maternal circulation during pregnancy, but how they might contribute to bone metabolism has not been determined. Type I collagen represents the most abundant component of bone tissue, accounting for approximately 90% of the organic compartment. Both Cpn10 and PL were capable of stimulating the synthesis of type I collagen by human osteoblasts in culture. The inclusion of 17 beta-estradiol or prolactin, however, failed to influence the ability of cells to mobilize type I collagen. These novel findings support a role for PL and Cpn10 in the metabolism of bone tissue during pregnancy. Maternal bone collagen metabolism is clearly an important event during pregnancy, and the identification of the factors responsible will aid our understanding of the regulation of skeletal metabolism during gestation.  相似文献   

5.
6.
Effect of beta-aminopropionitrile and ascorbate on fibroblast migration   总被引:1,自引:0,他引:1  
Ascorbate and beta-aminopropionitrile (BAPN) have direct, but diverse affects on collagen matrix production. Ascorbate is necessary for the intracellular hydroxylation of prolyl and lysyl residues during collagen biosynthesis whereas BAPN inhibits the enzyme lysyl oxidase in the extracellular space thus preventing collagen crosslink formation. To study the influence of these two agents on fibroplasia, an in vitro model was used to analyze fibroblast migration, proliferation, and collagen synthesis. Biopsies of chicken tendon were covered with a fibrin clot to simulate an in vivo wound environment, and then they were exposed to either ascorbate or BAPN for up to 7 days. Fibroblast migration into the fibrin clot was measured using a Zeiss Mopp II planimeter, DNA synthesis by 125IUDR incorporation, and collagen synthesis by [3H]proline incorporation into collagenase-digestible protein. Tendon biopsies treated daily with fresh ascorbate (0.1 mM) had significantly greater fibroblast migration than controls without ascorbate (P less than 0.05). Cellular proliferation, collagen synthesis, and total protein synthesis were not significantly altered by ascorbate treatment. In contrast, BAPN inhibited fibroblast migration in a dose-dependent fashion without inhibiting proliferation (0.25 and 0.5 mM), collagen, and noncollagen protein synthesis. Therefore, the effect of BAPN on migration does not appear to be due to generalized cytotoxicity. These combined studies suggest that compounds such as ascorbate and BAPN which can modify collagen may also modify fibroblast migration.  相似文献   

7.
Although insulin-like growth factor-I (IGF-I) is known as an important stimulator of collagen biosynthesis in collagen-producing cells, the mechanism and endpoints by which it regulate the process remain largely unknown. Serum of acutely fasted rats contained reduced amount of IGF-I (72+/-16 ng/ml) and showed about 75% reduced ability to stimulate collagen and DNA synthesis in confluent human skin fibroblasts in comparison to the effect of control rat serum (IGF-I, 168+/-19 ng/ml). An addition of IGF-I (at least 40 ng/ml) to fasted rat serum restored its mitogenic activity but could not restore its ability to stimulate collagen biosynthesis to control values during 24 h of incubation. However, when the cells were incubated in fasted rat serum supplemented with 40 ng/ml of IGF-I for 48 h, collagen biosynthesis was restored to control values. It suggests that the stimulatory role of IGF-I in collagen biosynthesis undergo indirectly. We considered pyrroline-5-carboxylate (P5C) as a candidate to play a direct role in this process. Since IGF-I and P5C are known to be decreased in serum of fasted rats it seems that the action of IGF-I on collagen biosynthesis may involve participation of P5C. We have found that serum of fasted rats (showing low level of P5C) supplemented with 1 mmol/l P5C induced collagen biosynthesis in confluent human skin fibroblasts during 24 h to control values. Supporting evidence comes from the experiment showing stimulatory action of P5C on collagen biosynthesis in fibroblasts cultured in serum-free medium. Our results postulate potential role of P5C in regulation of collagen biosynthesis and indicate participation of this molecule in the pathway of IGF-I action in this process.  相似文献   

8.
Summary Basic fibroblast growth factor (bFGF) can influence proliferation and differentiation in vascular smooth muscle cells. Basic FGF promotes some features of the synthetic phenotype (proliferation) but is known to inhibit others (collagen synthesis). Whether bFGF availability influences smooth muscle cell phenotype independent of proliferation is not known. The purpose of this study was to determine if the effects of bFGF on extracellular matrix and contractile protein expression are dependent on changes in proliferation. Basic FGF availability was manipulated by adding bFGF to cultured cells or by inhibiting bFGF expression using antisense RNA, and adjusting culture conditions such that proliferation was held constant. Compared to cells cultured in serum alone, smooth muscle α-actin and myosin heavy chain expression was markedly reduced by added bFGF, but was not influenced by antisense inhibition of bFGF expression. Under the same conditions, collagen synthesis was inhibited by added bFGF, and was stimulated by reduced bFGF expression. These consequences of altering bFGF availability were not associated with changes in FGF receptor expression. These findings demonstrate that alterations in bFGF availability can regulate smooth muscle cell phenotype independent of proliferation, which may be related to the regulation of smooth muscle cell phenotype in vivo.  相似文献   

9.
Methionine aminopeptidase (MetAP) is a bifunctional protein that plays a critical role in the regulation of post-translational processing and protein synthesis. In yeasts and humans, two proteins are known to possess MetAP activity, which are known as MetAP1 and MetAP2. MetAP2 has attracted much more attention than MetAP1 due to the discovery of MetAP2 as a target molecule of the anti-angiogenic compounds, fumallin and ovalicin. MetAP2 plays an important role in the development of different types of cancer. Recently, we observed a high expression of MetAP2 in human colorectal cancer tissues and colon cancer cell lines. In addition, pp60(c-src) expression was correlated with the expression of MetAP2 and N-myristoyltransferase. In this review, we discuss the recent developments of MetAP2 and its inhibitors. Future detailed studies related to MetAP2 and apoptosis will shed light on the involvement of this enzyme in the regulation of various apoptotic factors.  相似文献   

10.
11.
Excessive deposition of extracellular matrix, mainly collagen protein, is the hallmark of organ fibrosis. The molecular mechanisms regulating fibrotic protein biosynthesis are unclear. Here, we find that chemoattractant receptor homologous molecule expressed on TH2 cells (CRTH2), a plasma membrane receptor for prostaglandin D2, is trafficked to the endoplasmic reticulum (ER) membrane in fibroblasts in a caveolin‐1‐dependent manner. ER‐anchored CRTH2 binds the collagen mRNA recognition motif of La ribonucleoprotein domain family member 6 (LARP6) and promotes the degradation of collagen mRNA in these cells. In line, CRTH2 deficiency increases collagen biosynthesis in fibroblasts and exacerbates injury‐induced organ fibrosis in mice, which can be rescued by LARP6 depletion. Administration of CRTH2 N‐terminal peptide reduces collagen production by binding to LARP6. Similar to CRTH2, bumetanide binds the LARP6 mRNA recognition motif, suppresses collagen biosynthesis, and alleviates bleomycin‐triggered pulmonary fibrosis in vivo. These findings reveal a novel anti‐fibrotic function of CRTH2 in the ER membrane via the interaction with LARP6, which may represent a therapeutic target for fibrotic diseases.  相似文献   

12.
Fibroblasts cultivated in three-dimensional tissue-like matrices are characterized by a slowed metabolism and a decrease of protein synthesis, unless they are submitted to physical tensions. We checked the effects of insulin like growth factor-I (IGF-I), known as a potent stimulator of mitogenesis and protein synthesis for many cell types, in various models of cultures: confluent monolayers, collagen lattices, non-retracting or retracting fibrin lattices. IGF-I (1-100 ng.ml-1) had no effect on cell divisions in lattice cultures. It was able to stimulate collagen lattice retraction when the medium was supplemented with low concentrations of serum. IGF-I at 10 or 100 ng.ml-1 stimulated collagen and non-collagen syntheses in all culture systems, but stimulation of collagen synthesis only began at the highest concentration (100 ng.ml-1) in retracted lattices. Northern blot and dot-blot analyses of mRNAs extracted from monolayer cultures of fibroblasts showed that IGF-I stimulated pro alpha 1(I) collagen synthesis at the pretranslational level. Cycloheximide (7.5 micrograms.ml-1) completely inhibited pro alpha 1(I) collagen gene expression induced by IGF-I. These results show that IGF-I is a potent stimulus for protein synthesis and collagen gene expression in monolayers and tridimensional cultures of fibroblasts, but that it exerts no mitogenic activity in tridimensional lattices. Synergistic associations of IGF-I with other growth factors will have to be found in order to reverse the quiescent status of fibroblasts in lattices.  相似文献   

13.
Articular cartilage extracellular matrix (ECM) plays a crucial role in regulating chondrocyte functions via cell-matrix interaction, cytoskeletal organization and integrin-mediated signaling. Factors such as interleukins, basic fibroblast growth factor (bFGF), bone morphogenic proteins (BMPs) and insulin-like growth factor (IGF) have been shown to modulate the synthesis of extracellular matrix in vitro. However, the effects of TGF-beta1 and beta-estradiol in ECM regulation require further investigation, although there have been suggestions that these factors do play a positive role. To establish the role of these factors on chondrocytes derived from articular joints, a study was conducted to investigate the effects of TGF-beta1 and beta-estradiol on glycosaminoglycan secretion and type II collagen distribution (two major component of cartilage ECM in vivo). Thus, chondrocyte cultures initiated from rabbit articular cartilage were treated with 10ng/ml of TGF-beta1, 10nM of beta-estradiol or with a combination of both factors. Sulphated glycosaminoglycan (GAG) and type II collagen levels were then measured in both these culture systems. The results revealed that the synthesis of GAG and type II collagen was shown to be enhanced in the TGF-beta1 treated cultures. This increase was also noted when TGF-beta1 and beta-estradiol were both used as culture supplements. However, beta-estradiol alone did not appear to affect GAG or type II collagen deposition. There was also no difference between the amount of collagen type II and GAG being expressed when chondrocyte cultures were treated with TGF-beta1 when compared with cultures treated with combined factors. From this, we conclude that although TGF-beta1 appears to stimulate chondrocyte ECM synthesis, beta-estradiol fails to produce similar effects. The findings of this study confirm that contrary to previous claims, beta-estradiol has little or no effect on chondrocyte ECM synthesis. Furthermore, the use of TGF-beta1 may be useful in future studies looking into biological mechanisms by which ECM synthesis in chondrocyte cultures can be augmented, particularly for clinical application.  相似文献   

14.
The substantial loss in the stratospheric ozone layer and consequent increase in solar ultraviolet radiation on the earth’s surface have augmented the interest in searching for natural photoprotective compounds in organisms of marine as well as freshwater ecosystems. A number of photoprotective compounds such as mycosporine-like amino acids (MAAs), scytonemin, carotenoids and several other UV-absorbing substances of unknown chemical structure have been identified from different organisms. MAAs form the most common class of UV-absorbing compounds known to occur widely in various marine organisms; however, several compounds having UV-screening properties still need to be identified. The synthesis of scytonemin, a predominant UV-A-photoprotective pigment, is exclusively reported in cyanobacteria. Carotenoids are important components of the photosynthetic apparatus that serve both light-harvesting and photoprotective functions, either by direct quenching of the singlet oxygen or other toxic reactive oxygen species or by dissipating the excess energy in the photosynthetic apparatus. The production of photoprotective compounds is affected by several environmental factors such as different wavelengths of UVR, desiccation, nutrients, salt concentration, light as well as dark period, and still there is controversy about the biosynthesis of various photoprotective compounds. Recent studies have focused on marine organisms as a source of natural bioactive molecules having a photoprotective role, their biosynthesis and commercial application. However, there is a need for extensive work to explore the photoprotective role of various UV-absorbing compounds from marine habitats so that a range of biotechnological and pharmaceutical applications can be found.  相似文献   

15.
This study was undertaken with the aim of developing an easy and quick means of analyzing the effect of various compounds on the synthesis and secretion of human type I collagen at the protein level. A modification of the ELISA method was used on HFF-1 cells. For the proof of concept, we used thirteen compounds most of which are known to be antioxidants. Each compound was tested at concentrations of 0, 10 and 100 microM on HFF-1 cells for 24 h. Thirteen sets of experiments for each compound were performed in ANOVA with three replicates. Duncan multiple range test (DMRT) was used to compare the mean values obtained from the treatment groups. From the results it was concluded that Vitamin C, undecylenic acid, conjugated linoleic acid, glycolic acid, and citric acid at 100 microM concentration could be used for anti-wrinkling or protection from premature aging, which requires enhancement of collagen synthesis. Lactic acid, EGCG, resveratrol, and retinol that can inhibit collagen synthesis effectively in a dose-dependent manner may be used for anti-fibrosis treatment purposes.  相似文献   

16.
Based on previous observations indicating a role for collagen peptides in eliciting a positive feedback for collagen biosynthesis, this study was initiated to elucidate the effect of non-crosslinked collagen on granulation tissue formation in dermal excision wounds. The wounds were treated with either non-crosslinked or crosslinked native collagen, or left untreated as controls. Granulation tissue was analyzed for collagen type I mRNA, for levels of interstitial collagen and for the number of blood vessels. The results indicated significant increases in procollagen type I mRNA, in interstitial collagen, in the number of blood vessels and in epithelial advance in the non-crosslinked collagen-treated wounds relative to the untreated controls. It is assumed that the presence of non-crosslinked collagen in a healing wound enhances both procollagen type I biosynthesis and the repair process of dermal wounds, due to the more readily released collagen peptides derived from this exogenous collagen dressing.  相似文献   

17.
Collagen VI is a component of the extracellular matrix that is able to form structural links with cells. Collagen VI monomers cross-link into tetramers that come together to form long molecular chains known as microfibrils. Collagen VI tetramers are also the most likely candidates for the formation of banded aggregates with an axial periodicity of about 105 nm that are seen in the retinas of people suffering from age-related macular degeneration and Sorsby's fundus dystrophy, in the vitreous of patients with full thickness macular holes and in the intervertebral discs of normal individuals. Here, a protocol is developed to carry out a structural comparison between the microfibrils, which are known to be made of collagen VI tetramers, and the banded aggregates. The comparison shows that the banded aggregates are easily explained as being a lateral assembly of microfibrils, thus supporting the hypothesis that they too are made of collagen VI. Understanding the role played by the collagen VI aggregates in normal and pathological conditions will help to throw light on the pathologies with which they are associated.  相似文献   

18.
Collagen metabolism was studied in the regenerating forelimbs of adult newts (Notophthalmus viridescens) with respect to the pattern of accumulation relative to total protein accretion, maturation, and rate of biosynthesis. Measurements of collagen and noncollagen protein in regenerating limbs at various stages indicate that a preferential enrichment in collagen occurs at two periods correlating with (1) the onset of differentiation and chondrogenesis and (2) the initial period of elongation and outgrowth following morphogenesis. The maturation of collagen was determined by measuring the distribution of collagen into acetic acid soluble and insoluble forms. Soluble collagen increased to 30% during the differentiative period, remained at a high level during digit-formation, and decreased progressively following morphogenesis.Tracer studies were performed to determine whether the net accumulation of collagen resulted from a preferential increase in collagen biosynthesis. Separation of collagen and noncollagen proteins labeled in vivo with [3H]proline was performed enzymatically using purified clostridial collagenase. Rates of incorporation of proline into collagen relative to noncollagen proteins did not vary significantly during regeneration, although a threefold increase in incorporation rates into both species occurs at the onset of differentiation. Collagen synthesis constitutes 7–11% of the total protein synthesis in the regenerate. Estimates of variations in the absolute rates of protein synthesis, based on endogenous levels of proline, indicate that the highest rates of protein synthesis occur during morphogenesis. The relationship between protein content and relative rates of synthesis suggests that the net accumulation is governed by variations in rates of degradation. The relationship between collagen content and solubility also suggests that the rate of insolubilization plays a role in the net accumulation of collagen.  相似文献   

19.
Wound healing is a fundamental response to tissue injury that results in restoration of tissue integrity. This end is achieved mainly by the synthesis of the connective tissue matrix. Collagen is the major protein of the extracellular matrix, and is the component which ultimately contributes to wound strength. In this work, we report the influence of Aloe vera on the collagen content and its characteristics in a healing wound. It was observed that Aloe vera increased the collagen content of the granulation tissue as well as its degree of crosslinking as seen by increased aldehyde content and decreased acid solubility. The type I/type III collagen ratio of treated groups were lower than that of the untreated controls, indicating enhanced levels of type III collagen. Wounds were treated either by topical application or oral administration of Aloe vera to rats and both treatments were found to result in similar effects.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号