首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The legume seed reserve protein vicilin has been localized in developing pea cotyledons by immunogold labelling on sections of glutaraldehyde-osmium-fixed, resin-embedded tissue. By treating sections with periodate and acid before antibody labelling, a 20-fold increase in specific antibody binding was observed. The densest label occurred over vacuolar contents, previously identified as the site of protein storage, and over electron-dense cisternae occasionally seen to be continuous with the vacuolar contents. Vicilin was also associated with the rough endoplasmic reticulum, the implied site of synthesis, and in electron-dense Golgi vesicles which, we suggest, are a vehicle by which newly synthesized protein is relocated into the vacuole.  相似文献   

2.
Golgi-mediated transport to the lytic vacuole involves passage through the prevacuolar compartment (PVC), but little is known about how vacuolar proteins exit the PVC. We show that this last step is inhibited by overexpression of Arabidopsis thaliana syntaxin PEP12/SYP21, causing an accumulation of soluble and membrane cargo and the plant vacuolar sorting receptor BP80 in the PVC. Anterograde transport proceeds normally from the endoplasmic reticulum to the Golgi and the PVC, although export from the PVC appears to be compromised, affecting both anterograde membrane flow to the vacuole and the recycling route of BP80 to the Golgi. However, Golgi-mediated transport of soluble and membrane cargo toward the plasma membrane is not affected, but a soluble BP80 ligand is partially mis-sorted to the culture medium. We also observe clustering of individual PVC bodies that move together and possibly fuse with each other, forming enlarged compartments. We conclude that PEP12/SYP21 overexpression specifically inhibits export from the PVC without affecting the Golgi complex or compromising the secretory branch of the endomembrane system. The results provide a functional in vivo assay that confirms PEP12/SYP21 involvement in vacuolar sorting and indicates that excess of this syntaxin in the PVC can be detrimental for further transport from this organelle.  相似文献   

3.
The membranes of Acanthamoeba palestinensis were studied by examination in fixed cells, and then by following the movements of glycerol-3H-labeled phospholipids by cell fractionation. Two previously undescribed structures were observed: collapsed cytoplasmic vesicles of cup shape, and plaques in food vacuole and plasma membrane similar in size to the collapsed vesicles. It appeared that the plaques formed by insertion of collapsed vesicles into membranes and/or that collapsed vesicles formed by pinching off of plaques. Fractions were isolated, enriched with nuclei, rough endoplasmic reticulum (RER), plasma membrane, Golgi-like membranes, and collapsed vesicles. The changes in specific activity of glycerol-3H-labeled phospholipids in these membranes during incorporation, turnover, and after pulse-labeling indicated an ordered sequence of appearances of newly synthesized phospholipids, first in nuclei and RER, then successively in Golgi membranes, collapsed vesicles, and finally, plasma membrane. In previous work we had found no large nonmembranous phospholipid pool in A. palestinensis. These observations are consistent with the hypothesis that membrane phospholipids are synthesized, perhaps as integral parts of membranes, in RER and nuclei. Subsequently, some of the newly synthesized phospholipids are transported to the Golgi complex to become integrated into the membranes of collapsed vesicles, which are precursors of the plasma membrane. Collapsed vesicles from the plasma membrane by inserting into it as plaques. When portions of the plasmalemma from food vacuoles, collapsed vesicles pinch off from their membranes and are recycled back to the cell surface.  相似文献   

4.
Transport of newly synthesized cholesterol and vesicular stomatitis virus G protein from the endoplasmic reticulum to the plasma membrane is interrupted by incubation at 15 degrees C. Under this condition the newly synthesized molecules accumulate in both the endoplasmic reticulum (ER) and a subcellular vesicle fraction of low density called the lipid-rich vesicle fraction. The material in the lipid-rich vesicle fraction appears to be a post-ER intermediate in the transport process to the plasma membrane (PM). Although both newly synthesized cholesterol and G protein accumulate in this intermediate compartment at 15 degrees C, suggesting cotransport, treatment with Brefeldin A does not affect cholesterol transport to the PM, whereas it strongly inhibits G protein transport. We conclude that cholesterol and G protein leave the ER in separate vesicles, the cholesterol containing vesicles bypass the Golgi apparatus and proceed to the PM, whereas G protein containing vesicles follow the well documented Golgi route to the cell surface.  相似文献   

5.
Summary An electron microscopic study of the Golgi apparatus in the giant amoeba, Pelomyxa illinoisensis, has been presented. Studies of normally feeding, dividing, starving, and refeeding amoebae were made. The major finding is that plasmalemma vesicles, formed via pinocytosis and phagocytosis, either flatten or invaginate and form the cisternae of the Golgi apparatus. Plasmalemma vesicles are also a source of new cisternae during the lifetime of a given Golgi apparatus. The cisternae migrate through the Golgi system, but before being released they either inflate, or segment into smaller vesicles. It is postulated that they later empty into the contractile vacuole and into certain other vacuoles. No evidence was found for the fusion of smooth Golgi vesicles or fringed vesicles of any kind with the plasmalemma.Dedicated to Professor Friedrich Wassermann with admiration and affection on the occasion of his eightieth birthday.Work supported by U. S. Atomic Energy Commission. A part of the work was reported at the XVI International Congress of Zoology, Washington, D. C., in 1963.  相似文献   

6.
Proximal spinal muscular atrophy (SMA) is a neurodegenerative disorder caused by deficiency of the ubiquitous Survival of Motor Neuron (SMN) protein. SMN has been shown to be transported in granules along the axon and moved through cytoskeletal elements. However, the role and nature of SMN granules are still not well characterized. Here, using immunocytochemical methods and time-lapse studies we show that SMN granules colocalize with the Golgi apparatus in motor neuron-like NSC34 cells. Electron microscopy clearly revealed that SMN granules are transported into the Golgi stack and aggregate in the trans-Golgi apparatus. SMN granules are characterized as either coated or un-coated and behave like regulated secretory granules. Treatment of cells with monensin to disrupt Golgi-mediated granule secretion decreased SMN expression in neurites and caused growth cone defects similar to those seen in SMN knockdown cells. Knockdown of Cop-α, the protein that coats vesicles transporting proteins between the Golgi compartments, caused SMN granule accumulation in the Golgi apparatus. In addition to the well-studied role of SMN in small nuclear ribonucleoprotein (SnRNP) assembly, this work links SMN granules with the Golgi network and thus sheds light on Golgi-mediated SMN granule transport.  相似文献   

7.
The development of chlamydospores of Thielaviopsis basicola from hyphal cells involves the thickening and pigmentation of the cell wall. Electron microscope studies showed that membrane-bound cellular bodies appearing in the cytoplasm of differentiating cells developed from dilated cisternae in the endoplasmic reticulum. Within the membrane-bound bodies, vesicles of up to 0.2-micronm diameter were observed which contained electron-dense particles. Vesicles resembling those seen in the cellular body were also present in the cytoplasm close to the plasmalemma. In newly formed chlamydospore cells where wall thickening was complete, the cellular bodies showed loss of internal organization, and most of the vesicles disappeared, leaving a structure resembling a vacuole. The cellular bodies were not present in undifferentiated hyphae or in mature chlamydospores.  相似文献   

8.
Ultrastructural changes in secondary wall formation of Phyllostachys pubescens Mazel fiber were investigated with transmission electron microscopy. Fiber developed initially with the elongation of cells containing ribosomes, mitochondria and Golgi bodies in the dense cytoplasm. During the wall thickening, the number of rough endoplasmic reticulum and Golgi bodies increased apparently. There were two kinds of Golgi vesicles, together with the ones from endoplasmic reticulum formed transport vesicles. Many microtubules were arranged parallel to the long axis of the cell adjacent to the plasmalemma. Along with the further development of fiber, polylamellate structure of the secondary wall appeared, with concurrent agglutination of chromatin in the nucleus, swelling and disintegration of organelles, while cortical microtubules were still arranged neatly against the inner side of plasmalemma. Lomasomes could be observed between the wall and plasmalemma. The results indicated that the organelles, such as Golgi bodies together with small vesicles, rough endoplasmic reticulum and lomasomes, played the key role in the thickening and lignification of the secondary wall of bamboo fiber, though cortical microtubules were correlative with the process as well.  相似文献   

9.
毛竹茎纤维次生壁形成过程的超微结构观察   总被引:6,自引:0,他引:6  
利用透射电镜观察了毛竹(Phyllostachys pubescens Mazel)茎纤维发育过程中次生壁的形成过程。纤维发育早期,细胞具有较大的细胞核和核仁;细胞质浓稠,具有核糖体、线粒体和高尔基体等细胞器。随着纤维次生壁的形成,细胞壁加厚,细胞质变得稀薄,内质网和高尔基体的数量明显增加,并且两者共同参与了运输小泡的形成;在质膜内侧可观察到大量周质微管分布。随着次生壁的进一步加厚及木质化,细胞壁  相似文献   

10.
SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) on transport vesicles and target membranes are crucial for vesicle targeting and fusion. They form SNARE complexes, which contain four α-helical SNARE motifs contributed by three or four different SNAREs. Most SNAREs function only in a single transport step. The yeast SNARE Vti1p participates in four distinct SNARE complexes in transport from the trans Golgi network to late endosomes, in transport to the vacuole, in retrograde transport from endosomes to the trans Golgi network and in retrograde transport within the Golgi. So far, all vti1 mutants investigated had mutations within the SNARE motif. Little is known about the function of the N-terminal domain of Vti1p, which forms a three helix bundle called Habc domain. Here we generated a temperature-sensitive mutant of this domain to study the effects on different transport steps. The secondary structure of wild type and vti1-3 Habc domain was analyzed by circular dichroism spectroscopy. The amino acid exchanges identified in the temperature-sensitive vti1-3 mutant caused unfolding of the Habc domain. Transport pathways were investigated by immunoprecipitation of newly synthesized proteins after pulse-chase labeling and by fluorescence microscopy of a GFP-tagged protein cycling between plasma membrane, early endosomes and Golgi. In vti1-3 cells transport to the late endosome and assembly of the late endosomal SNARE complex was blocked at 37°C. Retrograde transport to the trans Golgi network was affected while fusion with the vacuole was possible but slower. Steady state levels of SNARE complexes mediating these steps were less affected than that of the late endosomal SNARE complex. As different transport steps were affected our data demonstrate the importance of a folded Vti1p Habc domain for transport.  相似文献   

11.
J E Rothman  L Orci 《FASEB journal》1990,4(5):1460-1468
A combination of cell-free biochemical and morphological studies has revealed that a coated bud-coated vesicle transport system shuttles newly synthesized proteins through the successive processing compartments of the Golgi apparatus. These Golgi-coated vesicles operate in a manner formally analogous to the clathrin-coated, pit-coated vesicle system responsible for receptor-mediated endocytosis; however Golgi-coated vesicles do not contain clathrin.  相似文献   

12.
Giardia lamblia, which belongs to the earliest identified lineage to diverge from the eukaryotic line of descent, is one of many protists reported to lack a Golgi apparatus. Our recent finding of a developmentally regulated secretory pathway in G. lamblia makes it an ideal organism with which to test the hypothesis that the Golgi may be more readily demonstrated in actively secreting cells. These ultrastructural studies now show that a regulated pathway of transport and secretion of cyst wall antigens via a novel class of large, osmiophilic secretory vesicles, the encystation-specific vesicles (ESV), is assembled during encystation of G. lamblia. Early in encystation, cyst antigens are localized in simple Golgi membrane stacks and concentrated within enlarged Golgi cisternae which appear to be precursors of ESV. This would represent an unusual mechanism of secretory vesicle biogenesis. Later in differentiation, cyst antigens are localized within ESV, which transport them to the plasma membrane and release them by exocytosis to the nascent cell wall. ESV are not observed after completion of the cyst wall. In contrast to the regulated transport of cyst wall proteins, we demonstrate a distinct constitutive lysosomal pathway. During encystation, acid phosphatase activity is localized in endoplasmic reticulum, Golgi, and small constitutive peripheral vacuoles which function as lysosomes. However, acid phosphatase activity is not detectable in ESV. These studies show that G. lamblia, an early eukaryote, is capable of carrying out Golgi-mediated sorting of proteins to distinct regulated secretory and constitutive lysosomal pathways.  相似文献   

13.
A comparison of the synthesis and deposition of fibrous type II collagen and the constituents of chondroitin sulfate proteoglycan (CSPG) aggregates, CSPG monomer and link protein, was made for chicken sternal chondrocytes in culture, using simultaneous double immunofluorescence and lectin localization. Chondrocytes deposited only CSPG constituents--and not type II collagen--into the extracellular matrix (ECM). Intracellular precursors of CSPG monomer were localized primarily in perinuclear regions, but were observed in other cytoplasmic vesicles as well. Link protein antibodies stained the same intracellular structures, but stained the perinuclear cytoplasm less intensely. In contrast, type II procollagen was distributed in vesicles throughout the cytoplasm and was clearly absent from the distinctive, CSPG precursor-containing vesicles. Fluorescence-labelled lectins were used to further identify intracellular membrane compartments. Wheat germ agglutinin (WGA) and Ricinus lectins (which recognize carbohydrates added in the Golgi) stained the perinuclear cytoplasm, while concanavalin A (conA) (which recognizes mannose-rich oligosaccharides added co-translationally) stained vesicles throughout the rest of the cytoplasm and not the perinuclear cytoplasm. The distinctive CSPG-containing vesicles were not stained with WGA or Ricinus agglutinins. Data presented elsewhere demonstrate that the vesicles do not react with monoclonal antibodies which recognize chondroitin sulfate (CS) or keratan sulfate (KS) determinants. Thus, we conclude that the vesicles accumulate CSPG precursors which have not been modified by Golgi-mediated processes. The data indicate that matrix molecules may be segregated selectively prior to transit through the Golgi complex. The co-distribution of link protein and CSPG monomer precursors in vesicles prior to further, Golgi-mediated modification may reflect an as yet undetermined function of these vesicles in the processing or assembly of CSPG.  相似文献   

14.
发育过程中苹果果皮和果肉细胞的超微结构   总被引:10,自引:0,他引:10  
用透射电镜对发育过程中苹果(Malus domestica Borkh cv.Red Fuji)果皮和果肉细胞的超微结构进行了观察。结果表明,不同发育期果皮细胞的超微结构发生了变化,其中最引人注目的是,内质网自始至终密布于整个细胞质中,而且大多为槽库膨大的、合成功能旺盛的管状粗面内质网,并分泌出大量的具运输功能的小泡;观察到这些小泡与液泡融合的景象;细胞中也存在活跃的高尔基体。超微结构上的这些现象  相似文献   

15.
Young (40 gm) rats were given a single intravenous injection of colchicine (4.0 mg) or vinblastine (2.0 mg). At 10 min after colchicine and 30 min after vinblastine administration, the rats were injected with 3H-fucose. Control rats received 3H-fucose only. All rats were sacrificed 90 min after 3H-fucose injection and their tissues processed for radioautography. In thyroid follicular cells of control animals, at this time interval, 57% of the total label was associated with colloid and secretory vesicles in the apical cytoplasm while 27% was localized in the Golgi apparatus and neighboring vesicles. In experimental animals, the proportion of label in colloid and apical vesicles was reduced by more than 69% after colchicine and more than 83% after vinblastine treatment. The proportion of label in the Golgi region, on the other hand, increased by more than 125% after colchicine and more than 179% after vinblastine treatment. Within the Golgi region, the great majority of the label was associated with secretory vesicles which accumulated adjacent to the trans face of the Golgi stacks. It is concluded that the drugs do not interfere with passage of newly synthesized thyroglobulin from the Golgi saccules to nearby secretory vesicles, but do inhibit intracellular migration of these vesicles to the cell apex. In most cells the number of vesicles in the apical cytoplasm diminished, but this was not always the case, suggesting that exocytosis may also be partially inhibited. The loss of microtubules in drug-treated cells suggests that the microtubules may be necessary for intracellular transport of thyroglobulin.  相似文献   

16.
A E Wurmser  S D Emr 《The EMBO journal》1998,17(17):4930-4942
The Golgi/endosome-associated Vps34 phosphatidylinositol 3-kinase is essential for the sorting of hydrolases from the Golgi to the vacuole/lysosome. Upon inactivation of a temperature-conditional Vps34 kinase, cellular levels of PtdIns(3)P rapidly decrease and it has been proposed that this decrease is due to the continued turnover of PtdIns(3)P by cytoplasmic phosphatases. Here we show that mutations in VAM3 (vacuolar t-SNARE) and YPT7 (rab GTPase), which are required to direct protein and membrane delivery from prevacuolar endosomal compartments to the vacuole, dramatically increase/stabilize PtdIns(3)P levels in vivo by disrupting its turnover. We find that the majority of the total pool of PtdIns(3)P which has been synthesized, but not PtdIns(4)P, requires transport to the vacuole in order to be turned over. Unexpectedly, strains with impaired vacuolar hydrolase activity accumulate 4- to 5-fold higher PtdIns(3)P levels than wild-type cells, suggesting that lumenal vacuolar lipase and/or phosphatase activities degrade PtdIns(3)P. Because vacuolar hydrolases act in the lumen, PtdIns(3)P is likely to be transferred from the cytoplasmic membrane leaflet where it is synthesized, to the lumen of the vacuole. Interestingly, mutants that stabilize PtdIns(3)P accumulate small uniformly-sized vesicles (40-50 nm) within prevacuolar endosomes (multivesicular bodies) or the vacuole lumen. Based on these and other observations, we propose that PtdIns(3)P is degraded by an unexpected mechanism which involves the sorting of PtdIns(3)P into vesicles generated by invagination of the limiting membrane of the endosome or vacuole, ultimately delivering the phosphoinositide into the lumen of the compartment where it can be degraded by the resident hydrolases.  相似文献   

17.
H Riezman 《Cell》1985,40(4):1001-1009
Yeast cells have been shown to internalize lucifer yellow CH by endocytosis. Internalization of the fluorescent dye is time-, temperature-, and energy-dependent, it is not saturable, and the dye is accumulated in the vacuole. Some of the yeast secretory mutants that accumulate endoplasmic reticulum or Golgi bodies are defective for endocytosis at restrictive temperature, while others are not. All of the mutants that accumulate secretory vesicles are defective for endocytosis. These results suggest that efficient transport of proteins from the endoplasmic reticulum to the Golgi apparatus and from the Golgi to secretory vesicles is not necessary for endocytosis. In contrast, endocytosis may be obligatorily coupled with the latest steps of secretion.  相似文献   

18.
Glycinin (11S) and beta-conglycinin (7S) are major storage proteins in soybean (Glycine max L.) seeds and accumulate in the protein storage vacuole (PSV). These proteins are synthesized in the endoplasmic reticulum (ER) and transported to the PSV by vesicles. Electron microscopic analysis of developing soybean cotyledons of the wild type and mutants with storage protein composition different from that of the wild type showed that there are two transport pathways: one is via the Golgi and the other bypasses it. Golgi-derived vesicles were observed in all lines used in this study and formed smooth dense bodies with a diameter of 0.5 to several micrometers. ER-derived protein bodies (PBs) with a diameter of 0.3-0.5 microm were observed at high frequency in the mutants containing higher amount of 11S group I subunit than the wild type, whereas they were hardly observed in the mutants lacking 11S group I subunit. These indicate that pro11S group I may affect the formation of PBs. Thus, the composition of newly synthesized proteins in the ER is important in the selection of the transport pathways.  相似文献   

19.
Secretion produced by glandular hairs is deposited mainly in the periplasmic space of the head cells. It stains intensely for both proteins and polysaccharides. The ultrastructure of meristematic, differentiating, mature and senescent head cells as well as the stalk and basal cells has been described in comparison to that in other cell types of the leaf. The specific features of the head cells are the proliferation of the granular endoplasmic reticulum as well as the multiplication of the dictyosomes and mitochondria during transition to the secretion stage. However, the frequency of dictyosomes varies among secreting hairs. The ER produces neither secretory nor transition vesicles and does not anastomose with the plasmalemma. In the absence of transition vesicles, the transport of secretory proteins and enzymes of polysaccharide synthesis from the ER to dictyosomes apparently includes the cytosolic step. Dictyosomes, though not appearing hypersecretory, produce two types of smooth secretory vesicles generated by the trans Golgi reticulum. The vectorial transfer of prosecretion and membranes across the dictyosome stack proceeds via the transport (shuttle) vesicles. It is, therefore, concluded that exocytosis of smooth secretory Golgi vesicles is the sole mechanism of release of both proteins and polysaccharides. Coated vesicles occasionally seen near the plasmalemma are likely to be involved in the endocytotic membrane retrieval. The secretion product disappears during senescence of the hairs and the secretory cells undergo vacuolation by means of local autophagy.  相似文献   

20.
The delivery of proteins to the vacuole and its limiting membrane (the tonoplast) by the secretory system is thought to be a dissociative process in which vesicles bud from one compartment and fuse with another. We studied the transport kinetics of phytohemagglutinin (PHA) and tonoplast intrinsic protein (TIP) in mesophyll protoplasts obtained from transgenic tobacco plants transformed with genes encoding these two proteins. In pulse-chase experiments, arrival of PHA in the vacuole was found to be slower (completed 24 hr after synthesis) than the arrival of TIP in the tonoplast (completed 6 hr after synthesis). Brefeldin A and monensin block protein transport by interfering in specific vesicle transport steps. Brefeldin A prevents anterograde vesicle transport between the endoplasmic reticulum and the Golgi, whereas monensin inhibits correct sorting in the trans-Golgi network by disrupting the proton gradient across the membrane. Both inhibitors blocked the transport of PHA to the vacuole and altered the rate at which its complex glycan is processed by Golgi enzymes. Neither drug stopped the arrival of TIP in the tonoplast, suggesting that the flow of vesicles continues in the presence of these inhibitors. We suggest that soluble proteins like PHA and membrane proteins like TIP reach their vacuolar destinations by different paths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号