首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Kinetic and electrophoretic properties of catechol O-methyltransferases (EC 2.1.1.6) from brain and liver were studied. The enzyme of either rat or human tissues exhibited a single molecular form when subjected to electrophoresis at pH7.9. At pH9 a second, apparently oxidized, form was detected. Isoelectric-focusing experiments also indicated only one enzyme form, which was identical from extracts of brain and liver of each species (pI = 5.2 for rat, 5.5 for human). Similarities between brain and liver catechol O-methyltransferase of a given species were also demonstrated by kinetic parameters, meta/para ratios of products, and inhibitor potencies. Human catechol O-methyltransferase exhibited lower Km values than did the rat enzyme for S-adenosyl-L-methionine, dopamine and dihydroxybenzoic acid. Adrenochrome inhibited both rat and human enzyme. It was concluded (1) that only a single enzyme form could be demonstrated in the physiological pH region; (2) that catechol O-methyltransferase of brain could not be distinguished from the liver enzyme of the same species; and (3) that species differences exist between the enzymes of rat and human tissues.  相似文献   

2.
Catechol O-methyltransferase (COMT) transfers a methyl group from S-adenosyl-L-methionine to the catechol substrate in the presence of magnesium. After the characterisation of COMT more than four decades ago, a wide variety of COMT enzyme assays have been introduced. COMT activity analysis usually consists of the handling of the sample and incubation followed by separation and detection of the reaction products. Several of these assays are validated, reliable and sensitive. Besides the studies of the basic properties of COMT, the activity assay has also been applied to explore the relation of COMT to various disease states or disorders. In addition, COMT activity analysis has been applied clinically since COMT inhibitors have been introduced as adjuvant drugs in the treatment of Parkinson's disease.  相似文献   

3.
Catechol O-methyltransferase (COMT) obtained from human liver (HL) and human placenta (HP) was found to be much less active than rat liver (RL) COMT when norepinephrine, epinephrine, dopamine, and isoproterenol are used as substrates. The Km values, which reflect the affinity of substrate and enzyme, show that RL COMT has the highest affinity toward the catecholamine substrates followed by HP COMT and then HL COMT. Both HP and RL COMT preparations O-methylate the catecholamines primarily in the meta position.  相似文献   

4.
ABSTRACT: The subcutaneous and systemic injection of serotonin reduces cutaneous and visceral pain thresholds and increases responses to noxious stimuli. Different subtypes of 5-hydroxytryptamine (5-HT) receptors are suggested to be associated with different types of pain responses. Here we show that serotonin also inhibits catechol O-methyltransferase (COMT), an enzyme that contributes to modultion the perception of pain, via non-competitive binding to the site bound by catechol substrates with a binding affinity comparable to the binding affinity of catechol itself (Ki = 44 uM). Using computational modeling, biochemical tests and cellular assays we show that serotonin actively competes with the methyl donor S-adenosyl-L-methionine (SAM) within the catalytic site. Binding of serotonin to the catalytic site inhibits the access of SAM, thus preventing methylation of COMT substrates. The results of in vivo animal studies show that serotonin-induced pain hypersensitivity in mice is reduced by either SAM pretreatment or by the combined administration of selective antagonists for beta2- and beta3-adrenergic receptors, which have been previously shown to mediate COMT-dependent pain signaling. Our results suggest that inhibition of COMT via serotonin binding contributes to pain hypersensitivity, providing additional strategies for the treatment of clinical pain conditions.  相似文献   

5.
R T Borchardt  D R Thakker 《Biochemistry》1975,14(20):4543-4551
In an attempt to elucidate the relationship between the chemical structure and the catalytic function of catechol O-methyltransferase (COMT), several classes of affinity labeling reagents have been synthesized and their interaction with COMT has been studied. Earlier studies have shown that various N-haloacetyl derivatives of 3,5-dimethoxy-4-hydroxyphenylethylamine were effective affinity labeling reagents for this enzyme. In this report we have shown that N-haloacetyl derivatives of the isomeric 3,4-dimethoxy-5-hydroxyphenylethylamine also rapidly and irreversibly inactivate COMT ant they satisfy many of the criteria established for affinity labeling reagents. This latter group of agents appear to modify a nucleophilic residue at the active site of COMT different from that modified by the 3,5-dimethoxy-4-hydroxyphenylethylamine series. Evidence to support this conclusion has been obtained by comparing the kinetics of COMT inactivation and the substrate protection profiles for these two classes of affinity labeling reagents.  相似文献   

6.
In order to investigate the pH dependence of catechol O-methyltransferase (S-adenosyl-L-methionine:catechol O-methyltransferase, EC 2.1.1.6), kinetic parameters have been determined for the highly purified enzyme from pig liver over the pH range 6.75-8.20 using the substrates S-adenosylmethionine (AdoMet) and 3,4-dihydroxyphenylacetic acid (DOPAC). The Km for AdoMet was found to be invariant with pH while the Km for DOPAC decreased sharply with increasing pH. The group responsible for the latter has a pK of approx. 7.1. The logarithmic (Dixon) plot of Km against pH for both substrates and that of Vmax/Km against pH for DOPAC mirror the kinetic behaviour revealed by linear plots. However, for other parameters, linear graphs indicate peaks too narrow to be explicable by a simple kinetic mechanism, whereas logarithmic plots of these parameters produce graphs apparently not reflecting this behaviour. We conclude that these results are not the products of random error or artefactual data analysis but are too complex to be explicable by a simple model of kinetic behaviour. Possible explanations (adherence of catechol O-methyltransferase to a higher-order mechanism or a dual mode of substrate binding) are advanced.  相似文献   

7.
Catechol O-methyltransferase, an enzyme involved in the metabolism of catechol containing compounds, catalyzes the transfer of a methyl group between S-adenosylmethionine and the hydroxyl groups of the catechol. Furthermore it is considered a potential drug target for Parkinson’s disease as it metabolizes the drug levodopa. Consequently inhibitors of the enzyme would increase levels of levodopa. In this study, absorption, fluorescence and infrared spectroscopy as well as computational simulation studies investigated human soluble catechol O-methyltransferase interaction with silver nanoparticles. The nanoparticles form a corona with the enzyme and quenches the fluorescence of Trp143. This amino acid maintains the correct structural orientation for the catechol ring during catalysis through a static mechanism supported by a non-fluorescent fluorophore–nanoparticle complex. The enzyme has one binding site for AgNPs in a thermodynamically spontaneous binding driven by electrostatic interactions as confirmed by negative ΔG and ΔH and positive ΔS values. Fourier transform infrared spectroscopy within the amide I region of the enzyme indicated that the interaction causes relaxation of its β?structures, while simulation studies indicated the involvement of six polar amino acids. These findings suggest AgNPs influence the catalytic activity of catechol O-methyltransferase, and therefore have potential in controlling the activity of the enzyme.  相似文献   

8.
Selectivity of catechol O-methyltransferase has been examined for the three ring-fluorinated norepinephrines to elucidate the role of acidity of the phenolic groups in their methylation. Substitution of fluorine at the 5-position of norepinephrine reverses the selectivity of catechol O-methyltransferase so that p-O-methylation predominates. The 5-fluoro substituent also causes the pKa of the p-hydroxyl group to decrease substantially. In contrast, 2- and 6-fluoronorepinephrines are methylated predominantly at the m-hydroxyl group. These results suggest that acidity of a phenolic group can play an important role in its ability to be methylated by catechol O-methyltransferase. Percentages of p-O-methylation of norepinephrine and its fluorinated derivatives increase with pH. This relative increase in p-O-methylation appears to accompany ionization of a group with pKa of 8.6, 7.7, 7.9, and 8.4 for norepinephrine and its 2-, 5-, and 6-fluoro derivative, respectively. These pKa values are the same as or similar to the pKa values of a phenolic hydroxyl group of these substrates. 3,4-Dihydroxybenzyl alcohol and its 5-fluoro derivative are O-methylated by catechol O-methyltransferase to form p- and m-O-methyl products in approximately 1:1 and 4:1 ratios, respectively, at all pH values. Based on the above results, a catechol-binding site model for catechol O-methyltransferase is proposed in which the two phenolic hydroxyl groups of catechol substrates are postulated to be approximately equally spaced from the methyl group of the cosubstrate S-adenosylmethionine.  相似文献   

9.
Caffeic acid O-methyltransferase (COMT) is one of a group of proteins present in alfalfa cell cultures which can be photoaffinity labeled with S-adenosyl-L-[methyl-3H]methionine. The enzyme was purified to homogeneity from elicitor-treated suspension cultures and shown to exist as an active monomer of subunit Mr 41,000. COMT could be separated into two forms on the basis of their isoelectric points and relative affinities for S-adenosyl-methionine and S-adenosylhomocysteine. Both forms had equal affinities for caffeic acid, were highly specific for the 3-hydroxyl group of substituted cinnamic acids, and exhibited negligible activity toward flavonoid substrates. An antiserum raised against COMT from aspen immunoprecipitated alfalfa COMT activity. Peptide mapping studies indicated that the two forms of COMT and an isoflavone O-methyltransferase from alfalfa are closely related proteins. The extractable activity of COMT doubled over a 48-h period following exposure of alfalfa cell suspensions to a yeast elicitor preparation, and this was associated with a small change in the relative proportions of the two forms of the enzyme.  相似文献   

10.
The time course of changes in blood and brain catecholamines, catechol O-methyltransferase (COMT), ammonia, and amino acids leading to convulsion by high pressure oxygen breathing (OHP) in rats has been investigated. Brain catecholamines were suppressed by OHP. They changed in phase with brain COMT concentration and consequently were not due to the action of this degrading enzyme. Convulsive actions seem not to be influenced by brain catecholamine concentration. Blood adrenaline concentrations are, however, significantly elevated both prior to and during convulsions. In both brain and blood, ammonia concentration increases, glutamate decreases, and glutamine-aspargine increases. It is proposed that the efficacy of the glutamate-glutamine ammonia buffering system in blood and brain is important in the prevention of the onset of convulsions but that when brain gamma-aminobutyric acid is depressed to critical levels, convulsions result.  相似文献   

11.
Lee SG  Joo Y  Kim B  Chung S  Kim HL  Lee I  Choi B  Kim C  Song K 《Human genetics》2005,116(4):319-328
Catechol-O-methyltransferase (COMT) inactivates circulating catechol hormones, catechol neurotransmitters, and xenobiotic catecholamines by methylating their catechol moieties. The COMT gene has been suggested as a candidate gene for schizophrenia through linkage analyses and molecular studies of velo-cardio-facial syndrome. A coding polymorphism of the COMT gene at codon 108/158 (soluble/membrane-bound form) causing a valine to methionine substitution has been shown to influence enzyme activity, but its association with schizophrenia is inconclusive. We have screened 17 known polymorphisms of the COMT gene in 320 Korean schizophrenic patients and 379 controls to determine whether there is a positive association with a nonsynonymous single-nucleotide polymorphism (rs6267) at codon 22/72 (soluble/membrane-bound form) causing an alanine-to-serine (Ala/Ser) substitution. With the Ala/Ala genotype as a reference group, the combined genotype (Ala/Ser and Ser/Ser)-specific adjusted odds ratio was 1.82 (95% CI=1.19–2.76; P=0.005), suggesting the Ser allele as a risk allele for schizophrenia. However, the Val/Met polymorphism was not associated with an increased risk of schizophrenia in Koreans (OR=0.88, 95% CI=0.64–1.21; P=0.43). The Ala72Ser substitution was correlated with reduced COMT enzyme activity. Our results support previous reports that the COMT haplotype implicated in schizophrenia is associated with low COMT expression.  相似文献   

12.
J Veser 《Journal of bacteriology》1987,169(8):3696-3700
The Kms for esculetin and S-adenosyl-L-methionine for catechol O-methyltransferase from the yeast Candida tropicalis were 6.2 and 40 microM, respectively. S-Adenosyl-L-homocysteine was a very potent competitive inhibitor with respect to S-adenosyl-L-methionine, with a Ki of 6.9 microM. Of the catechol-related inhibitors, purpurogallin, with a Ki of 0.07 microM, showed the greatest inhibitory effect. Sulfhydryl group-blocking reagents, such as thiol-oxidizing 2-iodosobenzoic acid and mercaptide-forming p-chloromercuribenzoic acid, provided evidence for sulfhydryl groups in the active site of the enzyme. Yeast catechol O-methyltransferase is a metal-dependent enzyme and requires Mg2+ for full activity. Zn2+ and Mn2+ but not Ca2+ were able to substitute for Mg2+. Mn2+ showed optimal enzyme activation at concentrations 50- to 100-fold lower than those of Mg2+.  相似文献   

13.
S-Adenosyl-L-methionine-dependent caffeate O-methyltransferase (COMT, EC 2.1.1.6) has traditionally been thought to catalyze the methylation of caffeate and 5- hydroxyferulate for the biosynthesis of syringyl monolignol, a lignin constituent of angiosperm wood that enables efficient lignin degradation for cellulose production. However, recent recognition that coniferyl aldehyde prevents 5-hydroxyferulate biosynthesis in lignifying tissue, and that the hydroxylated form of coniferyl aldehyde, 5-hydroxyconiferyl aldehyde, is an alternative COMT substrate, demands a re-evaluation of the role of COMT during monolignol biosynthesis. Based on recombinant aspen (Populus tremuloides) COMT enzyme kinetics coupled with mass spectrometry analysis, this study establishes for the first time that COMT is in fact a 5-hydroxyconiferyl aldehyde O-methyltransferase (AldOMT), and that 5-hydroxyconiferyl aldehyde is both the preferred AldOMT substrate and an inhibitor of caffeate and 5-hydroxyferulate methylation, as measured by K(m) and K(i) values. 5-Hydroxyconiferyl aldehyde also inhibited the caffeate and 5-hydroxyferulate methylation activities of xylem proteins from various angiosperm tree species. The evidence that syringyl monolignol biosynthesis is independent of caffeate and 5-hydroxyferulate methylation supports our previous discovery that coniferyl aldehyde prevents ferulate 5-hydroxylation and at the same time ensures a coniferyl aldehyde 5-hydroxylase (CAld5H)-mediated biosynthesis of 5-hydroxyconiferyl aldehyde. Together, our results provide conclusive evidence for the presence of a CAld5H/AldOMT-catalyzed coniferyl aldehyde 5-hydroxylation/methylation pathway that directs syringyl monolignol biosynthesis in angiosperms.  相似文献   

14.
The involvement of O-sulphate esters in the directed O-methylation was investigated in vitro with a dialysed "high-speed' supernatant from rat liver as the enzyme preparation and the catechol compound 3,4-dihydroxybenzoic acid as the substrate. The enzyme reactions involved were studied separately with the O-methylated and O-sulphated derivatives. The rate of hydrolysis by arylsulphatase was 14.5 nmol/min per mg of protein for 3-methoxy-4-sulphonyloxybenzoic acid and 10.1 nmol/min per mg of protein for 4-methoxy-3-sulphonyloxybenzoic acid. The sulphotransferase activity towards the guaiacols 4-hydroxy-3-methoxybenzoic acid and 3-hydroxy-4-methoxybenzoic acid was 570pmol of 4-O-sulphated and 350pmol of 3-O-sulphated product formed/min per mg of protein. The 3-O- and 4-O-sulphate esters of 3,4-dihydroxybenzoic acid could not serve as substrates for the catechol O-methyltransferase reaction. When either ester was incubated in the presence of S-adenosyl-L-methionine, but without the arylsulphatase inhibitor KH2PO4, 3,4-dihydroxybenzoic acid was formed, which was subsequently O-methylated in a meta/para ratio of 4.6. It is concluded that O-methylation can precede O-sulphation but that O-sulphation prevents further metabolism by O-methylation. Also O-sulphate esters do not have a directing effect on O-methylation. From the study of the simultaneous action of sulphotransferase and catechol O-methyltransferase on 3,4-dihydroxybenzoic acid we conclude that O-sulphation and O-methylation proceed independently of each other under the assay conditions used, both directed preferentially to the 3-hydroxy group.  相似文献   

15.
The association found between breast cancer development and prolonged exposure to estrogens suggests that this hormone is of etiologic importance in the causation of the disease. Studies on estrogen metabolism, formation of DNA adducts, carcinogenicity, cell transformation, and mutagenicity have led to the hypothesis that reaction of certain estrogen metabolites, predominantly catechol estrogen-3,4-quinones, with DNA forms depurinating adducts [4-OHE1(E2)-1-N3Ade and 4-OHE(1)(E2)-1-N7Gua]. These adducts cause mutations leading to the initiation of breast cancer. Catechol-O-methyltransferase (COMT) is considered an important enzyme that protects cells from the genotoxicity and cytotoxicity of catechol estrogens, by preventing their conversion to quinones. The goal of the present study was to investigate the effect of COMT inhibition on the formation of depurinating estrogen-DNA adducts. Immortalized human breast epithelial MCF-10F cells were treated with 4-OHE2 (0.2 or 0.5 microM) for 24 h at 120, 168, 216, and 264 h postplating or one time at 1-30 microM 4-OHE2 with or without the presence of COMT inhibitor (Ro41-0960). The culture media were collected at each point, extracted by solid-phase extraction, and analyzed by HPLC connected with a multichannel electrochemical detector. The results demonstrate that MCF-10F cells oxidize 4-OHE2 to E1(E2)-3,4-Q, which react with DNA to form the depurinating N3Ade and N7Gua adducts. The COMT inhibitor Ro41-0960 blocked the methoxylation of catechol estrogens, with concomitant 3- to 4-fold increases in the levels of the depurinating adducts. Thus, low activity of COMT leads to higher levels of depurinating estrogen-DNA adducts that can induce mutations and initiate cancer.  相似文献   

16.
An in vitro system using an enzyme extract containing ATP:L-methionine S-adenosyltransferase from Escherichia coli MRE 600 cells was used to synthesize 8-azido-S-adenosyl-L-methionine from methionine and 8-azidoadenosine 5'-triphosphate. In the absence of ultraviolet light and analog can serve as a methyl donor for porcine catechol O-methyltransferase. Photolysis of 8-azido-S-adenosyl[35S]methionine in the presence of catechol O-methyltransferase results in covalent incorporation. Addition of either authentic S-adenosylmethionine or S-adenosylhomocysteine, but not adenosine 5'-monophosphate, to the photolysis reaction mixture eliminates the photoincorporation. These results indicate that the incorporation is occurring at the S-adenosylmethionine binding site in the catechol O-methyltransferase.  相似文献   

17.
A new form of cytoplasmic glucose-6-phosphate dehydrogenase (E.C.1.1.1.49) was purified from rat liver by protamine sulfate precipitation, ammonium sulfate fractionation, ion exchange chromatography with diethylaminoethyl cellulose, and affinity chromatography with Cibacron blue agarose and NADP agarose. This form of the enzyme has a specific activity of over 600 units/mg of protein and gives essentially a single band by polyacrylamide gel electrophoresis. The form of the enzyme isolated by this purification method is 3 times more active than the form purified from liver by previously reported procedures. The relative mass of this pure glucose-6-phosphate dehydrogenase enzyme was determined by disc gel electrophoresis to be 269,000. This high activity glucose-6-phosphate dehydrogenase enzyme, after inactivation by reaction with palmityl-CoA, was no longer precipitated by specific rabbit and goat antisera to this purified enzyme. Thus, the possibility still exists that starved fat-refed animals contain glucose-6-phosphate dehydrogenase (G6PD) enzyme protein in an inactivated form no longer detectable by either enzyme activity or immunoprecipitation.  相似文献   

18.
Catechol-O-methyltransferase (COMT) was visualized in homogenates and subcellular fractions of rat tissues, including liver and brain, by gel electrophoresis, electrophoretic transfer of proteins to nitrocellulose (Western blotting), and immune fixation with antiserum to highly purified soluble rat liver COMT. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of all tissue homogenates examined revealed three major immune-specific proteins with apparent molecular weights 23,000, 26,000, and 66,000 (23K, 26K and 66K). Centrifugation of homogenates at 100,000 X g for 60 min resulted in the enrichment of the 26K species protein in the pellet whereas the 23K and 66K proteins were the predominant forms in the supernatant. The 66K protein appeared in variable amounts depending on the tissue being examined and the length of transfer of protein and is assumed to be an "aggregate" of the smaller form(s). The 26K protein was essentially the only immunoreactive species seen in a purified preparation of rat liver outer mitochondrial membrane. Isoelectric focusing (IEF) under denaturing conditions and two-dimensional gel electrophoresis of brain and liver fractions showed that the 23K protein was resolved into three bands of pI 5.1, 5.2, and 5.3, whereas the 26K protein had a pI of 6.2. Analysis of COMT activity in slices from nondenaturing IEF gels indicated that the pI 5.1-5.3 species are biologically active; the pI 6.2 species could not be detected under these conditions. COMT activity was demonstrated, however, in outer mitochondrial membranes from rat liver, which contain predominantly the 26K, pI 6.2 immunoreactive species. The major form of COMT in all rat tissues examined is "soluble" with an apparent Mr of 23K and a pI of 5.2. The nature of the modifications giving rise to pI 5.1 and 5.3 forms of this enzyme are not clear, nor is the relationship between the 23K and 26K forms. Further studies are needed to elucidate the relationship of immunoreactive forms of COMT to each other, their intracellular location, and their functional significance.  相似文献   

19.
Catechol O-methyltransferase (COMT) plays an important role in the inactivation of biologically active and toxic catechols. This enzyme is genetically polymorphic with a wild type and a variant form. Numerous epidemiological studies have shown that the variant form is associated with an increased risk of developing estrogen-associated cancers and a wide spectrum of mental disorders. There are seven cysteine residues in human S-COMT, all of which exist as free thiols and are susceptible to electrophilic attack and/or oxidative damage leading to enzyme inactivation. Here, the seven cysteine residues were systematically replaced by alanine residues by means of site-directed mutagenesis. The native forms and cysteine/alanine mutants were assayed for enzymatic activity, thermal stability, methylation regioselectivity, and reactivity of cysteine residues to thiol reagent. Our data showed that although there is only one encoding base difference between these two COMT forms, this difference might induce structural changes in the local area surrounding some cysteine residues, which might further contribute to the different roles they might play in enzymatic activity, and to the different susceptibility to enzyme inactivation.  相似文献   

20.
In an effort to detect the similarities and differences in the properties of rat heart, brain and liver catechol methyltransferase (S-adenosyl-L-methionine:catechol O-methyltransferase, EC 2.1.1.6), we have determined the cellular distribution of this enzyme activity and extensively purified the soluble and microsomal enzymes present in these tissues. Purification of soluble heart (688-fold) and brain enzymes (240-fold) were achieved using an affinity chromatographic system. The properties of these enzymes were compared with respect to their molecular weights, substrate specificities, inhibitor specificities and immunological properties. The characteristics of the enzyme active sites were investigated using various methyl acceptor substrates and various analogs of S-adenosylmethionine as methyl donors. A series of analogs of S-adenosylhomocysteine was also evaluated as inhibitors of these enzymes. The immunological properties of the purified soluble and microsomal enzymes from heart and brain were investigated using an antibody isolated from rabbits which had been immunized with the soluble rat liver enzyme. In general the properties of catechol methyltransferases isolated from heart and brain were similar to the properties of the enzyme isolated from liver. Some minor differences in substrate and inhibitor specificities were observed which might suggest slight differences in the active sites of these enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号