首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
1. Both valinomycin and p-trifluoromethoxy carbonyl cyanide phenylhydrazone (FCCP) are required for full release of respiration by cytochrome c oxidase-containing proteoliposomes (prepared by sonicating beef heart cytochrome aa3 in salt solution with 4 parts phosphatidylcholine, 4 parts phosphatidylethanolamine and 2 parts cardiolipin) in the presence of external ascorbate and cytochrome c. In the absence of valinomycin the response to FCCP is rather sluggish, as reported by Wrigglesworth et al. (1976) (Abstracts, 10th Int. Congr. Biochem., No. 06-6-230). 2. The Km for cytochrome c in 67 mM, pH 7.4, phosphate buffer with ascorbate as substrate, was 9 micrometer in both absence and presence of valinomycin and FCCP. Energization thus acts non-competitively towards cytochrome c oxidation. 3. The apparent Km for oxygen is greater in the energized than in the deenergized state; double reciprocal plots of respiration rate versus oxygen concentration are concave downward in the absence of uncouplers, as found with intact mitochondria. Energization thus acts "competitively" towards oxygen. 4. Despite the lack of a functional ATPase system, all the kinetic features of energization found in intact mitochondria can be mimicked in the reconstituted liposomes. This supports the chemiosmotic idea that electrical and perhaps H+ gradients modify the oxidase activity in reconstituted vesicles.  相似文献   

2.
Finn B. Hansen  Peter Nicholls 《BBA》1978,502(3):400-408
1. Carbon monoxide (CO) acts competitively towards oxygen when the latter is taken up in respiration by cytochrome aa3-containing proteoliposomes, both in the presence of p-trifluoromethoxy carbonyl cyanide phenylhydrazone and valinomycin (deenergized state) and in their absence (energized state). At high levels of CO, the double reciprocal plots (1v vs. 1[O2]) in the energized and deenergized states are parallel, i.e. energization acts “anti-competitively” towards oxygen, and the “respiratory control ratio” decreases as the oxygen concentration decreases.2. Azide acts non-competitively towards cytochrome c when the latter is oxidized by cytochrome aa3-containing proteoliposomes both in the energized and deenergized (plus p-trifluoromethoxy carbonyl cyanide phenylhydrazone and valinomycin) conditions. At low azide concentrations the apparent Ki for azide is unaffected by energization, but at high azide levels the Ki increases in energized liposomes, i.e. the “respiratory control ratio” decreases as the azide concentration increases.3. It is concluded that the inhibitor experiments are consistent with but do not prove the concept that the oxidase molecules in a single vesicle are responding to a single “energization state” or set of electrochemical gradients. This and other models are discussed.  相似文献   

3.
A single species of tryptophan-59 formylated cytochrome c with a half-reduction potential of 0.085 ± 0.01 V at pH 7.0 was used to study its catalytic and functional properties. The spectral properties of the modified cytochrome show that the 6th ligand position is open to reaction with azide, cyanide, and carbon monoxide. Formylated cytochrome c binds to cytochrome c depleted rat liver and pigeon heart mitochondria with the precise stoichiometry of two modified cytochrome c molecules per molecule of cytochrome a (KD of approx 0.1 μm). Formylated cytochrome c was reducible by ascorbate and was readily oxidized by cytochrome c oxidase. The apparent Km value of the oxidase for the formylated cytochrome c was six times higher than for the native cytochrome and the apparent V was smaller. Formylated cytochrome c does not restore the oxygen uptake in C-depleted mitochondria but inhibits, in a competitive manner, the oxygen uptake induced by the addition of native cytochrome c. Formylated cytochrome c was inactive in the reaction with mitochondrial NADH-cytochrome c reductase but was able to accept electrons through the microsomal NADPH-cytochrome c reductase.  相似文献   

4.
Valinomycin-independent energized uptake of K+ was observed in cytochrome c oxidase reconstituted proteoliposome. The rate of K+ influx was proportoinal to the magnitude of electron flux. The energized uptake of K+ was abolished by p-trifluoromethoxycarbonylcyanide phenylhydrazone or by nigericin. Using the safranine fluorescence technique, it was demonstrated that even in the absence of valinomycin, liposomes and proteoliposomes reconstituted with cytochrome c oxidase are able to discriminate between Na+ and K+ and show a preference for K+ in the presence of excess Na+.  相似文献   

5.
K.S. Cheah  J.C. Waring 《BBA》1983,723(1):45-51
The effect of trifluoperazine on the respiration of porcine liver and skeletal muscle mitochondria was investigated by polarographic and spectroscopic techniques. Low concentrations of trifluoperazine (88 nmol/mg protein) inhibited both the ADP- and Ca2+-stimulated oxidation of succinate, and reduced the values of the respiratory control index and the ADPO and Ca2+O ratio. High concentrations inhibited both succinate and ascorbate plus tetramethyl-p-phenylenediame (TMPD) oxidations, and uncoupler (carbonyl cyanide p-trifluromethoxyphenylhydrazone) and Ca2+-stimulated respiration. Porcine liver mitochondria were more sensitive to trifluoperazine than skeletal muscle mitochondria. Trifluoperazine inhibited the electron transport of succinate oxidation of skeletal muscle mitochondria within the cytochrome b-c1 and cytochrome c1-aa3 segments of the respiratory chain system. 233 nmol trifluoperazine/mg protein inhibited the aerobic steady-state reduction of cytochrome c1 by 92% with succinate as substrate, and of cytochrome c and cytochrome aa3 by 50–60% with ascorbate plus TMPD as electron donors. Trifluoperazine can thus inhibit calmodulin-independent reactions particularly when used at high concentrations.  相似文献   

6.
Measurements of respiration were made on intact tissue and mitochondria isolated from soybean (Glycine max [L.] Merr. cv `Corsoy') cotyledons from seedlings of different ages grown in light and darkness. Effects of cyanide (KCN) and salicylhydroxamic acid (SHAM) on O2 uptake rates were determined. O2 uptake was faster in light-grown tissue and was inhibited by both KCN and SHAM in all except light-grown tissue older than 9 days. Both inhibitors stimulated O2 uptake in tissues more than 9 days old. Mitochondria in which O2 uptake was coupled to ATP synthesis were isolated from all tissues. O2 uptake by mitochondrial preparations from light- and dark-grown cotyledons was equally sensitive to KCN. Similarly, age did not affect KCN sensitivity, but sensitivity to SHAM declined with age both in the presence and absence of KCN. Estimated capacities of the cytochrome and alternative pathways of the mitochondrial preparations indicated considerably larger cytochrome than alternative pathway capacities. The cytochrome pathway capacities paralleled the state 3 mitochondrial respiration rates, which increased from day 5 to day 7 then declined thereafter. The alternative pathway capacities were not affected by light. The uncoupler, p-trifluoromethoxycarbonylcyanide phenylhydrazone (FCCP), increased the flow of electrons through the cytochrome pathway at the expense of flow through the alternative pathway in isolated mitochondria. However, the combined capacities did not exceed the rate in the presence of FCCP. The results are interpreted to indicate that the stimulation of respiration by KCN and SHAM observed in the 12-day-old green cotyledons and previously observed in older soybean leaves is not explained by characteristics of the mitochondria.  相似文献   

7.
Rat liver mitochondria were treated with varying amounts of fluorescamine ranging from 0 to 30 nmol/mg of protein. The biochemical activities of the modified mitochondria were analyzed. It was found that the respiration rate in the absence of ADP was not significantly affected, but that the state 3 respiration rate and the accompanying PO ratio decreased as the labeling extent increased. It was also observed that the treatment inhibited the stimulation of respiration induced by the presence of uncouplers. However, the modification has no effect on the discharging rate of proton gradient by uncouplers. The intrinsic activities of NADH-cytochrome c reductase, succinate-cytochrome c reductase, and cytochrome oxidase of the inner membrane were not affected by the modification. Measurement of the respiration-dependent proton extrusion (in the presence of valinomycin and potassium ion) with secondary ion movements inhibited, showed that the initial extrusion rate was reduced progressively. However, the observed amounts of proton extruded (ΔH+) and ΔμH + were not affected. The observed reduction of the oxygen consumption rate was much less than that of the proton extrusion rate with increased labeling. These results suggest that some fluorescamine titratable primary amino groups may be involved in the controlling of the proton extrusion process. The implications on the mechanism of coupling in respirationdependent proton extrusion are discussed.  相似文献   

8.
The object of this work was to test the suggestion that the equilibrium poise between cytochromea and cytochromec in mitochondria might be influenced by the membrane potential.
  1. The midpoint potentials of cytochromes (c+c 1) and cytochromea (CO present) were found to be 250 mV and 245 mV, respectively, by equilibrating rat liver mitochondria with mixtures of ferrocyanide and ferricyanide anaerobically in presence of antimycin A and measuring the redox state of the cytochromes spectrophotometrically. In absence of CO, cytochrome oxidase gave an anomalous redox titration curve with a “midpoint” at about 275 mV.
  2. When the mitochondria were equilibrated with ferricyanide/ferrocyanide, the redox poise of cytochromea (CO present) and of cytochromes (a+a 3) but not of cytochromes (c+c 1) was dependent on the sign and magnitude of the membrane potential developed by treating the mitochondria as follows: by adding ATP, by chaging the composition of the suspension medium so as to vary the Donnan or Nernst potential, by adding valinomycin in a medium of low K+ ion content, or by adding a pulse of acid or alkali when the membrane was made permeable to protons with FCCP.
  3. The findings agree with the suggestion that the respiratory chain is arranged across the cristae membrane with cytochromesc 1 andc in contact with the outer phase and cytochromesa anda 3 plugged through, so that the equilibrium distribution of electrons between thec anda cytochromes is influenced by the electric field across the membrane.
  相似文献   

9.
When cytochrome oxidase is solubilized in bile acid, ascorbate alone is capable of reducing the oxidase and induces oxygen uptake in the absence of cytochrome c. Cytochrome oxidase is organized into vesicular structures in the absence of detergent in phosphate buffer. In this, spectral changes are brought about by ascorbate, but there is negligible oxygen uptake in the absence of cytochrome c.  相似文献   

10.
K.S. Cheah 《BBA》1975,387(1):107-114
1. The cytochrome system in Ascaris muscle mitochondria was further characterized using purer preparations.2. Difference spectra (at 22 °C and ?196 °C) of the mitochondrial preparations using succinate and ascorbate plus N,N,N′,N′-tetramethyl-p-phenylenediamine show that Ascaris muscle mitochondria contain cytochromes c1, c and aa3, and also at least three b-type cytochromes. The b-type cytochrome is the predominant component.3. Cytochrome c and Ascaris cytochrome b-560 can be extracted from the mitochondrial preparations with 150 mM KCl, leaving the membrane-bound cytochromes c1, b and aa3 in the KCl residue.  相似文献   

11.
A kinetic study on ubiquinol-cytochrome f reductase (EC 1.10.2.2) has been undertaken either in situ in KCN-inhibited mitochondria and submitochondrial particles, or in the isolated cytochrome b-c1 complex using ubiquinol-1 and exogenous cytochrome c as substrates. The steady-state two-substrate kinetics of the reductase appears to follow a general sequential mechanism, allowing calculation of a Km for ubiquinol-1 of 13.4 μM in mitochondria and of 24.6 μM in the isolated cytochrome b-c1 complex. At low concentrations of cytochrome c, however, the titrations as a function of quinol concentration appear biphasic both in mitochondria and in submitochondrial particles containing trapped cytochrome c inside the vesicle space, fitting two apparent Km values for ubiquinol-1. Relatively high antimycin-sensitive rates of ubiquinol-1-cytochrome c reductase have been found in submitochondrial particles: both the Vmax and the Km for ubiquinol-1 are, however, affected by the overall orientation of the particle preparation, i.e., by the reactivity of cytochrome c with its proper site. The turnover numbers corrected for particle orientation with respect to cytochrome c interaction are at least 2-fold higher in submitochondrial particles than in mitochondria. This is particularly evident using inside-out particles containing trapped cytochrome c in the vesicle space (and therefore reacting with its physiological site). A diffusion step for the quinol substrate appears to be rate limiting in mitochondria and can be removed by addition of deoxycholate, suggesting that the oxidation site of ubiquinol may be more exposed to the matrix side of the inner mitochondrial membrane.  相似文献   

12.
Blowfly (Phormia regina) flight muscle mitochondria oxidized pyruvate (+ proline) in the presence of either ADP (coupled respiration) or carbonylcyanide-p-trifluoromethoxyphenylhydrazone (FCCP-uncoupled respiration). There was an absolute requirement for ADP (Km = 8.0 μm) when pyruvate oxidation was stimulated by FCCP in the presence of oligomycin. This requirement for ADP was limited to the oxidation of pyruvate; uncoupled α-glycerolphosphate oxidation proceeded maximally even in the absence of added ADP. Atractylate inhibited uncoupled pyruvate oxidation whether added before (>99%) or after (95%) initiation of respiration with FCCP. In the presence of FCCP, oligomycin, and limiting concentrations of ADP (less than 110 μm), there was a shutoff in the uptake of oxygen. This inhibition of respiration was completely reversed by the addition of more ADP. Plots of net oxygen uptake as a function of the limiting ADP concentration were linear; the observed ADP/O ratio was 0.22 ± 0.025. An ADP/O ratio of 0.2 was predicted if phosphorylation occurred only at the succinyl-CoA synthetase step of the tricarboxylate cycle. Experiments performed in the presence of limiting concentrations of ADP, and designed to monitor changes in the mitochondrial content of ADP and ATP, demonstrated that the shutoff in oxygen uptake was not due to the presence of a high intramitochondrial concentration of ATP. Indeed, ATP, added to the medium prior to the addition of FCCP, inhibited uncoupled pyruvate oxidation; the apparent KI was 0.8 mm. These results are consistent with the hypothesis that it is the intramitochondrial ATP/ADP ratio that is one of the controlling factors in determining the rate of flux through the tricarboxylate cycle. Changes in the mitochondrial content of citrate, isocitrate, α-ketoglutarate, and malate during uncoupled pyruvate oxidation in the presence of a limiting concentration of ADP were consistent with the hypothesis that the mitochondrial NAD+-linked isocitric dehydrogenase is a major site for such control through the tricarboxylate cycle.  相似文献   

13.
The aryl azide, 2,4-dinitro-5-fluorophenylazide, was reacted with horse heart cytochrome c to give a photoaffinity-labeled derivative of this heme protein. The modified cytochrome c, with one to two dinitroazidophenyl groups per mole of the enzyme, has a half-reduction potential the same (± 10 mV) as native cytochrome c. The dissociation constant for the modified cytochrome c from cytochrome c-depleted mitochondrial membranes and the apparent Km for the reaction with cytochrome c oxidase were each five to six times greater than the values for native cytochrome c. Irradiation of cytochrome c-depleted mitochondrial membranes supplemented with an excess of photoaffinity-labeled cytochrome c resulted in covalent binding of the derivative to the mitochondrial membranes. Fractionation of the irradiated mitochondria in the presence of detergents and salts followed by chromatography on agarose, Bio-Gel A, showed that labeled cytochrome c was bound covalently to cytochrome c oxidase in a 1:1 molar complex. The covalently linked cytochrome c-cytochrome c oxidase complex was active in mediating the electron transfer between N,N,N′,N′-tetramethyl-p-phenylenediamine/ascorbate and the oxidase.  相似文献   

14.
In the presence of the uncoupler, external zinc ions inhibit rapidly turnover of cytochrome c oxidase reconstituted in phospholipid vesicles or bound to the membrane of intact mitochondria. The effect is promoted by electron leaks into the oxidase during preincubation with Zn2+. Inhibition of liposome-bound bovine cytochrome oxidase by external Zn2+ titrates with a Ki of 1 ± 0.3 μM. Presumably, the Zn2+-binding group at the positively charged side is not reactive in the oxidized enzyme, but becomes accessible to the cation in some partially reduced state(s) of the oxidase; reduction of CuB is tentatively proposed to be responsible for the effect.  相似文献   

15.
The K+-ionophores valinomycin and nonactin induce a qualitatively identical change of the visible spectrum of isolated oxidized cytochromec oxidase (red shift), but the amplitude is half with nonactin. Valinomycin, in the presence or absence of a protonophore, stimulates the respiration of the reconstituted enzyme to a higher extent than nonactin and results in a higherK m for cytochromec. In contrast, nonactin causes a fivefold rate of proton conductivity across a liposomal membrane, after induction of a K+-diffusion potential. The data indicate that respiratory control by these antibiotics is not only due to degradation of a membrane potential, but rather to specific interaction with and modification of cytochromec oxidase.  相似文献   

16.
When rat liver mitochondria were suspended in 0.15 m KCl, the cytochrome c appeared to be solubilized from the binding site on the outside of the inner membrane and trapped in the intermembrane space. When the outer membrane of these mitochondria was disrupted with digitonin at a digitonin concentration of 0.15 mg/mg of protein, the solubilized cytochrome c could be released from mitochondria along with adenylate kinase. When mitochondria were suspended in 0.15 m KCl instead of 0.33 m sucrose, the ADPO ratio observed with succinate, β-hydroxybutyrate, malate + pyruvate or glutamate as substrates was little affected. A number of cycles of State 4-State 3-State 4 with ADP was observed. The respiratory control ratios, however, were decreased, particularly when glutamate was used as the substrate. Cytochrome c oxidase activity was also decreased to 55% when assayed using ascorbate + N,N,N′,N′-tetramethyl-p-phenylene-diamine (TMPD) as substrates. Suspension of mitochondria in 0.15 m KCl resulted in an enhancement of the very low NADH oxidation by intact mitochondria and a twofold enhancement of sulfite oxidation. Trapped cytochrome c in outer membrane vesicles prepared from untreated and trypsin-treated intact mitochondria was found to be readily reduced by NADH and suggests that some cytochrome b5 is located on the inner surface of the outer membrane. The enhanced NADH oxidase could therefore reflect the ability of cytochrome c to mediate intermembrane electron transport. The enhanced sulfite oxidase activity was sensitive to cyanide inhibition and coupled to oxidative phosphorylation (ADPO < 1) unlike the activity of mitochondria in sucrose medium. These results suggest that free cytochrome c in the intermembrane space can mediate electron transfer between the sulfite oxidase and the inner membrane.  相似文献   

17.
The problem of the resolution and reconstitution of the inner mitochondrial membrane has been approached at three levels. (1) Starting with phosphorylating submitochondrial particles, a "resolution from without" can be achieved by stripping of surface components. The most extensive resolution was recently obtained with the aid of silicotungstate. Such particles require for oxidative phosphorylation the addition of several coupling factors as well as succinate dehydrogenase. (2) Starting with submitochondrial particles that have been degraded by trypsin and urea a resolution of the inner membrane proper containing an ATPase has been achieved. These experiments show that at least five components are required for the reconstitution of an oligomycin-sensitive ATPase: a particulate component, F 1, Mg++, phospholipids, and Fc. Morphologically, the reconstituted ATPase preparations resemble submitochondrial particles. (3) Starting with intact mitochondria individual components of the oxidation chain have been separated from each other. The following components were required for the reconstitution of succinoxidase: succinate dehydrogenase, cytochrome b\, cytochrome c 1, cytochrome c, cytochrome oxidase, phospholipids and Q 10. The reconstituted complex had properties similar to those of phosphorylating submitochondrial particles; i.e., the oxidation of succinate by molecular oxygen was highly sensitive to antimycin.  相似文献   

18.
An enzyme system from rat liver microsomes which catalyzes the NADH-mediated hydroxylation of benzo[a]pyrene has been reconstituted. The essential microsomal components of this NADH-dependent pathway were NADH-cytochrome b5 reductase, cytochrome b5, cytochrome P-448 and, phosphatidyl choline. Highly purified NADPH-cytochrome c reductase containing small amounts of deoxycholate stimulated this NADH-mediated pathway supported by 0.2 mm NADH whereas boiled reductase had little effect. Part of this stimulation could be attributed to hydroxylation of benzo[a]pyrene via a second pathway; i.e., NADPH-cytochrome c reductase in combination with cytochrome P-448 and phosphatidylcholine also supported a low rate of NADH-dependent hydroxylation. The mechanism of the remaining stimulation is not known. However, the effect of NADPH-cytochrome c reductase on the reconstituted cytochrome b5-dependent pathway was not unique; high concentrations of deoxycholate also stimulated this pathway, perhaps by facilitating the transfer of electrons from NADH-cytochrome b5 reductase to cytochrome b5. The addition of NADPH-cytochrome c reductase to the cytochrome b5-dependent reconstituted system also affected the apparent Km of NADH for benzo[a]pyrene hydroxylation. In the absence of NADPH-cytochrome c reductase, the apparent Km of NADH was 1.3 μm while in its presence a low (1.3 μm) and a high (1700 μm) Km were observed, consistent with the affinities of the two flavoproteins for NADH. Our results also indicate that the relative contribution of the pathway due to NADPH-cytochrome c reductase in combination with phosphatidyl choline and cytochrome P-448 to the overall rate of NADH-supported benzo[a]pyrene hydroxylation in microsomes would be greatly dependent on the concentration of NADH chosen. The rate of benzo[a]pyrene hydroxylation by these reconstituted components was almost 10-fold greater with 10 mm NADH than with 0.2 mm NADH, a result consistent with the reduction of NADPH-cytochrome c reductase by high concentrations of NADH.  相似文献   

19.
Peter Nicholls 《BBA》1976,430(1):30-45
1. Beef heart mitochondria have a cytochrome c1 : c : aa3 ratio of 0.65 : 1.0 : 1.0 as isolated; Keilin-Hartree submitochondrial particles have a ratio of 0.65 : 0.4 : 1.0. More than 50% of the submitochondrial particle membrane is in the ‘inverted’ configuration, shielding the catalytically active cytochrome c. The ‘endogenous’ cytochrome c of particles turns over at a maximal rate between 450 and 550 s?1 during the oxidation of succinate or ascorbate plus TMPD; the maximal turnover rate for cytochrome c in mitochondria is 300–400 s?1, at 28° – 30°C, pH 7.4.2. Ascorbate plus N,N,N′,N′-tetramethyl-p-phenylene diamine added to antimycin-treated particles induces anomalous absorption increases between 555 and 565 nm during the aerobic steady state, which disappear upon anaerobiosis; succinate addition abolishes this cycle and permits the partial resolution of cytochrome c1 and cytochrome c steady states at 552.5–547 nm and 550–556.5 nm, respectively.3. Cytochrome c1 is rather more reduced than cytochrome c during the oxidation of succinate and of ascorbate+N,N,N′,N′-tetramethyl-p-phenylene diamine in both mitochondria and submitochondrial particles; a near equilibrium condition exists between cytochromes c1 and c in the aerobic steady state, with a rate constant for the c1c reduction step greater than 103 s?1.4. The greater apparent response of the caa3 electron transfer step to salts, the hyperbolic inhibition of succinate oxidation by azide and cyanide, and the kinetic behaviour of the succinate-cytochrome c reductase system, are all explicable in terms of a near-equilibrium condition prevailing at the c1c step. Endogenous cytochrome c of mitochondria and submitochondrial particles is apparently largely bound to cytochrome aa3 units in situ. Cytochrome c1 can either reduce the cytochrome c-cytochrome aa3 complex directly, or requires only a small extra amount of cytochrome c to carry the full electron transfer flux.  相似文献   

20.
NADPH-cytochrome c reductase of vitamin D3-deficient chick kidney mitochondria has been purified approximately 1100-fold to a specific activity of 788 nmol cytochrome c reduced/min/mg protein. Analytical gel electrophoresis of the purified enzyme revealed two bands when stained for protein, but only the more anodic band demonstrated NADPH-tetrazolium reductase activity. The relative ease of solubilization of the reductase without the use of lipases, proteases, or detergents was the first line of evidence that suggested a novel mitochondrial localization for this previously unreported NADPH-linked cytochrome c reductase. The apparent properties of the reductase suggest that the enzyme is a component of kidney mitochondrial outer membrane. The kinetic determination of Michaelis constants with respect to NADPH, cytochrome c, and NADH gave the following values: KmNADPH = 1.7 μM, Kmcytc = 3.4 μM, and KmNADH = 20 mM. These constants were different from those of the intact kidney microsomal reductase: KmNADPH = 5.5 μM, Kmcytc = 10.5 μM, and KmNADH = 13.3 μM. The mitochondrial as well as the intact microsomal reductases exhibited a ping-pong kinetic mechanism for NADPH-mediated cytochrome c reduction. Spectrofluorometric measurements demonstrated the presence of equimolar amounts of FAD and FMN. The oxidized enzyme has absorption maxima at 280 and 450 nm with a shoulder at 415 nm. Upon reduction with NADPH a distinct loss in the 450-nm absorption was observed. Ouchterlony immunodiffusion studies with rabbit antiserum to chick renal mitochondrial ferredoxin did not reveal cross-reactivity when the purified reductase was the antigen. This excludes the involvement of a ferredoxin-type iron-sulfur protein in the NADPH-mediated reduction of cytochrome c by the purified reductase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号