首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many subspecies of the soil bacterium Bacillus thuringiensis produce various parasporal crystal proteins, also known as Cry toxins, that exhibit insecticidal activity upon binding to specific receptors in the midgut of susceptible insects. One such receptor, BT-R(1) (210 kDa), is a cadherin located in the midgut epithelium of the tobacco hornworm, Manduca sexta. It has a high binding affinity (K(d) approximately 1nM) for the Cry1A toxins of B. thuringiensis. Truncation analysis of BT-R(1) revealed that the only fragment capable of binding the Cry1A toxins of B. thuringiensis was a contiguous 169-amino acid sequence adjacent to the membrane-proximal extracellular domain. The purified toxin-binding fragment acted as an antagonist to Cry1Ab toxin by blocking the binding of toxin to the tobacco hornworm midgut and inhibiting insecticidal action. Exogenous Cry1Ab toxin bound to intact COS-7 cells expressing BT-R(1) cDNA, subsequently killing the cells. Recruitment of BT-R(1) by B. thuringiensis indicates that the bacterium interacts with a specific cell adhesion molecule during its pathogenesis. Apparently, Cry toxins, like other bacterial toxins, attack epithelial barriers by targeting cell adhesion molecules within susceptible insect hosts.  相似文献   

2.
The cadherin receptor BT-R(1), localized in the midgut epithelium of the tobacco hornworm, Manduca sexta, is coupled to programmed oncotic-like cell death, which is triggered by the univalent binding of the Cry1Ab toxin of Bacillus thuringiensis (Bt) to the receptor. Kinetic analysis of BT-R(1) expression during larval development reveals that the density of BT-R(1) on the midgut surface increases dramatically along with an equivalent rise in the concentration of Cry1Ab toxin molecules needed to kill each of the five larval stages of the insect. The increase in the number of BT-R(1) molecules per midgut surface area requires additional toxin molecules to kill older versus younger larvae, as evidenced by the corresponding LC(50) values. Based on these observations, we developed a mathematical model to quantify both the expression of BT-R(1) and the susceptibility of M. sexta larvae to the Cry1Ab toxin. Interestingly, the toxin-receptor ratio remains constant during larval development regardless of larval size and mass. This ratio apparently is critical for insecticidal activity and the decrease in toxin effectiveness during larval development is due primarily to the number of effective toxins and available receptors in the larval midgut. Evidently, susceptibility of M. sexta to the Cry1Ab toxin of Bt correlates directly to the developmental expression of BT-R(1) in this insect.  相似文献   

3.
Griko N  Candas M  Zhang X  Junker M  Bulla LA 《Biochemistry》2004,43(5):1393-1400
BT-R(1) is a member of the cadherin superfamily of proteins and is expressed in the midgut epithelium of Manduca sexta during larval development. Previously, we showed that calcium ions influence the structure and stability of BT-R(1) on brush border membrane vesicles (BBMVs) prepared from M. sexta midgut epithelium. In the present study, the effects of calcium and Cry1Ab toxin, produced by Bacillus thuringiensis, on the adhesive properties of BBMVs were investigated. Addition of calcium to a suspension of BBMVs promoted adhesion and aggregation of the vesicles. Treatment of BBMVs with trypsin or lowering the pH (pH 4.0) of the BBMV suspension abolished calcium-induced vesicle aggregation, whereas treatment with deglycosylating enzymes did not affect the aggregation of vesicles, indicating that adhesion and clustering of BBMVs involves protein-protein interactions. Preincubation of BBMVs with Cry1Ab toxin, which specifically binds to BT-R(1) with high affinity and disrupts the midgut epithelium of M. sexta, caused a 50% decrease in calcium-induced vesicle aggregation. The inhibitory effects of the Cry1Ab toxin on BBMV aggregation was blocked completely when the toxin was preincubated with a peptide containing the toxin-binding site of BT-R(1). Cry3A toxin, which is similar in molecular structure to Cry1Ab but does not bind to BT-R(1) and is not toxic to M. sexta larvae, did not affect BBMV aggregation. The results of this study demonstrate that the adhesive function of BT-R(1) is compromised by the Cry1Ab toxin, which acts as a selective antagonist, and supports the notion that BT-R(1) is critical in preserving the integrity of larval midgut epithelium in M. sexta.  相似文献   

4.
The Manduca sexta receptor for the Bacillus thuringiensis Cry1Aa, Cry1Ab, and Cry1Ac toxins, BT-R1, has been expressed in heterologous cell culture, and its ligand binding characteristics have been determined. When transfected with the BT-R1 cDNA, insect and mammalian cell cultures produce a binding protein of approximately 195 kDa, in contrast to natural BT-R1 from M. sexia, which has an apparent molecular weight of 210 kDa. Transfection of cultured Spodoptera frugiperda cells with the BT-R1 cDNA imparts Cry1A-specific high-affinity binding activity typical of membranes prepared from larval M. sexta midguts. Competition assays with BT-R1 prepared from larval M. sexta midguts and transiently expressed in cell culture reveal virtually identical affinities for the Cry1Aa, Cry1Ab, and Cry1Ac toxins, clearly demonstrating the absolute specificity of the receptor for toxins of the lepidopteran-specific Cry1A family. BT-R1 therefore remains the only M. sexta Cry1A binding protein to be purified, cloned, and functionally expressed in heterologous cell culture, and for the first time, we are able to correlate the Cry1Aa, Cry1Ab, and Cry1Ac toxin sensitivities of M. sexta to the identity and ligand binding characteristics of a single midgut receptor molecule.  相似文献   

5.
Pacheco S  Gómez I  Gill SS  Bravo A  Soberón M 《Peptides》2009,30(3):583-588
Cry1A toxins produced by Bacillus thuringiensis bind a cadherin receptor that mediates toxicity in different lepidopteran insect larvae. Insect cadherin receptors are modular proteins composed of three domains, the ectodomain formed by 9-12 cadherin repeats (CR), the transmembrane domain and the intracellular domain. Cry1A toxins interact with three regions of the Manduca sexta cadherin receptor that are located in CR7, CR11 and CR12 cadherin repeats. Binding of Cry1A toxin to cadherin induces oligomerization of the toxin, which is essential for membrane insertion. Also, it has been reported that cadherin fragments containing the CR12 region enhanced the insecticidal activity of Cry1Ab toxin to M. sexta and other lepidopteran larvae. Here we report that cadherin fragments corresponding to CR7 and CR11 regions also enhanced the activity of Cry1Ac and Cry1Ab toxin to M. sexta larvae, although not as efficient as the CR12 fragment. A single point mutation in the CR12 region (I1422R) affected Cry1Ac and Cry1Ab binding to the cadherin fragments and did not enhance the activity of Cry1Ab or Cry1Ac toxin in bioassays. Analysis of Cry1Ab in vitro oligomer formation in the presence of wild type and mutated cadherin fragments showed a correlation between enhancement of Cry1A toxin activity in bioassays and in vitro Cry1Ab-oligomer formation. Our data shows that formation of Cry1A toxin oligomer is in part responsible for the enhancement of Cry1A toxicity by cadherin fragments that is observed in vivo.  相似文献   

6.
The specific role of cadherin receptors in cytotoxicity involving Cry toxins of Bacillus thuringiensis and their interactions with cell membrane has not been defined. To elucidate the involvement of toxin-membrane and toxin-receptor interactions in cytotoxicity, we established a cell-based system utilizing High Five insect cells stably expressing BT-R1, the cadherin receptor for Cry1Ab toxin. Cry1Ab toxin is incorporated into cell membrane in both oligomeric and monomeric form. Monomeric toxin binds specifically to BT-R1 whereas incorporation of oligomeric toxin is nonspecific and lipid dependent. Toxin oligomers in the cell membrane do not produce lytic pores and do not kill insect cells. Rather, cell death correlates with binding of the Cry1Ab toxin monomer to BT-R1, which apparently activates a Mg2+-dependent cellular signaling pathway.  相似文献   

7.
The cadherin-related receptor of Manduca sexta, BT-R(1), for the Cry1A family of Bacillus thuringiensis insecticidal toxins, was expressed in cultured Spodoptera frugiperda (Sf21) insect cells utilizing the expression vector deltaOp-gp64. Recombinant BT-R(1) was released by the Sf21 cells in soluble form into the culture medium and represents approximately 58% of total BT-R(1) produced by the cells. The soluble protein was purified by affinity chromatography using Cry1Ab toxin coupled to Sepharose 4B. The apparent molecular mass of purified soluble recombinant BT-R(1) is 195 kDa. Radiolabeled toxin bound to purified soluble BT-R(1) with a K(d) value of 1.1 nM, which is similar to that of both membrane-bound BT-R(1) in Sf21 cells and natural BT-R(1) from M. sexta larval midgut tissue. Binding of radiolabeled toxin to soluble BT-R(1) was competitively inhibited by unlabeled Cry1Ab toxin but not by other Cry toxins as was observed also for membrane-bound BT-R(1). The recombinant soluble protein was stable in culture medium for at least 3 days at 27 degrees C and for 7 days at 4 degrees C and exhibited toxin-binding properties similar to the natural protein. Apparently, neither membrane association nor the extent of glycosylation influences the binding affinity and specificity of BT-R(1). Approximately 1 mg of purified BT-R(1) was obtained per liter of insect cell culture supernatant, representing approximately 2 x 10(9) Sf21 cells.  相似文献   

8.
9.
Bacillus thuringiensis Cry protein exerts its toxic effect through a receptor-mediated process. Both aminopeptidases and cadherin proteins were identified as putative Cry1A receptors from Heliothis virescens and Manduca sexta. The importance of cadherin was implied by its correlation with a Cry1Ac resistant H. virescens strain (Gahan, L. J., Gould, F., and Heckel, D. G. (2001) Science 293, 857-860). In this study, the Cry1Ac toxin-binding region in H. virescens cadherin was mapped to a 40-amino-acid fragment, from amino acids 1422 to 1440. This site overlaps with a Cry1Ab toxin-binding site, amino acids 1363-1464 recently reported in M. sexta (Hua, G., Jurat-Fuentes, J. L., and Adang, M. J. (2004) J. Biol. Chem. 279, 28051-28056). Further, feeding of the anti-H. virescens cadherin antiserum or the partial cadherins, which contain the toxin-binding region, in combination with Cry1Ab/Cry1Ac reduced insect mortality by 25.5-55.6% to first instar H. virescens and M. sexta larvae, suggesting a critical function for this cadherin domain in insect toxicity. Mutations in this region, to which the Cry1Ac binds through its loop 3, resulted in the loss of toxin binding. For the first time, we show that the cadherin amino acids Leu(1425) and Phe(1429) are critical for Cry1Ac toxin interaction, and if substituted with charged amino acids, result in the loss of toxin binding, with a K(D) of < 10(-5) m. Mutation of Gln(1430) to an alanine, however, increased the Cry1Ac affinity 10-fold primarily due to an increase on rate. The L1425R mutant can result from a single nucleotide mutation, CTG --> CGG, suggesting that these mutants, which have decreased toxin binding, may lead to Cry1A resistance in insects.  相似文献   

10.
Phage display is an in vitro method for selecting polypeptides with desired properties from a large collection of variants. The insecticidal Cry toxins produced by Bacillus thuringiensis are highly specific to different insects. Various proteins such as cadherin, aminopeptidase-N (APN) and alkaline phosphatase (ALP) have been characterized as potential Cry-receptors. We used phage display to characterize the Cry toxin-receptor interaction(s). By employing phage-libraries that display single-chain antibodies (scFv) from humans or from immunized rabbits with Cry1Ab toxin or random 12-residues peptides, we have identified the epitopes that mediate binding of lepidopteran Cry1Ab toxin with cadherin and APN receptors from Manduca sexta and the interaction of dipteran Cry11Aa toxin with the ALP receptor from Aedes aegypti. Finally we displayed in phages the Cry1Ac toxin and discuss the potential for selecting Cry variants with improved toxicity or different specificity.  相似文献   

11.
The cadherin protein Bt-R(1a) is a receptor for Bacillus thuringiensis Cry1A toxins in Manduca sexta. Cry1Ab toxin is reported to bind specific epitopes located in extracellular cadherin repeat (CR) 7 and CR11 on Bt-R(1) (Gomez, B., Miranda-Rios, J., Riudino-Pinera, E., Oltean, D. I., Gill, S. S., Bravo, A., and Soberon, M. (2002) J. Biol. Chem. 277, 30137-30143; Dorsch, J. A., Candas, M., Griko, N., Maaty, W., Midboe, E., Vadlamudi, R., and Bulla, L. (2002) Insect Biochem. Mol. Biol. 32, 1025-1036). We transiently expressed CR domains of Bt-R(1a) in Drosophila melanogaster Schneider 2 (S2) cells as fusion peptides between a signal peptide and a terminal region that included membrane-proximal, membrane-spanning, and cytoplasmic domains. A domain consisting of CR11 and 12 was the minimal (125)I-Cry1Ab binding region detected under denaturing conditions. Only CR12 was essential for Cry1Ab binding and cytotoxicity to S2 cells when tested under native conditions. Under these conditions expressed CR12 bound (125)I-Cry1Ab with high affinity (K(com) = 2.9 nm). Flow cytometry assays showed that expression of CR12 conferred susceptibility to Cry1Ab in S2 cells. Derivatives of Bt-R(1a) with separate deletions of CR7, 11, and 12 were expressed in S2 cells. Only deletion of CR12 caused loss of Cry1Ab binding and cytotoxicity. These results demonstrate that CR12 is the essential Cry1Ab binding component on Bt-R(1) that mediates Cry1Ab-induced cytotoxicity.  相似文献   

12.
Toxins from Bacillus thuringiensis (Bt) are widely used for pest control. In particular, Bt toxin Cry1Ac produced by transgenic cotton kills some key lepidopteran pests. We found that Cry1Ac binds to recombinant peptides corresponding to extracellular regions of a cadherin protein (BtR) in a major cotton pest, pink bollworm (Pectinophora gossypiella) (PBW). In conjunction with previous results showing that PBW resistance to Cry1Ac is linked with mutations in the BtR gene, the results reported here support the hypothesis that BtR is a receptor for Cry1Ac in PBW. Similar to other lepidopteran cadherins that bind Bt toxins, BtR has at least two Cry1Ac-binding domains in cadherin-repeat regions 10 and 11, which are immediately adjacent to the membrane proximal region. However, unlike cadherins from Manduca sexta and Bombyx mori, toxin binding was not seen in regions more distal from the membrane proximal region. We also found that both the protoxin and activated toxin forms of Cry1Ac bound to recombinant BtR fragments, suggesting that Cry1Ac activation may occur either before or after receptor binding.  相似文献   

13.
Expression of Cry1Ac cadherin receptors in insect midgut and cell lines   总被引:2,自引:0,他引:2  
Cadherin-like proteins have been identified as putative receptors for the Bacillus thuringiensis Cry1A proteins in Heliothis virescens and Manduca sexta. Immunohistochemistry showed the cadherin-like proteins are present in the insect midgut apical membrane, which is the target site of Cry toxins. This subcellular localization is distinct from that of classical cadherins, which are usually present in cell-cell junctions. Immunoreactivity of the cadherin-like protein in the insect midgut was enhanced by Cry1Ac ingestion. We also generated a stable cell line Flp-InT-REX-293/Full-CAD (CAD/293) that expressed the H. virescens cadherin. As expected, the cadherin-like protein was mainly localized in the cell membrane. Interestingly, toxin treatment of CAD/293 cells caused this protein to relocalize to cell membrane subdomains. In addition, expression of H. virescens cadherin-like protein affects cell-cell contact and cell membrane integrity when the cells are exposed to activated Cry1Ab/Cry1Ac.  相似文献   

14.
Candas M  Francis BR  Griko NB  Midboe EG  Bulla LA 《Biochemistry》2002,41(46):13717-13724
BT-R1 (M(r) = 210 kDa) represents a new type of insect cadherin that is expressed specifically in the midgut epithelium during growth and development of Manduca sexta larvae. It also is a target receptor for the Cry1A toxins of the entomopathogenic bacterium Bacillus thuringiensis. Expression of BT-R1, which varies during larval development, correlates with the abundance of the protein and with the differential cleavage of the molecule at each developmental stage. The cleavage of BT-R1 is calcium dependent, and consequently, Ca2+ directly influences the structural integrity of BT-R1. Indeed, removal of calcium ions by chelating agents promotes cleavage of the BT-R1 ectodomain, resulting in formation of fragments that are similar to those observed during larval development. Partial purification of proteins from brush border membrane vesicles (BBMVs) by gel filtration chromatography hinders the cleavage of BT-R1 in the presence of EDTA and EGTA, indicating that there is specific proteolytic activity associated with the BBMV. This specific proteolytic cleavage of BT-R1 not only alters the integrity of BT-R1 but it most likely is implicated in cell adhesion events during differentiation and development of M. sexta midgut epithelium. We propose a model for calcium-dependent protection of BT-R1 as well as a cleavage pattern that may modulate the molecular interactions and adhesive properties of its ectodomain. Molecular characterization of such a protection mechanism should lead to a better understanding of how the function of specific cadherins is modulated during tissue differentiation and insect development.  相似文献   

15.
A fluorescence-based approach was developed to analyze in vivo the function of Manduca sexta cadherin (Bt-R(1)) as a Cry1 toxin receptor. We cloned a Bt-R(1a) cDNA that differs from Bt-R(1) by 37 nucleotides and two amino acids and expressed it transiently in Drosophila melanogaster Schneider 2 (S2) cells. Cells expressing Bt-R(1a) bound Cry1Aa, Cry1Ab, and Cry1Ac toxins on ligand blots, and in saturation binding assays. More Cry1Ab was bound relative to Cry1Aa and Cry1Ac, though each Cry1A toxin bound with high-affinity (Kd values from 1.7 to 3.3 nM). Using fluorescent microscopy and flow cytometry assays, we show that Cry1Aa, Cry1Ab and Cry1Ac, but not Cry1Ba, killed S2 cells expressing Bt-R(1a) cadherin. These results demonstrate that M. sexta cadherin Bt-R(1a) functions as a receptor for the Cry1A toxins in vivo and validates our cytotoxicity assay for future receptor studies.  相似文献   

16.
17.
In susceptible lepidopteran insects, aminopeptidase N and cadherin-like proteins are the putative receptors for Bacillus thuringiensis (Bt) toxins. Using phage display, we identified a key epitope that is involved in toxin-receptor interaction. Three different scFv molecules that bind Cry1Ab toxin were obtained, and these scFv proteins have different amino acid sequences in the complementary determinant region 3 (CDR3). Binding analysis of these scFv molecules to different members of the Cry1A toxin family and to Escherichia coli clones expressing different Cry1A toxin domains showed that the three selected scFv molecules recognized only domain II. Heterologous binding competition of Cry1Ab toxin to midgut membrane vesicles from susceptible Manduca sexta larvae using the selected scFv molecules showed that scFv73 competed with Cry1Ab binding to the receptor. The calculated binding affinities (K(d)) of scFv73 to Cry1Aa, Cry1Ab, and Cry1Ac toxins are in the range of 20-51 nm. Sequence analysis showed this scFv73 molecule has a CDR3 significantly homologous to a region present in the cadherin-like protein from M. sexta (Bt-R(1)), Bombyx mori (Bt-R(175)), and Lymantria dispar. We demonstrated that peptides of 8 amino acids corresponding to the CDR3 from scFv73 or to the corresponding regions of Bt-R(1) or Bt-R(175) are also able to compete with the binding of Cry1Ab and Cry1Aa toxins to the Bt-R(1) or Bt-R(175) receptors. Finally, we showed that synthetic peptides homologous to Bt-R(1) and scFv73 CDR3 and the scFv73 antibody decreased the in vivo toxicity of Cry1Ab to M. sexta larvae. These results show that we have identified the amino acid region of Bt-R(1) and Bt-R(175) involved in Cry1A toxin interaction.  相似文献   

18.
The insecticidal Cry toxins produced by the bacterium Bacillus thuringiensis are comprised of three structural domains. Domain I, a seven-helix bundle, is thought to penetrate the insect epithelial cell plasma membrane through a hairpin composed of alpha-helices 4 and 5, followed by the oligomerization of four hairpin monomers. The alpha-helix 4 has been proposed to line the lumen of the pore, whereas some residues in alpha-helix 5 have been shown to be responsible for oligomerization. Mutation of the Cry1Ac1 alpha-helix 4 amino acid Asn135 to Gln resulted in the loss of toxicity to Manduca sexta, yet binding was still observed. In this study, the equivalent mutation was made in the Cry1Ab5 toxin, and the properties of both wild-type and mutant toxin counterparts were analyzed. Both mutants appeared to bind to M. sexta membrane vesicles, but they were not able to form pores. The ability of both N135Q mutants to oligomerize was also disrupted, providing the first evidence that a residue in alpha-helix 4 can contribute to toxin oligomerization.  相似文献   

19.
The primary action of Cry toxins produced by Bacillus thuringiensis is to lyse midgut epithelial cells in their target insect by forming lytic pores. The toxin-receptor interaction is a complex process, involving multiple interactions with different receptor and carbohydrate molecules. It has been proposed that Cry1A toxins sequentially interact with a cadherin receptor, leading to the formation of a pre-pore oligomer structure, and that the oligomeric structure binds to glycosylphosphatidyl-inositol-anchored aminopeptidase-N (APN) receptor. The Cry1Ac toxin specifically recognizes the N-acetylgalactosamine (GalNAc) carbohydrate present in the APN receptor from Manduca sexta larvae. In this work, we show that the Cry1Ac pre-pore oligomer has a higher binding affinity with APN than the monomeric toxin. The effects of GalNAc binding on the toxin structure were studied in the monomeric Cry1Ac, in the soluble pre-pore oligomeric structure, and in its membrane inserted state by recording the fluorescence status of the tryptophan (W) residues. Our results indicate that the W residues of Cry1Ac have a different exposure to the solvent when compared with that of the closely related Cry1Ab toxin. GalNAc binding specifically affects the exposure of W545 in the pre-pore oligomer in contrast to the monomer where GalNAc binding did not affect the fluorescence of the toxin. These results indicate a subtle conformational change in the GalNAc binding pocket in the pre-pore oligomer that could explain the increased binding affinity of the Cry1Ac pre-pore to APN. Although our analysis did not reveal major structural changes in the pore-forming domain I upon GalNAc binding, it showed that sugar interaction enhanced membrane insertion of soluble pre-pore oligomeric structure. Therefore, the data presented here permits to propose a model in which the interaction of Cry1Ac pre-pore oligomer with APN receptor facilitates membrane insertion and pore formation.  相似文献   

20.
A variant form of the Bacillus thuringiensis Cry1Ac toxin that is not cleaved at the N terminus during proteolytic activation with trypsin was found to be incapable of forming pores in Manduca sexta brush border membrane vesicles in vitro and had reduced insecticidal activity in vivo. Binding studies indicated an altered binding pattern of the mutant toxin in that bound toxin could not be fully displaced by a high molar excess of fully trypsin-activated toxin. These results suggest that proteolytic removal of the N-terminal peptide of Cry1Ac is an important step in toxin activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号