首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Cross-linking class I MHC molecules on human T cell clones by reacting them with various mAb directed at either monomorphic or polymorphic determinants on class I MHC molecules followed by cross-linking with GaMIg stimulated a rise in intracellular free calcium concentration ([Ca2+]i), and induced proliferation and IL-2 production. T cell clones varied in the mean density of class I MHC molecules and the capacity to respond to mAb to class I MHC molecules. However, the functional responses of the clones did not correlate with class I MHC density or the CD4/CD8 phenotype. mAb to polymorphic class I MHC determinants were less able to induce an increase in [Ca2+]i and a functional response in the T cell clones. Additive stimulatory effects were noted when mAb against both HLA-A and HLA-B determinants were employed. Cross-linking class I MHC molecules on Jurkat cells induced a rise by [Ca2+]i and induced IL-2 production upon co-stimulation with PMA. Cross-linking class I MHC molecules on mutant Jurkat cells that expressed diminished levels of CD3 and were unable to produce IL-2 in response to anti-CD3 stimulation triggered both a rise in [Ca2+]i and IL-2 production with PMA co-stimulation. In contrast, cross-linking class I MHC molecules on mutant Jurkat cells that were CD3- stimulated neither a rise in [Ca2+]i nor IL-2 production. The combination of mAb to CD28 or ionomycin and PMA, however, was able to induce IL-2 production by CD3- Jurkat cells. The data demonstrate that cross-linking class I MHC molecules delivers a functionally important signal to T cell clones and Jurkat cells and indicate that class I MHC molecules may function to transduce activation signals to T cells. In addition, the data demonstrate that transmission of an activation signal via class I MHC molecules requires CD3 expression. The data, therefore, support a central role for CD3 in the transduction of activation signals to T cells via class I MHC molecules.  相似文献   

3.
During physiologic activation of mature CD8+ T cells, TCR and CD8 bind to the same Ag-complexed MHC class I molecule. Thereby, close proximity is induced between CD8 and the TCR/CD3 complex. During this engagement, CD8 may deliver TCR-independent signals via its associated protein tyrosine kinase, p56lck. We studied the potential biologic effects of close association between CD8 and TCR/CD3 complexes by using a bispecific antibody (bsAb) directed against both TCR and CD8 molecules. This hybrid hybridoma (quadroma)-produced bsAb binds as a monomeric molecule to CD3+ CD8+ but not CD3+ CD4+ T cells. The bsAb proved capable of inducing the cytotoxic effector function of cloned CD3+ CD8+ T cells but not of CD3+ CD4+ T cells. When the bsAb was presented to resting T cells by monocytes, proliferation of the CD3+ CD4+ but not the CD3+ CD8+ subset of T lymphocytes was induced. Parental anti-TCR antibody induced vigorous growth of cells of both subsets. Essentially identical results were obtained when bsAb was presented in an immobilized fashion. The unresponsiveness of the CD3+ CD8+ T cells with respect to mitogenesis could be restored by exogenous rIL-2. The data suggest that bsAb-induced activation differs from activation by monospecific anti-TCR antibody. The former appears to more closely mimic physiologic Ag-induced signaling, because it leads to a similar paracrine IL-2-dependent growth pattern. The bsAb may, therefore, be instrumental in studying T cell signaling pathways, in particular the role of CD8-associated p56lck therein.  相似文献   

4.
The ability of mAb to class I MHC molecules, CD3, or CD4/CD8 to stimulate human T cell clones alone or in combination was examined. Cross-linking each of these surface Ag with appropriate mAb and goat anti-mouse Ig (GaMIg) resulted in a unique pattern of increase in intracellular free calcium ([Ca2+]i) and different degrees of functional activation. Cross-linking class I MHC molecules provided the most effective stimulus of IL-2 production and proliferation. Cross-linking more than one surface Ag induced a compound calcium signal with characteristics of each individual response. Cross-linking CD3 + HLA-A,B,C caused a rapid and prolonged increase in [Ca2+]i and synergistically increased IL-2 production and proliferation of all clones. Cross-linking CD3 + CD4/CD8 also generated a compound calcium signal and increased IL-2 production and DNA synthesis. Purposeful inclusion of CD3 was not required for costimulation as cross-linking HLA-A,B,C + CD4/CD8 also increased [Ca2+]i, IL-2 production, and proliferation. Cross-linking three surface Ag, CD3 + HLA-A,B,C + CD4/CD8, resulted in the greatest initial and sustained [Ca2+]i, IL-2 production, and DNA synthesis. Although there was a tendency for the various stimuli to increase both [Ca2+]i and functional responsiveness, neither the magnitude nor duration of the increased [Ca2+]i correlated with the amount of IL-2 produced or the ultimate proliferative response. To determine whether costimulation required that the various surface molecules were cross-linked together, experiments were carried out using isotype specific secondary antibodies. Augmentation of [Ca2+]i and costimulation of functional responses were noted when class I MHC molecules were cross-linked and CD3 was bound, but not cross-linked. Similarly, costimulation through CD3 and CD4/CD8 was observed when CD4/CD8 was cross-linked and the CD3 complex was engaged by an anti-CD3 mAb which was not further cross-linked. In contrast, costimulation by class I MHC molecules and CD4/CD8 was only observed when these molecules were cross-linked together. These data demonstrate that cross-linking class I MHC determinants or CD4/CD8 provides a direct signal to T cell clones that can be enhanced when CD3 is independently engaged. The results also indicate that T cell clones can be stimulated without engaging CD3 by the combination of signals delivered via class I MHC molecules and CD4/CD8, but only when these determinants were cross-linked together. These studies have demonstrated that these cell surface molecules differ in their capacity to deliver activation signals to T cell clones and also exhibit unique patterns of positive cooperativity in signaling potential.  相似文献   

5.
CD2 can mediate TCR/CD3-independent T cell activation.   总被引:5,自引:0,他引:5  
T lymphocytes can be activated clonotypically through TCR/CD3 complex or polyclonally via the CD2 molecule. Whether CD2-mediated activation is dependent on TCR/CD3 expression or signaling is controversial. We have re-explored this issue by using a series of CD2-transfected, TCR/CD3 surface membrane-negative human and mouse T cells. Our results clearly show that such T cells can be triggered for IL-2 secretion and increases in intracellular Ca2+ through the CD2 molecule in the absence of surface expression of TCR/CD3 complexes. These responses are only observed when cells express high levels of CD2 and there is a critical threshold of CD2 expression necessary for such activation in the absence of CD3. Concomitant expression of TCR/CD3 complex markedly lowers the level of CD2 required for activation via the latter pathway. These results provide a clear resolution of the controversy concerning the requirement for surface CD3 expression in T cell activation through CD2 and further suggest a possible role for CD2 in activation of TCR/CD3-negative cells.  相似文献   

6.
Specificity of T cell receptor (TCR) and its interaction with coreceptor molecules play decisive role in successful passing of T lymphocytes via check-points during their development and finally determine the efficiency of adaptive immunity. Genes encoding alpha- and beta-chains of TCR hybridoma 1D1 have been cloned. The hybridoma 1D1 was established by the fusion of BWZ.36CD8alpha cell line with CD8+ memory cells specific to MHC class I H-2Kb molecule. Exploiting retroviral transduction of thymoma 4G4 cells with TCR genes and coreceptors CD4 and CD8, variants of this cell line expressing on the surface CD3/TCR complex and coreceptors, separately or simultaneously have been obtained. The main function of CD4 is stabilization of interaction between TCR and MHC class II molecule. Nevertheless, we have found that CD4 could successfully participate in the activation of transfectants via TCR specific to MHC class I molecule H-2Kb. Moreover, coreceptor CD4 dominates CDS, because the response of transfectants CD4+CD8+ is blocked by antibodies to CD4 and MHC Class II Ab molecule but not to coreceptor CD8. The response of CD4+ cells was not due to cross-reaction between TCR 1D1 with MHC class II molecules, because transfectants do not respond to splenocytes of H-2b knockouted mice with impaired assembly of TCR/beta2-microglobulin/peptide complexes resulting in their absence on the cell surphace. The effect of domination was not due to sequestration of kinase p56lck, because truncated CD4 with the loss of binding motif for p56lck remained functional in 4G4 cells. Results obtained can explain the number of features of intrathymic selection and represent experimental basis for development of new methods of cancer gene therapy.  相似文献   

7.
We have examined transmembrane signaling events via the TCR/CD3 complex (TCR/CD3) at various stages of T cell development for evidence of developmental regulation. Engagement of TCR/CD3 induced defective activation of phospholipase C (PLC) in thymocytes relative to peripheral blood T lymphocytes. The defect in PLC activation via TCR/CD3 was restricted to immature thymocytes (CD3low, CD4+CD8+). Mature thymocytes (CD3high, CD4+CD8-/CD8+CD4-) were similar to PBL in signaling via TCR/CD3. Both immature and mature thymocytes expressed a similar profile of PLC isoenzyme mRNA species, indicating that the defect in signaling in immature thymocytes was not due to altered expression of PLC isoenzymes. Activation of tyrosine phosphorylation pathways implicated in the coupling of TCR/CD3 to PLC was impaired in immature thymocytes, as evidenced by depressed phosphorylation of CD3 zeta subunit after stimulation with anti TCR/CD3 mAb. This was associated with lower levels of p59fyn tyrosine kinase and minimal or undetectable stimulus-induced kinase activation in immature thymocytes relative to mature thymocytes. We conclude that the capacity to signal via TCR/CD3 is regulated during T cell development by mechanisms acting at the level of TCR/CD3-associated tyrosine phosphorylation pathways.  相似文献   

8.
The enterotoxins produced by Staphylococcus aureus (SE) are the most potent mitogens known. Triggering of proliferation or cytotoxicity by SE requires the presence of MHC class II molecules on accessory or target cells. In this study we have investigated the role of HLA class II molecules in the activation of human T cells by SE and the nature of the target structure on the responding T lymphocyte for SE. This dependence on class II molecules is not due to an immunological "recognition" of SE since there is no restriction by polymorphic determinants of HLA molecules and since even xenogeneic class II molecules can reconstitute the human T cell response to SE. Furthermore, HLA class II-positive but not -negative cells absorb the mitogenic activity from SE solutions and significant binding of 125I-labeled SE can be demonstrated to class II-positive but not to class II-negative cells. Enterotoxin molecules react directly with T cells since they cause an increase in cytosolic Ca2+ concentration similar to anti-CD3 mAb. This increase is abrogated by prior modulation of the TCR/CD3 complex. Antibodies to CD2, CD3 and the TCR that block antigen-specific activation also block T cell activation by SE. Moreover, preincubation of purified resting accessory cell-free T cells with SE leads to modulation of the TCR/CD3 complex. Taken together these data indicate that SE interact selectively with HLA class II molecules on accessory or target cells and with a TCR-associated structure on the T cell.  相似文献   

9.
Activated T cells undergo apoptosis when the Fas-antigen (APO-1, CD95) is ligated by Fas Ligand (FasL) or agonistic anti-Fas antibodies. Repeated stimulation of T lymphocytes via the TCR/CD3-complex induces activation-induced cell death (AICD) associated with FasL surface expression. FasL binding to Fas molecules triggers the Fas-dependent death signaling cascade. Since it is still controversial whether Fas-induced cell death is associated with tyrosine kinase activity, we investigated the tyrosine kinase activation requirements in anti-Fas antibody-induced cell death and AICD in human T cell clones. We report that cell death triggered by anti-Fas antibody is not accompanied by an increase in tyrosine phosphorylation and cannot be blocked by inhibitors of protein tyrosine kinases (PTK). Under the same conditions, AICD of T cell clones is clearly associated with tyrosine kinase activation. In fact, semiquantitative RT-PCR analysis of FasL mRNA expression triggered in T cell clones via the TCR/CD3-complex revealed that tyrosine phosphorylation is required for functional FasL mRNA and surface expression.  相似文献   

10.
11.
Recent data show that TCR/CD3 stimulation induces activation of Stat5 in murine T cells. Here, we show that CD3 ligation by mAb and Staphylococcal enterotoxin (SE) induce a rapid, gradually accumulating, long-lasting tyrosine, and serine phosphorylation of Stat3 (but not Stat5) in allogen-specific human CD4+ T cell lines. In contrast, IL-2 induces a rapid and transient tyrosine and serine phosphorylation of Stat3. Compared with IL-2, CD3 ligation induces a delayed Stat3 binding to oligonucleotide probes from the ICAM-1 and IL-2R alpha promoter. CD3-mediated activation of Stat3 is almost completely inhibited by a Src kinase inhibitor (PP1), whereas IL-2-induced Stat3 activation is unaffected. In conclusion, we show that CD3 ligation by mAb and SE triggers a rapid, PP1-sensitive tyrosine and serine phosphorylation of Stat3 in human CD4+ T cells. Moreover, we provide evidence that TCR/CD3 and IL-2 induce Stat3 activation via distinct signaling pathways.  相似文献   

12.
Human microvascular endothelial cells (ECs) constitutively express MHC class II in peripheral tissues, the function of which remains unknown. In vitro assays have established that the recognition of EC MHC class II can affect cytokine expression, proliferation, and delayed transendothelial migration of allogeneic memory, but not naive, CD4+ T cells. Previously, we have shown that effector memory CD4+ T cells will rapidly transmigrate in response to the inflammatory chemokine IFN-gamma-inducible protein-10 (IP-10) in a process contingent upon the application of venular levels of shear stress. Using two models that provide polyclonal TCR signaling by ECs in this flow system, we show that TCR engagement antagonizes the rapid chemokine-dependent transmigration of memory CD4+ T cells. Inhibitor studies suggest that TCR signaling downstream of Src family tyrosine kinase(s) but upstream of calcineurin activation causes memory CD4+ T cell arrest on the EC surface, preventing the transendothelial migration response to IP-10.  相似文献   

13.
Activation of T lymphocytes is dependent on multiple ligand-receptor interactions. The possibility that TCR dimerization contributes to T cell triggering was raised by the crystallographic analysis of MHC class II molecules. The MHC class II molecules associated as double dimers, and in such a way that two TCR (and two CD4 molecules) could bind simultaneously. Several subsequent studies have lent support to this concept, although the role of TCR cross-linking in T cell activation remains unclear. Using DRA cDNAs modified to encode two different C-terminal tags, no evidence of constitutive double dimer formation was obtained following immunoprecipitation and Western blotting from cells transiently transfected with wild-type DRB and tagged DRA constructs, together with invariant chain and HLA-DM. To determine whether MHC class II molecules contribute actively to TCR-dependent dimerization and consequent T cell activation, panels of HLA-DR1beta and H2-E(k) cDNAs were generated with mutations in the sequences encoding the interface regions of the MHC class II double dimer. Stable DAP.3 transfectants expressing these cDNAs were generated and characterized biochemically and functionally. Substitutions in either interface region I or III did not affect T cell activation, whereas combinations of amino acid substitutions in both regions led to substantial inhibition of proliferation or IL-2 secretion by human and murine T cells. Because the amino acid-substituted molecules were serologically indistinguishable from wild type, bound antigenic peptide with equal efficiency, and induced Ag-dependent CD25 expression indicating TCR recognition, the reduced ability of the mutants to induce full T cell activation is most likely the result of impaired double dimer formation. These data suggest that MHC class II molecules, due to their structural properties, actively contribute to TCR cross-linking.  相似文献   

14.
To identify prostate cancer-associated Ags, tumor-reactive T lymphocytes were generated using iterative stimulations of PBMC from a prostate cancer patient with an autologous IFN-gamma-treated carcinoma cell line in the presence of IL-2. A CD8+ T cell line and TCR alphabeta+ T cell clone were isolated that secreted IFN-gamma and TNF-alpha in response to autologous prostate cancer cells but not to autologous fibroblasts or lymphoblastoid cells. However, these T cells recognized several normal and malignant prostate epithelial cell lines without evidence of shared classical HLA molecules. The T cell line and clone also recognized colon cancers, but not melanomas, sarcomas, or lymphomas, suggesting recognition of a shared epithelium-associated Ag presented by nonclassical MHC or MHC-like molecules. Although Ag recognition by T cells was inhibited by mAb against CD8 and the TCR complex (anti-TCR alphabeta, CD3, Vbeta12), it was not inhibited by mAb directed against MHC class Ia or MHC class II molecules. Neither target expression of CD1 molecules nor HLA-G correlated with T cell recognition, but beta2-microglobulin expression was essential. Ag expression was diminished by brefeldin A, lactacystin, and cycloheximide, but not by chloroquine, consistent with an endogenous/cytosolic Ag processed through the classical class I pathway. These results suggest that prostate cancer and colon cancer cells can process and present a shared peptidic Ag to TCR alphabeta+ T cells via a nonclassical MHC I-like molecule yet to be defined.  相似文献   

15.
IL-27 is a novel IL-12 family member that plays a role in the early regulation of Th1 initiation, induces proliferation of naive CD4+ T cells, and synergizes with IL-12 in IFN-gamma production. It has been recently reported that IL-27 induces T-bet and IL-12Rbeta2 expression through JAK1/STAT1 activation. In the present study, we further investigated the JAK/STAT signaling molecules activated by IL-27 and also the role of STAT1 in IL-27-mediated responses using STAT1-deficient mice. In addition to JAK1 and STAT1, IL-27-activated JAK2, tyrosine kinase-2, and STAT2, -3, and -5 in naive CD4+ T cells. The activation of STAT2 and STAT5, but not of STAT3, was greatly diminished in STAT1-deficient naive CD4+ T cells. Comparable proliferative response to IL-27 was observed between STAT1-deficient and wild-type naive CD4+ T cells. In contrast, IL-27 hardly induced T-bet and subsequent IL-12Rbeta2 expression, and synergistic IFN-gamma production by IL-27 and IL-12 was impaired in STAT1-deficient naive CD4+ T cells. Moreover, IL-27 augmented the expression of MHC class I on naive CD4+ T cells in a STAT1-dependent manner. These results suggest that IL-27 activates JAK1 and -2, tyrosine kinase-2, STAT1, -2, -3, and -5 in naive CD4+ T cells and that STAT1 plays an indispensable role in IL-27-induced T-bet and subsequent IL-12Rbeta2 expression and MHC class I expression as well but not proliferation, while STAT3 presumably plays an important role in IL-27-induced proliferation.  相似文献   

16.
The development of T cells results in a concordance between the specificity of the TCR for MHC class I and class II molecules and the expression of CD8 and CD4 coreceptors. Based on analogy to simple metazoan models of organ development and lineage commitment, we sought to determine whether extracellular signal-related kinase (Erk) mitogen-activated protein (MAP) kinase pathway signaling acts as an inductive signal for the CD4 lineage. Here, we show that, by altering the intracellular signaling involving the Erk/MAP kinase pathway, T cells with specificity for MHC class I can be diverted to express CD4, and, conversely, T cells with specificity for MHC class II can be diverted to express CD8. Furthermore, we find that activation of the src-family tyrosine kinase, p56lck is an upstream mediator of lineage commitment. These results suggest a simple mechanism for lineage commitment in T cell development.  相似文献   

17.
Developing T cells undergo distinct selection processes that determine the TCR repertoire. Positive selection involves the differentiation of immature thymocytes capable of recognizing antigens complexed with self-MHC molecules to mature T cells. Besides the central role of TCR engagement by MHC in triggering selection; the interaction of CD8 and CD4 with MHC class I and class II, respectively; is thought to be important in regulating the selection process. To study potential mechanisms involved in positive selection of CD8+ cells, we have analyzed mice expressing a unique transgenic TCR. The transgenic receptor recognizes the HY male Ag in the context of the MHC class I molecule, H2-Db. We describe that CD8 and the TCR are selectively associated in thymocytes of mice expressing the restricting MHC, but not in thymocytes of mice expressing a nonrestricting MHC. pp56lck and pp59fyn, the tyrosine kinases associated with CD8 and TCR, respectively, were found to be present in this complex in an activated form. No comparable TCR-CD4 complex formation was found in thymuses undergoing positive selection to CD8+ cells. The formation of a multimolecular complex between CD8 and TCR, in which pp56lck and pp59fyn are activated, may initiate specific signaling programs involved in the maturation of CD8+ cells.  相似文献   

18.
Although both MHC class II/CD8α double-knockout and CD8β null mice show a defect in the development of MHC class I-restricted CD8(+) T cells in the thymus, they possess low numbers of high-avidity peripheral CTL with limited clonality and are able to contain acute and chronic infections. These in vivo data suggest that the CD8 coreceptor is not absolutely necessary for the generation of Ag-specific CTL. Lack of CD8 association causes partial TCR signaling because of the absence of CD8/Lck recruitment to the proximity of the MHC/TCR complex, resulting in suboptimal MAPK activation. Therefore, there should exist a signaling mechanism that can supplement partial TCR activation caused by the lack of CD8 association. In this human study, we have shown that CD8-independent stimulation of Ag-specific CTL previously primed in the presence of CD8 coligation, either in vivo or in vitro, induced severely impaired in vitro proliferation. When naive CD8(+) T cells were primed in the absence of CD8 binding and subsequently restimulated in the presence of CD8 coligation, the proliferation of Ag-specific CTL was also severely hampered. However, when CD8-independent T cell priming and restimulation were supplemented with IL-21, Ag-specific CD8(+) CTL expanded in two of six individuals tested. We found that IL-21 rescued partial MAPK activation in a STAT3- but not STAT1-dependent manner. These results suggest that CD8 coligation is critical for the expansion of postthymic peripheral Ag-specific CTL in humans. However, STAT3-mediated IL-21 signaling can supplement partial TCR signaling caused by the lack of CD8 association.  相似文献   

19.
The T cell-specific transmembrane glycoprotein CD4 interacts with class II MHC molecules via its external domain and is associated with tyrosine kinase p56lck via a cysteine motif in its cytoplasmic domain. We have assessed the ability of CD4 to synergize with the antigen-specific T cell receptor (TCR) for induction of transmembrane signals that result in lymphokine production. Mutant CD4 molecules were introduced into T cells that lacked endogenous CD4 but expressed TCRs specific for lysozyme peptides or the superantigen SEA bound to Ab or Abm12 class II MHC molecules. With either ligand, T cell activation occurred only when CD4 was associated with p56lck. These results demonstrate that residues within the cytoplasmic domain of CD4 are required for its coreceptor function in TCR-mediated signal transduction and strongly support the notion that the association of CD4 with p56lck is critical in this process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号