首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
It was recently reported that in rats exposure to heat shock leads to appearance of a myocardial heat shock protein (HSP 70) and to an increase in myocardial catalase activity. This correlated with an improvement in post-ischemic function either in Langendorff-perfused hearts after low-flow ischemia or in working hearts after short-term, no-flow ischemia. We investigated the effect of the same hyperthermic treatment on functional recovery from no-flow ischemia of various durations in isolated working rat hearts performing at high or low external workloads. Rats were heated to core temperature of 42° C for 15 min. No significant protein oxidation (% oxidized methionine) was observed 2.5 hr after treatment. A protein with migration characteristics similar to HSP 70 was observed in hearts of heat shocked rats 24 hr after this treatment while their myocardial catalase activity was not increased. Hearts of similarly treated rats were excised 24 hr after hyperthermia and perfused in a working mode with Krebs-Henseleit buffer (1.25 mM Ca2+, 11 mM glucose). At 15 cm H2O preload and 100 cm H2O afterload after 30 min no-flow ischemia, control hearts recovered to 36.9%, 2%, 47.6%, and 21.5% of the preischemic values of heart rate-peak systolic pressure product (RPP), aortic output, coronary flow, and cardiac output, respectively. After only 25 min of ischemia the respective recovered values were 61.6%, 11.5%, 58.7%, and 33.5%. Throughout the recovery period these hemodynamic values were consistently higher in hearts of heat shocked animals than in those of control hearts but the differences were not statistically significant. After 25 min ischemia only 2 out of 7 control hearts recovered some aortic output, whereas in the heat shocked animals all 5 hearts recovered. After only 20 min of no-flow ischemia and at a lower workload (12.5 cm H2O preload and 75 cm H2O afterload), control hearts recovered to 85.1% of RPP, 54.1% of aortic output, and 68.3% of cardiac output. None of these variables was significantly improved by heat shock pretreatment. In summary, we were unable to demonstrate a similar degree of protective effect of heat shock pretreatment as compared to other reports where both HSP 70 and increased catalase activity were present. The reason(s) could be related to lack of induction of myocardial catalase activity in our study.  相似文献   

4.
Here we studied the response to heat shock in a desert D. melanogasterstrain TT capable of living and propagating at 32°C and the standard Oregon R strain. The TT strain proved to be more resistant to extreme temperatures. On the other hand, the observed high thermotolerance of the strain was not accompanied by a higher level of HSP70 synthesis. Conversely, reliably smaller amounts of HSP70 were synthesized in the TT strain as compared to Oregon R under all shock temperatures except the critical one (39.5°C). Differences in both the structure of HSP70genes and the pattern of all heat shock proteins have been observed between the studied strains. The role of the heat shock system in the adaptation to hyperthermia is discussed.  相似文献   

5.
Heat shock proteins (HSPs) are recognized as significant participants in cancer immunity. We previously reported that HSP70 expression following hyperthermia using magnetic nanoparticles induces antitumor immunity. In the present study, we examine whether the antitumor immunity induced by hyperthermia is enhanced by administration of recombinant HSP70 protein into the tumor in situ. Hyperthermia was conducted using our original magnetite cationic liposomes (MCLs), which have a positive surface charge and generate heat in an alternating magnetic field (AMF) due to hysteresis loss. MCLs and recombinant mouse HSP70 (rmHSP70) were injected into melanoma nodules in C57BL/6 mice, which were subjected to AMF for 30 min. Temperature within the tumor reached 43°C and was maintained by controlling the magnetic field intensity. The combined treatment strongly inhibited tumor growth over a 30-day period and complete regression of tumors was observed in 20% (2/10) of mice. It was also found that systemic antitumor immunity was induced in the cured mice. This study suggests that novel combined therapy using exogenous HSP70 and hyperthermia has great potential in cancer treatment.  相似文献   

6.
Inducible heat shock protein 70 (HSP70i) has been shown to exert a protective effect in hearts subjected to ischemia-reperfusion. Although studied in heat-shocked animals and in transgenic mice that constitutively overexpress the protein, the therapeutic application of the protein in the form of a viral vector-mediated HSP70i expression has not been widely examined. Accordingly, we have examined the effects of HSP70i delivered in vivo to the left ventricular free wall of the heart via viral gene therapy in mice. The affect of virally mediated HSP70i expression in preserving cardiac function following ischemia-reperfusion was examined after short-term expression (5-day adenovirus mediated) and long-term expression (8-mo adeno-associated virus mediated) in mice by subjecting ex vivo Langendorff perfused hearts to a regime of ischemia-reperfusion. Both vectors were capable of increasing HSP70i expression in the heart, and neither vector had any effect on cardiac function during aerobic (preischemic) perfusion when compared with corresponding controls. In contrast, both adenovirus-mediated and adeno-associated virus-mediated expression of HSP70i improved the contractile recovery of the heart after 120 min of reperfusion following ischemia. This study demonstrates the feasibility of using both short- and long-term expression of virally mediated HSP70i as a therapeutic intervention against cardiac ischemia-reperfusion injury.  相似文献   

7.
8.
Clinical and experimental studies have shown that myocardial dysfunction is an early event during endotoxemia or septic shock. Several reports have shown that rodents submitted to a mild heat shock become resistant to lipopolysaccharides (LPS) or sepsis. The most abundant of the heat shock proteins (HSP), the HSP70, has been postulated to be the principal mediator of the observed protection against endotoxemia. We have tested the hypothesis that a protective effect against endotoxemia is achievable by the increased presence of the HSP70 in rodent cardiomyocytes. We have found that a transgenic mouse line overexpressing the rat HSP70 gene in the heart exhibits an increased tolerance to LPS treatment (control estimated survival function [S(t)] = 0.538, transgenic S(t) = 0.787, P < 0.05). Interestingly, the increased presence of the HSP70 in the hearts of these mice results in a decrease in the activation of the inducible nitric oxide synthase (iNOS) after LPS treatment. We conclude that HSP70 protection against LPS is most probably mediated through the modulation of iNOS activation and the subsequent decreased synthesis of nitric oxide in cardiomyocytes.  相似文献   

9.
Temperature modulates both myocardial energy requirements and production. We have previously demonstrated that myocardial protection induced by hypothermic adaptation preserves expression of genes regulating heat shock protein and the nuclear-encoded mitochondrial proteins, the adenine nucleotide translocator isoform 1 (ANT1), and the β subunit of F1-ATPase (βF1-ATPase). This preservation is associated with a reduction in ATP depletion similar to that noted in cardioplegic arrested hearts preserved at a critical temperature (30°C) or below. We tested the hypothesis that expression of these genes may also be subject to this temperature threshold phenomenon. Isolated perfused rabbit hearts were subjected to ischemic cardioplegic arrest at 4, 30, or 34°C for 120 min. Cardiac function indices and steady-state mRNA levels for ANT1, βF1-ATPase, and HSP70-1 were measured prior to ischemia (B) and after 45 min of reperfusion. Cardiac function was significantly depressed in the 34°C group. Ischemia at 34°C reduced steady-state mRNA levels for ANT1and βF1-ATPase from B, but these levels were similarly preserved at 4 and 30°C. HSP70-1 levels were mildly elevated (fourfold) above B to similar levels at all three temperatures. These results indicate that mRNA expression for ANT1and βF1-ATPase is specifically preserved in a pattern consistent with the temperature threshold phenomenon. HSP70-1 expression is not influenced by ischemic temperature. Preservation of gene expression for these mitochondrial proteins implies that signaling for mitochondrial biogenesis or resynthesis is maintained after ischemic insult.  相似文献   

10.
Cardiac surgery is usually performed under conditions of cardioplegicischemic arrest. To protect the heart during the ischemic period, themyocardium is exposed to varying degrees of hypothermia. Althoughhyperthermia is known to induce the heat shock response, the moleculareffects of hypothermia on the myocardium have not been investigated. We havestudied the effect of hypothermia on the induction of heat shock proteins inprimary cultures of neonatal cardiomyocytes. Cold stress in cardiomyocytesinduced a 6 fold increase in the heat shock protein HSP70 as compared tocontrol. Increased HSP70 protein levels correlated with induction of HSP70mRNAs. Maximal levels of HSP70 protein appeared 4-6 h following recoveryfrom cold shock, indicating the transient nature of the response. Inductionof HSP25 mRNA was also observed in cold-shocked cardiomyocytes, even thoughincreased HSP25 protein levels were not detected. Our results indicate thathypothermia is capable of inducing the heat shock response in neonatalcardiomyocytes.  相似文献   

11.
The effects of thermal stress on the induction of heat shock proteins (HSPs) were examined in northern bay scallops, Argopecten irradians irradians, a relatively heat tolerant estuarine species, and sea scallops, Placopecten magellanicus, a species residing in cooler, deeper water. Polyclonal antibodies used in this work for analysis of inducible HSP70 and HSP40 only recognized proteins of 72 and 40 kDa respectively from the mantles of both scallop species. Additionally, HSP quantification using the antibody to HSP70 was equally effective by either immunoprobing of western blots or ELISA, demonstrating that either approach could be successfully employed for analysis of thermal response in scallops. Sea scallop HSP70 and HSP40 did not change when animals were heat-shocked for 3 h by raising the temperature from 10 °C to 20 °C; however, a 24 h treatment of the same magnitude elicited a significant response. Conversely, bay scallops displayed rapid and prolonged HSP70 and HSP40 responses during the recovery period following a 3 h heat shock from 20 °C to 30 °C. Temperature reduction from 20 °C to 3 °C for 3 h also caused significant HSP70 and HSP40 increases in bay scallops; this represents the first time cold shock was shown to induce HSP synthesis in bivalve mollusks. The onset of the HSP40 response was more rapid than for HSP70, occurring at the end of the cold shock itself prior to transfer to a recovery temperature. Both proteins responded maximally during recovery at control temperature. HSP responses of sea and bay scallops to thermal stress may be related to their habitat in the natural environment and they suggest a differential capacity for adaptation to temperature change. This is an important consideration in assessing the response of these scallops to different culture conditions.  相似文献   

12.
A subtidal seaweed collected in antarctic waters, Plocamium cartilagineum (L. Dix.), displayed induction of mRNAs encoding the 70 kDa heat shock protein (HSP70) and the ubiquitin polyprotein (UBI) when incubated at 5°C. Maximal induction of HSP70 mRNA was observed when the alga was incubated at 10°C for 1 h. Incubations at higher temperatures or for longer periods reduced the amount of HSP70 mRNA detected. Incubations at 20°C or greater resulted in cell death. These data indicate that dispite the unusually low temperature of induction, this macrophyte exhibits a heat shock response similar to that of other organisms at temperatures 5 to 10°C above usual growth conditions.  相似文献   

13.
14.
It has been shown that orally administered geranylgeranylacetone (GGA), an anti-ulcer drug, induces expression of heat shock protein 72 (HSP72) and provides protection against ischemia-reperfusion in rat hearts. The underlying protective mechanisms, however, remain unknown. Mitochondria have been shown to be a selective target for heat stress-induced cardioprotection. Therefore, we hypothesized that preservation of mitochondrial function, owing to an opening of a putative channel in the inner mitochondrial membrane, the mitochondrial ATP-sensitive potassium (mitoK(ATP)) channel, could be involved in GGA- or heat stress-induced cardioprotection against ischemia-reperfusion. Rats were treated with oral GGA or vehicle. Twenty-four hours later, each heart was isolated and perfused with a Langendorff apparatus. GGA-treated hearts showed better functional recovery, and less creatine kinase was released during a 30-min reperfusion period, after 20 min of no-flow ischemia. Concomitant perfusion with 5-hydroxydecanoate (5-HD, 100 microM) or glibenclamide (10 microM) abolished the GGA-induced cardioprotective effect. GGA also showed preserved mitochondrial respiratory function, isolated at the end of the reperfusion period, which was abolished with 5-HD treatment. GGA prevented destruction of the mitochondrial structure by ischemia-reperfusion, as shown by electron microscopy. In cultured cardiomyocytes, GGA induced HSP72 expression and resulted in less damage to cells, including less apoptosis in response to hypoxia-reoxygenation. Treatment with 5-HD abolished the GGA-induced cardioprotective effects but did not affect HSP72 expression. Our results indicate that preserved mitochondrial respiratory function, owing to GGA-induced HSP72 expression, may, at least in part, have a role in cardioprotection against ischemia-reperfusion. These processes may involve opening of the mitoK(ATP) channel.  相似文献   

15.
Effects of inhibitors of the heat shock protein 90 (HSP90) chaperone activity and inhibitors of the heat shock protein (HSP) expression on sensitivity of HeLa tumor cells to hyperthermia were studied. It was found that nanomolar concentrations of inhibitors of the HSP90 activity (17AAG or radicicol) slowed down the chaperone-dependent reactivation of a thermolabile reporter (luciferase) in heat-stressed HeLa cells and slightly enhanced their death following the incubation for 60 min at 43°C. The inhibitors of HSP90 activity stimulated de novo induction of additional chaperones (HSP70 and HSP27) that significantly increased intracellular HSP levels. Treatment of the cells with 17AAG or radicicol along with an inhibitor of the HSP induction (e.g. quercetin or triptolide, or NZ28) completely prevented the increase in the intracellular chaperone levels resulting from the inhibition of HSP90 activity and subsequent heating. Combination of all three treatments (inhibition of the HSP90 activity + inhibition of the HSP induction + heating at 43°C for 60 min) resulted in more potent inhibition of the reporter reactivation and a sharp (2–3-fold) increase in cell death. Such enhancement of the cytotoxicity may be attributed to the “chaperone deficiency” when prior to heat stress both the functional activity of constitutive HSP90 and the expression of additional (inducible) chaperones are blocked in the cells.  相似文献   

16.
Effects of heat shock protein 70 (Hsp70) translocated to nuclear fraction on hypoxia/reoxygenation injury was examined by using adult cardiomyocytes isolated from rats. Cardiomyocytes were exposed to heat shock at 42°C for 15 min (HS group), and then incubated at 37°C for 6–24 h. Hsp70 production increased and the protein translocated from cytosol to nucleus. The maximum level of Hsp70 in the nuclear fraction was observed 12 h after HS. When cardiomyocytes without exposure to HS (nHS group) were subjected to 120 min hypoxia/15 min reoxygenation (Hypo/Reoxy), post-hypoxic cell viability was approximately 25% of the pre-hypoxic value. A rise in poly(ADP-ribose) synthetase (PARS) activity in the nuclear fraction was observed in nHS group, associated with an increase in polyADP-ribosylated protein. In contrast, post-hypoxic cell viability of HS group was approximately 60% of the pre-hypoxic value. Hypo/reoxy-induced rise in PARS activity and increase in polyADP-ribosylated protein were attenuated in HS group. To confirm the relationship between an increase in cell viability after Hypo/Reoxy and attenuation of PARS activation, cardiomyocytes without exposure to HS were subjected to Hypo/Reoxy in the presence of 1 mM 3-aminobenzamide, an inhibitor of PARS. Treatment of cells with 3-aminobenzamide attenuated Hypo/Reoxy-induced decrease in cell viability. These results suggest that Hsp70 translocated into nucleus after HS may attenuate PARS activation during Hypo/Reoxy, leading to the cytoprotection of cardiomyocytes against Hypo/Reoxy injury.  相似文献   

17.
Mammalian cells exhibit increased sensitivity to hyperthermic temperatures of 38-43 degrees C after an acute high-temperature heat shock; this phenomenon is known as the stepdown heating (SDH) effect. We characterized the SDH effect on (1) the synthesis of major heat shock proteins, HSP110, 90, 72/70, 60 (35S-amino acids label), (2) on heat-induced protein glycosylation (3H-D-mannose label), and (3) on thermotolerance expression, using cell survival as an endpoint. Partitioning of label between soluble and insoluble cell fractions was separately examined. Synthesis of high molecular weight HSPs (HSP110, 90, and 72/70) was increased both by acute (10 min, 45 degrees C) and chronic (1-6 h, 41.5 degrees C) hyperthermia, primarily in the soluble cytosol fraction. SDH (10 min, 45 degrees C + 1 to 6 h, 41.5 degrees C) completely inhibited labeling of HSP110, partially inhibited HSP90 labeling, and had virtually no effect on HSP72/70 synthesis, when compared with chronic hyperthermia alone. At the cell survival level, SDH increased sevenfold the rate of cell killing at 41.5 degrees C, but reduced the expression of thermotolerance by only a factor of two. This suggests that SDH sensitization did not result from changes in HSP72/70 synthesis, nor solely from inhibition of thermotolerance. 35S-labeled HSP60 and HSP50 were found primarily in the cellular pellet fraction after both acute and chronic hyperthermia. SDH completely inhibited 35S-labeling of both HSP60 and HSP50. Labeling of GP50 with 3H-D-mannose was also completely inhibited by SDH. Moreover, SDH progressively reduced N-acetylgalactosaminyl-transferase activity. The data demonstrate that heat sensitization by SDH is accompanied by complex and selectively inhibitory patterns of HSP synthesis and protein glycosylation. Profound inhibition of HSP110, HSP60, and HSP50/GP50 labeling suggests that these may be associated with mechanisms of SDH sensitization.  相似文献   

18.
The heat shock response of growing and fully-grown pig oocytes was analyzed in vitro by determining heat shock protein70 (HSP70) synthesis under both normal conditions (39 degrees C; 0 and 6h) and after heat shock (43 degrees C; 1, 4 and 6h). The expression of HSP70 in oocytes was detected by immunoblotting analysis. Growing oocytes measuring 80-99 microm synthesized a high number of HSP70 without heat shock effect, and these were capable of increasing the synthesis of HSP70 after heat shock to a maximum after 1h. Growing oocytes measuring 100-115 microm also synthesized HSP70 without heat shock and after it, but the HSP70 synthesis was not statistically changed by increasing duration of heat shock. In fully-grown oocytes, great amounts of HSP70 were found without heat shock treatment, and the contents of HSP70 significantly decreased after heat shock. These results indicate that growing oocytes are able to synthesize HSP70 after heat shock. This ability declines at the end of the growth period, and fully-grown oocytes are unable to induce HSP70 synthesis after heat shock. HSP70 is synthesized and stored during oocyte growth. The high HSP70 synthesis in non-heat-treated growing oocytes and a great amount of HSP70 in fully-grown oocytes support the hypothesis that HSP70 is important for oocyte growth and maturation.  相似文献   

19.
Mild and nonlethal heat shock (i.e., hyperthermia) is known to protect the myocardium and cardiomyocytes against ischemic injury. In the present study, we have shown that heat shock regulates the respiration of cultured neonatal cardiomyocytes (cardiac H9c2 cells) through activation of nitric oxide synthase (NOS). The respiration of cultured cardiac H9c2 cells subjected to mild heat shock at 42 degrees C for 1 h was decreased compared with that of control. The O2 concentration at which the rate of O2 consumption is reduced to 50% was increased in heat-shocked cells, indicating a lowering of O2 affinity in the mitochondria. Western blot analyses showed a fourfold increase in the expression of heat shock protein (HSP) 90 and a twofold increase in endothelial NOS (eNOS) expression in the heat-shocked cells. Immunoblots of eNOS, inducible NOS (iNOS), and neuronal NOS (nNOS) in the immunoprecipitate of HSP90 of heat-shocked cells showed that there was a sevenfold increase in eNOS and no changes in iNOS and nNOS. Confocal microscopic analysis of cells stained with the NO-specific fluorescent dye 4,5-diaminofluorescein diacetate showed higher levels of NO production in the heat-shocked cells than in control cells. The results indicate that heat shock-induced HSP90 forms a complex with eNOS and activates it to increase NO concentration in the cardiac H9c2 cells. The generated NO competitively binds to the complexes of the respiratory chain of the mitochondria to downregulate O2 consumption in heat-shocked cells. On the basis of these results, we conclude that myocardial protection by hyperthermia occurs at least partly by the pathway of HSP90-mediated NO production, leading to subsequent attenuation of cellular respiration.  相似文献   

20.
Many cells and organisms are rendered transiently resistant to lethal heat shock by short exposure to sublethal temperatures. This induced thermotolerance is thought to be related to increased amounts of heat shock proteins (HSPs) which, as molecular chaperones, protect cells from stress-induced damage. As part of a study on bivalve stress and thermotolerance, work was undertaken to examine the effects of sublethal heat shock on stress tolerance of juveniles of the northern bay scallop, Argopecten irradians irradians, in association with changes in the levels of cytoplasmic HSP70 and 40. Juvenile bay scallops heat-shocked at a sublethal temperature of 32 °C survived an otherwise lethal heat treatment at 35 °C for at least 7 days. As determined by ELISA, acquisition of induced thermotolerance closely paralleled HSP70 accumulation, whereas HSP40 accrual appeared less closely associated with thermotolerance. Quantification of scallop HSPs following lethal heat treatment, with or without conditioning, suggested a causal role for HSP70 in stress tolerance, with HSP40 contributing to a lesser, but significant extent. Overall, this study demonstrated that sublethal heat shock promotes survival of A. irradians irradians juveniles upon thermal stress and the results support the hypothesis that HSPs have a role in this induced thermotolerance. Exploitation of the induced thermotolerance response shows promise as a means to improve survival of bay scallops in commercial culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号