共查询到20条相似文献,搜索用时 0 毫秒
1.
Parkinson's disease is the second most common neurodegenerative disorder, and the cause is unknown; however, substantial evidence implicates the aggregation of alpha-synuclein as a critical factor in the etiology of the disease. alpha-Synuclein is a relatively abundant brain protein of unknown function, and the purified protein is intrinsically unfolded. The amino acid sequence has seven repeats with an apolipoprotein lipid-binding motif, which are predicted to form amphiphilic helices. We have investigated the interaction of alpha-synuclein with lipid vesicles of different sizes and properties by monitoring the effects on the conformation of the protein and the kinetics of fibrillation. The nature of the interaction of alpha-synuclein with vesicles was highly dependent on the phospholipid composition, the ratio of alpha-synuclein to phospholipid, and the size of the vesicles. The strongest interactions were between alpha-synuclein and vesicles composed of 1,2-dipalmitoyl-sn-glycero-3-phosphate/1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-sn-glycero-3-phospho-RAC-(1-glycerol)/1,2-dipalmitoyl-sn-glycero-3-phosphocholine and involved formation of helical structure in alpha-synuclein. A strong correlation was observed between the induction of alpha-helix in alpha-synuclein and the inhibition of fibril formation. Thus, helical, membrane-bound alpha-synuclein is unlikely to contribute to aggregation and fibrillation. Given that a significant fraction of alpha-synuclein is membrane-bound in dopaminergic neurons, this observation has significant physiological significance. 相似文献
2.
The role of amino acid side chain oxidation in the formation of amyloid assemblies has been investigated. Chemical oxidation of amino acid side chains has been used as a facile method of introducing mutations on protein structures. Oxidation promotes changes within tertiary contacts that enable identification of residues and interactions critical in stabilizing protein structures. Transthyretin (TTR) is a soluble human plasma protein. The wild-type (WT) and several of its variants are prone to fibril formation, which leads to amyloidosis associated with many clinical syndromes. The effects of amino acid side chain oxidations were investigated by comparing the kinetics of fibril formation of oxidized and unoxidized proteins. The WT and V30M TTR mutant (valine 30 substituted with methionine) were allowed to react over a time range of 10 min to 12 h with hydroxy radical and other reactive oxygen species. In these timescales, up to five oxygen atoms were incorporated into WT and V30M TTR proteins. Oxidized proteins retained their tetrameric structures, as determined by cross-linking experiments. Side chain modification of methionine residues at position 13 and 30 (the latter for V30M TTR only) were dominant oxidative products. Mono-oxidized and dioxidized methionine residues were identified by radical probe mass spectometry employing a footprinting type approach. Oxidation inhibited the initial rates and extent of fibril formation for both the WT and V30M TTR proteins. In the case of WT TTR, oxidation inhibited fibril growth by approximately 76%, and for the V30M TTR by nearly 90%. These inhibiting effects of oxidation on fibril growth suggest that domains neighboring the methionine residues are critical in stabilizing the tetrameric and folded monomer structures. 相似文献
3.
The potential of targeting through molecular therapeutics the underlying amyloid beta-protein (A beta) fibrillogenesis causing the initiation and progression of Alzheimer's disease (AD) offers an opportunity to improve the disease. Type IV collagen (collagen IV) is localized in senile plaques in patients with AD. By using thioflavin T fluorescence spectroscopy and electron microscopy, we found that collagen IV inhibited A beta1-40 (A beta40) fibril formation. The critical concentration of collagen IV for this inhibition was 5 microg/mL. Circular dichroism data indicate that collagen IV prevents formation of a beta-structured aggregate of A beta40. These studies demonstrated that collagen IV is apparently a potent inhibitor of A beta fibril formation. 相似文献
4.
5.
Heat precipitation fibril formation in collagen solutions depends upon the prior thermal history of the solution. Collagen solutions were heat precipitated to various extents at 30°C, cooled, and then brought to a second precipitation. Kinetic analysis of the secondary precipitation demonstrated that only the nucleation phase of the precipitation was affected, not the fibril growth phase. Thermal history, or memory, is thus related to the formation of low-temperature-stable nuclei. A range of nuclei sizes is evident, supporting the concept of a homogeneous nucleation process. Schiffs base formation and establishment of cross-linkages play no role in the in vitro nucleation: thiosemicarbazide treated collagen behaves identically to untreated collagen in kinetics of assembly to fibrils. Low-temperature-stable nuclei formed at neutral pH are dissociated in the cold in acetic acid at pH 4. Pronase and pepsin susceptible molecular end regions are important in establishing the low-temperature-stable nuclei. Pronase treatment completely abolishes the acquisition of memory of prior thermal history in collagen solutions. We speculate that biological control mechanisms for fibril formation in vivo relate to specific interactions between non-helical, enzyme susceptible regions on collagen molecules. 相似文献
6.
7.
Precipitation of soluble forms of collagen from solutions containing the soluble protein-polysaccharide (PP-L) of bovine nasal cartilage, followed by centrifugation at 100,000 g, resulted in the formation of coherent elastic pellets whose wet weights increased with the concentration of PP-L in the initial solution. Dry weights and uronic acid contents of these pellets showed that the amount of water held in the wet pellet was nearly constant for any one kind and concentration of collagen, and ranged from 20 to 100 mg./mg. PP-L in the pellet. Soluble collagens from four different sources and PP-L from three kinds of cartilage showed similar effects. Precipitation of soluble collagen in the presence of hyaluronate or dextran yielded pellets of much smaller size than those formed in the presence of PP-L. The presence of chondroitin sulfate had only a slight effect on wet pellet weights. Wet weights of pellets formed in the presence of PP-L decreased with increasing ionic strength. A model involving entanglement between insoluble collagen fibrils and the relatively stiff chondroitin sulfate chains of branched PP-L seems qualitatively capable of accounting for these results. 相似文献
8.
In vitro "simultaneous processing" was investigated in which fibril formation of collagen and cross-linking occur simultaneously in the presence of 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) as a cross-linking reagent. Fibril formation in simultaneous processing was monitored using turbidity. The EDC in simultaneous processing increased T(1/2) (time required for half of the plateau value in turbidity) and decreased the degree of the fibril formation dose dependently. The reduced fibril formation rate (T(1/2) > 60 s) suggests the introduction of intrafibrillar cross-linking during fibril formation. The collagen gels prepared using simultaneous processing had a compressive modulus that was 6-fold higher than that using sequential processing, which is an advantage of simultaneous processing. Atomic force microscopy images acquired under water on the wet gels demonstrated that the simultaneous processing provided a unique double-network structure: intrafibrillarly cross-linked collagen fibrils among which nonfibrous collagens act as interfibrillar cross-linkages. 相似文献
9.
10.
The formation of collagen fibrils from soluble monomers and aggregates by thermal gelation at neutral pH can be divided into two distinct stages: a nucleation phase and a growth phase. Turbidity studies of the kinetics of the precipitation reaction show that the lag-phase time or nucleation reaction time, t′l, is markedly temperature dependent while the growth reaction time is temperature independent. The activation energy of the nucleation reaction is essentially constant over the temperature range studied. In monitoring the nucleation-phase reaction by various physicochemical techniques, including viscosity, sedimentation equilibrium, and light scattering, no evidence for the formation of aggregates was observed. Enrichment of the initial collagen solution with aggregates accelerates nucleation, but de novo nuclei formation is still required even in highly aggregated collagen preparations. Removal of pepsin and pronase susceptible peptides lengthens the nucleation reaction time and increases the sensitivity of the rate of nuclei formation to changes in ionic strength. Electron microscope studies show the fibrils formed from the protease-treated collagen to be less well organized. With pepsin-treated collagen, subfibrils and obliquely striated fibrils are seen, showing that while microfibrils are formed interactions between them are modulated by the enzyme susceptible peptides in the same way that these regions modulate nuclei assembly. It appears that pepsin and pronase susceptible peptide regions of collagen play a more prominent role in the in vitro assembly of collagen molecules to form D-stagger nuclei and fibrils than do ionic interactions between helical molecular regions. A mechanism of nucleation of collagen fibrillogenesis is discussed. 相似文献
11.
The mechanism that renders collagen molecules more stable when precipitated as fibers than the same molecules in solution is controversial. According to the polymer-melting mechanism the presence of a solvent depresses the melting point of the polymer due to a thermodynamic mechanism resembling the depression of the freezing point of a solvent due to the presence of a solute. On the other hand, according to the polymer-in-a-box mechanism, the change in configurational entropy of the collagen molecule on denaturation is reduced by its confinement by surrounding molecules in the fiber. Both mechanisms predict an approximately linear increase in the reciprocal of the denaturation temperature with the volume fraction (epsilon) of solvent, but the polymer-melting mechanism predicts that the slope is inversely proportional to the molecular mass of the solvent (M), whereas the polymer-in-a-box mechanism predicts a slope that is independent of M. Differential scanning calorimetry was used to measure the denaturation temperature of collagen in different concentrations of ethylene glycol (M = 62) and the slope found to be (7.29 +/- 0.37) x 10(-4) K(-1), compared with (7.31 +/- 0.42) x 10(-4) K(-1) for water (M = 18). This behavior was consistent with the polymer-in-a-box mechanism but conflicts with the polymer-melting mechanism. Calorimetry showed that the enthalpy of denaturation of collagen fibers in ethylene glycol was high, varied only slowly within the glycol volume fraction range 0.2 to 1, and fell rapidly at low epsilon. That this was caused by the disruption of a network of hydrogen-bonded glycol molecules surrounding the collagen is the most likely explanation. 相似文献
12.
The N-terminal repeat domain of alpha-synuclein inhibits beta-sheet and amyloid fibril formation 总被引:5,自引:0,他引:5
The conversion of alpha-synuclein into amyloid fibrils in the substantia nigra is linked to Parkinson's disease. Alpha-synuclein is natively unfolded in solution, but can be induced to form either alpha-helical or beta-sheet structure depending on its concentration and the solution conditions. The N-terminus of alpha-synuclein comprises seven 11-amino acid repeats (XKTKEGVXXXX) which can form an amphipathic alpha-helix. Why seven repeats, rather than six or eight, survived the evolutionary process is not clear. To probe this question, two sequence variants of alpha-synuclein, one with two fewer (del2) and one with two additional (plus2) repeats, were studied. As compared to wild-type alpha-synuclein, the plus2 variant disfavors the formation of beta-sheet-rich oligomers, including amyloid fibrils. In contrast, the truncated variant, del2, favors beta-sheet and fibril formation. We propose that the repeat number in WT alpha-synuclein represents an evolutionary balance between the functional conformer of alpha-synuclein (alpha-helix and/or random coil) and its pathogenic beta-sheet conformation. N-terminal truncation of alpha-synuclein may promote pathogenesis. 相似文献
13.
Fibronectin binding site in type I collagen regulates fibronectin fibril formation 总被引:3,自引:0,他引:3 下载免费PDF全文
《The Journal of cell biology》1993,121(5):1165-1172
Mov13 fibroblasts, which do not express endogenous alpha 1(I) collagen chains due to a retroviral insertion, were used to study the role of type I collagen in the process of fibronectin fibrillogenesis. While Mov13 cells produced a sparse matrix containing short fibronectin fibrils, transfection with a wild type pro alpha 1(I) collagen gene resulted in the production of an extensive matrix containing fibronectin fibrils of normal length. To study the amino acids involved in the fibronectin-collagen interaction, mutations were introduced into the known fibronectin binding region of the pro alpha 1(I) collagen gene. Substitution of Gln and Ala at positions 774 and 777 of the alpha 1(I) chain for Pro resulted in the formation of short fibronectin fibrils similar to what was observed in untransfected Mov13 cells. Type I collagen carrying these substitutions bound weakly to fibronectin- sepharose and could be eluted off with 1 M urea. The effect of this mutation on fibronectin fibrillogenesis could be rescued by adding either type I collagen or a peptide fragment (CB.7) which contained the wild type fibronectin binding region of the alpha 1(I) chain to the cell culture. These results suggest that fibronectin fibrillogenesis in tissue culture is dependent on type I collagen synthesis, and define an important role for the fibronectin binding site in this process. 相似文献
14.
15.
Jens Liebold Reno Winter Ralph Golbik Gerd Hause Christoph Parthier Elisabeth Schwarz 《Protein science : a publication of the Protein Society》2015,24(11):1789-1799
The disease oculopharyngeal muscular dystrophy is caused by alanine codon trinucleotide expansions in the N‐terminal segment of the nuclear poly(A) binding protein PABPN1. As histochemical features of the disease, intranuclear inclusions of PABPN1 have been reported. Whereas the purified N‐terminal domain of PABPN1 forms fibrils in an alanine‐dependent way, fibril formation of the full‐length protein occurs also in the absence of alanines. Here, we addressed the question whether the stability of the RNP domain or domain swapping within the RNP domain may add to fibril formation. A variant of full‐length PABPN1 with a stabilizing disulfide bond at position 185/201 in the RNP domain fibrillized in a redox‐sensitive manner suggesting that the integrity of the RNP domain may contribute to fibril formation. Thermodynamic analysis of the isolated wild‐type and the disulfide‐linked RNP domain showed two state unfolding/refolding characteristics without detectable intermediates. Quantification of the thermodynamic stability of the mutant RNP domain pointed to an inverse correlation between fibril formation of full‐length PABPN1 and the stability of the RNP domain. 相似文献
16.
Greenbaum EA Graves CL Mishizen-Eberz AJ Lupoli MA Lynch DR Englander SW Axelsen PH Giasson BI 《The Journal of biological chemistry》2005,280(9):7800-7807
The identification of a novel mutation (E46K) in one of the KTKEGV-type repeats in the amino-terminal region of alpha-synuclein suggests that this region and, more specifically, Glu residues in the repeats may be important in regulating the ability of alpha-synuclein to polymerize into amyloid fibrils. It was demonstrated that the E46K mutation increased the propensity of alpha-synuclein to fibrillize, but this effect was less than that of the A53T mutation. The substitution of Glu(46) for an Ala also increased the assembly of alpha-synuclein, but the polymers formed can have different ultrastructures, further indicating that this amino acid position has a significant effect on the assembly process. The effect of residue Glu(83) in the sixth repeat of alpha-synuclein, which lies closest to the amino acid stretch critical for filament assembly, was also studied. Mutation of Glu(83) to a Lys or Ala increased polymerization but perturbed some of the properties of mature amyloid. These results demonstrated that some of the Glu residues within the repeats can have significant effects on modulating the assembly of alpha-synuclein to form amyloid fibrils. The greater effect of the A53T mutation, even when compared with what may be predicted to be a more dramatic mutation such as E46K, underscores the importance of protein microenvironment in affecting protein structure. Moreover, the relative effects of the A53T and E46K mutations are consistent with the age of onset of disease. These findings support the notion that aberrant alpha-synuclein polymerization resulting in the formation of pathological inclusions can lead to disease. 相似文献
17.
Acid-soluble collagens isolated from young and old rat tail tendon were fluorescent-labeled with dansyl hydrazine, which is capable of reacting with aldehyde groups in collagen. The dansyl fluorescence of aged collagen exhibited a weak peak at 525 nm, whereas that of young collagen had a stronger broad peak at 500 nm. Fibril formation in vitro was partially inhibited in these dansylated collagens. During the turbidity lag phase, the dansyl fluorescence was found to increase (30–50%), also shifting to 485 nm. These changes reveal the telopeptide conformation changes occurring during this period. A new fluorescence peak at 420 nm also increased during fibril formation. When the dansylated collagen was irradiated in air with uv light (340 nm), a rapid decrease of the dansyl fluorescence with a concurrent shift to 490 nm occurred. Also, the formation of fibrils was further inhibited. With increasing temperature, the dansyl fluorescence of young collagen decreased, whereas that of old collagen substantially increased, particularly at the denaturation temperature around 38°C. After denaturation, both fluorescences became similar in their intensity and position (490 nm). These findings are discussed in connection with both age-related structural changes of collagen and the mechanism of fibril formation. 相似文献
18.
Wenstrup RJ Florer JB Brunskill EW Bell SM Chervoneva I Birk DE 《The Journal of biological chemistry》2004,279(51):53331-53337
Vertebrate collagen fibrils are heterotypically composed of a quantitatively major and minor fibril collagen. In non-cartilaginous tissues, type I collagen accounts for the majority of the collagen mass, and collagen type V, the functions of which are poorly understood, is a minor component. Type V collagen has been implicated in the regulation of fibril diameter, and we reported recently preliminary evidence that type V collagen is required for collagen fibril nucleation (Wenstrup, R. J., Florer, J. B., Cole, W. G., Willing, M. C., and Birk, D. E. (2004) J. Cell. Biochem. 92, 113-124). The purpose of this study was to define the roles of type V collagen in the regulation of collagen fibrillogenesis and matrix assembly. Mouse embryos completely deficient in pro-alpha1(V) chains were created by homologous recombination. The col5a1-/- animals die in early embryogenesis, at approximately embryonic day 10. The type V collagen-deficient mice demonstrate a virtual lack of collagen fibril formation. In contrast, the col5a1+/- animals are viable. The reduced type V collagen content is associated with a 50% reduction in fibril number and dermal collagen content. In addition, relatively normal, cylindrical fibrils are assembled with a second population of large, structurally abnormal collagen fibrils. The structural properties of the abnormal matrix are decreased relative to the wild type control animals. These data indicate a central role for the evolutionary, ancient type V collagen in the regulation of fibrillogenesis. The complete dependence of fibril formation on type V collagen is indicative of the critical role of the latter in early fibril initiation. In addition, this fibril collagen is important in the determination of fibril structure and matrix organization. 相似文献
19.
Kvist AJ Johnson AE Mörgelin M Gustafsson E Bengtsson E Lindblom K Aszódi A Fässler R Sasaki T Timpl R Aspberg A 《The Journal of biological chemistry》2006,281(44):33127-33139
Inactivation of the perlecan gene leads to perinatal lethal chondrodysplasia. The similarity to the phenotypes of the Col2A1 knock-out and the disproportionate micromelia mutation suggests perlecan involvement in cartilage collagen matrix assembly. We now present a mechanism for the defect in collagen type II fibril assembly by perlecan-null chondrocytes. Cartilage perlecan is a heparin sulfate or a mixed heparan sulfate/chondroitin sulfate proteoglycan. The latter form binds collagen and accelerates fibril formation in vitro, with more defined fibril morphology and increased fibril diameters produced in the presence of perlecan. Interestingly, the enhancement of collagen fibril formation is independent on the core protein and is mimicked by chondroitin sulfate E but neither by chondroitin sulfate D nor dextran sulfate. Furthermore, perlecan chondroitin sulfate contains the 4,6-disulfated disaccharides typical for chondroitin sulfate E. Indeed, purified glycosaminoglycans from perlecan-enriched fractions of cartilage extracts contain elevated levels of 4,6-disulfated chondroitin sulfate disaccharides and enhance collagen fibril formation. The effect on collagen assembly is proportional to the content of the 4,6-disulfated disaccharide in the different cartilage extracts, with growth plate cartilage glycosaminoglycan being the most efficient enhancer. These findings demonstrate a role for perlecan chondroitin sulfate side chains in cartilage extracellular matrix assembly and provide an explanation for the perlecan-null chondrodysplasia. 相似文献
20.
The relationship between reversibility of fibril formation and subunit composition of rat skin collagen 总被引:2,自引:2,他引:0 下载免费PDF全文
D. W. Bannister 《The Biochemical journal》1969,113(2):419-422
1. Salt-soluble rat skin collagen was precipitated from solution at neutral pH and 37 degrees . On cooling, a portion of the collagen returned into solution. The fractions were separated, the supernatant was concentrated and the precipitate was redissolved in dilute acetic acid. 2. Solutions of supernatant and precipitate were subjected to the same fractionation procedure, giving four fractions. 3. Each fraction was examined by starch-gel electrophoresis and a relationship between subunit composition and the fractionation procedure was noted. The collagen that redissolved on cooling contained less of the more highly cross-linked components than did either the fraction remaining in the precipitate or the starting material. 相似文献