首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Myelin proteins from the CNS of recent lungfish (Lepidosiren paradoxa, Protopterus dolloi, Neoceratodus forsteri) were separated and analysed by staining and immunoblotting. 2. All species showed a glycosylated component (g-PLP) that cross-reacted with antibodies against tetrapod proteolipid protein (PLP), indicating phylogenetic relationships with amphibia. 3. Actinopterygian IP or teleostean 36k components were not detectable in lungfish CNS myelin. 4. The identical size of g-PLPs from Lepidosiren and Protopterus (Mr = 29,000) underlines the close relationship of the Lepidosirenidae. The smaller size of g-PLP from the ceratodidan Neoceratodus forsteri (Mr = 27,500) pointed to an earlier diversion.  相似文献   

2.
The protein and glycoprotein compositions of CNS myelin from the living coelacanth (Latimeria chalumnae) were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. An unglycosylated component of 25 kilodaltons showed substantially stronger immunoblot reactivity with antibodies against mammalian proteolipid protein (PLP) than lungfish glycosylated PLP. DM-20 (intermediate protein) was not detectable in either fish. The presence of unglycosylated PLP in CNS myelin of the actinistian coelacanth contradicts an association with cartilaginous fishes but supports tetrapod affinities closer than those of lungfish.  相似文献   

3.
Myelin, defined as an arrangement of spirally fused unit membranes, is an acquisition of vertebrates and first appeared during evolution in Gnathostomata. In all species studied PNS and CNS myelins contain the myelin-associated glycoprotein (MAG) and the myelin basic protein (MBP). Throughout phylogeny PNS myelin is characterized by the major P0 glycoprotein which is called IP in fishes. The PNS myelin proteins did not evolve further except for the addition of P2 protein from reptiles onward. In Elasmobranchii and Chondrostei, PNS and CNS myelin proteins are similar. CNS myelin of actinopterygian fishes possesses a 36,000 Da protein (36K) in addition to P0-like IP glycoproteins. In tetrapod CNS myelin, P0 is replaced by the proteolipid protein (PLP) and the Wolfgram protein (WP). Of particular interest in a transitional phylogenetic sense are the lungfish Protopterus, carrying glycosylated PLP (g-PLP) but no P0, 36K or WP, and the bichir Polypterus, showing simultaneous presence of P0, 36K and PLP.

These results indicate that myelin proteins could be valuable molecular markers in establishing vertebrate phylogenetic relationships and in reconstructing the fish-tetrapod transition.  相似文献   


4.
Immunochemical analysis of the myelin proteolipid protein (PLP) has identified the carboxyl terminal amino acid phenylalanine 276 as the only PLP epitope conserved between the PLP components of rat and lungfish, species representing the phylogenetically most widely separated groups that synthesise typical CNS myelin. Immunoblotting using a rabbit antiserum raised against the carboxyl terminal sequence of rat PLP (residues 257-276) identified this epitope on the PLP components of both tetrapod (rat, chicken, lizard, and frog) and lobe-finned fish (coelacanth and lungfish) CNS myelin, including the DM-20 isoform of PLP, which is restricted to rat, chicken, and lizard CNS myelin. The conservation of the carboxyl terminus of PLP during evolution suggests this structure may play an important role in maintaining the organisation and function of PLP in the myelin membrane.  相似文献   

5.
Abstract: On gel electrophoresis in dodecyl sulphate solutions shark CNS myelin showed four bands close in mobility to the proteolipid protein of bovine CNS myelin. They had apparent molecular weights of 21,000, 26,000, 27,000, and 31,500. Unlike bovine proteolipid protein, all of these shark proteins were shown to be glycosylated by staining gels with the periodate-Schiff reagent. Amino acid analyses of the polypeptides eluted from polyacrylamide gels indicated a high content of apolar amino acids and a composition approximating that of the Po protein of bovine peripheral nervous system (PNS) myelin, rather than that of the CNS proteolipid protein. The shark poly-peptide of apparent molecular weight 31,500 was obtained by elution from dodecyl sulphate gels and antibodies raised against it in rabbits. By probing of electroblots with this antiserum the four shark CNS bands were shown to share common determinants with each other, with a major shark PNS protein and with sheep and chicken major PNS glycoproteins (Po). The binding of antibody was unaffected by deglycosylation of the shark CNS polypeptides with anhydrous hydrogen fluoride. Together, these results appeared to establish that shark CNS myelin contains four proteins that are closely related to a major shark PNS protein and to the Po protein of higher species.  相似文献   

6.
Peripheral nervous system (PNS) myelin from the rainbow trout (Salmo gairdneri) banded at a density of 0.38 M sucrose. The main myelin proteins consisted of (1) two basic proteins, BPa and BPb (11,500 and 13,000 MW, similar to those of trout central nervous system (CNS) myelin proteins BP1 and BP2), and (2) two glycosylated components, IPb (24,400 MW) and IPc (26,200 MW). IPc comigrated with trout CNS myelin protein IP2 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, whereas trout CNS myelin protein IP1 had a lower molecular weight (23,000). Following two-dimensional separation, however, both IPb and IPc from PNS showed two components; the more acidic component of IPc comigrated with IP2 from CNS. PNS tissue autolysis led to the formation of IPa (20,000 MW), consisting of two components in isoelectric focusing of which again the more acidic one comigrated with the CNS autolysis product IP0. Limited enzymatic digestion of isolated IP proteins from PNS and CNS led to closely similar degradation patterns, being most pronounced in the case of IP2 and IPc. Immunoblotting revealed that all IP components from trout PNS and CNS myelins reacted with antibodies to trout IP1 (CNS) and bovine P0 protein (PNS) whereas antibodies to rat PLP (CNS) were entirely unreactive. All BP components from trout PNS and CNS myelins bound to antibodies against human myelin basic protein. On the basis of these studies trout PNS and CNS myelins contain at least one common IP glycoprotein, whereas other members of the IP myelin protein family appear closely related. In the CNS myelin of trout the IP components appear to replace PLP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Myelin Membrane Structure and Composition Correlated: A Phylogenetic Study   总被引:8,自引:4,他引:4  
We have correlated myelin membrane structure with biochemical composition in the CNS and PNS of a phylogenetic series of animals, including elasmobranchs, teleosts, amphibians, and mammals. X-ray diffraction patterns were recorded from freshly dissected, unfixed tissue and used to determine the thicknesses of the liquid bilayer and the widths of the spaces between membranes at their cytoplasmic and extracellular appositions. The lipid and protein compositions of myelinated tissue from selected animals were determined by TLC and sodium dodecyl sulfate-polyacrylamide gel electrophoresis/immunoblotting, respectively. We found that (1) there were considerable differences in lipid (particularly glycolipid) composition, but no apparent phylogenetic trends; (2) the lipid composition did not seem to affect either the bilayer thickness, which was relatively constant, or the membrane separation; (3) the CNS of elasmobranch and teleost and the PNS of all four classes contained polypeptides that were recognized by antibodies against myelin P0 glycoprotein; (4) antibodies against proteolipid protein (PLP) were recognized only by amphibian and mammalian CNS; (5) wide extracellular spaces (ranging from 36 to 48 A) always correlated with the presence of P0-immunoreactive protein; (6) the narrowest extracellular spaces (approximately 31 A) were observed only in PLP-containing myelin; (7) the cytoplasmic space in PLP-containing myelin (approximately 31 A) averaged approximately 5 A less than that in P0-containing myelin; (8) even narrower cytoplasmic spaces (approximately 24 A) were measured when both P0 and 11-13-kilodalton basic protein were detected; (9) proteins immunoreactive to antibodies against myelin P2 basic protein were present in elasmobranch and teleost CNS and/or PNS, and in mammalian PNS, but not in amphibian tissues; and (10) among mammalian PNS myelins, the major difference in structure was a variation in membrane separation at the cytoplasmic apposition. These findings demonstrate which features of myelin structure have remained constant and which have become specifically altered as myelin composition changed during evolutionary development.  相似文献   

8.
Brain slices prepared from 20-day old rats were incubated with [3H]palmitic acid to study its incorporation into myelin proteins. After separation by SDS-PAGE, most of the label was found to be associated with the major proteolipid protein (PLP) and with the intermediate protein (I). The radioactivity measured in PLP at short incubation times was shown to be due to palmitic acid bound to the protein by ester linkages. Time-course incorporation of [3H]palmitic acid into PLP of fraction SN4 (a myelin like membrane) and of purified myelin showed that the former was poorly labeled and no relationship of the type ‘precursor-product’ between these fractions could be detected. Incorporation of the fatty acid into PLP was not affected by inhibition of the synthesis or transport of myelin PLP with cycloheximide or colchicine, indicating that the pool of PLP that can be acylated must be larger than the extramyelin pool. Addition of unlabeled palmitic acid to the incubation medium, 30 min after the addition of [3H]palmitate, stopped the appearance of label in myelin PLP almost immediately, indicating that there is no significant extramyelin pool of PLP destined for transport into myelin. The results presented in this paper strongly suggest that esterification of PLP takes place in the myelin membrane or at a site very close to it.  相似文献   

9.
The myelin proteolipid protein (PLP) is the major structural protein of CNS myelin, accounting for approximately half of total myelin protein. We studied synthesis and accumulation of myelin components for two months postnatally in PLP‐null mice and age‐matched controls. Accumulation of myelin, as assayed by levels of whole brain cerebroside and myelin basic protein, was normal in the knockout mice. The rate of cerebroside synthesis in the knockout mice was also normal. Myelin was isolated at several ages during development, using a standard subcellular fractionation protocol. The yield of ‘purified myelin’ isolated from a large particle (crude mitochondrial) fraction was reduced in PLP‐null mice, but increased amounts of ‘myelin’ were obtained in the small particle (crude microsomal) fraction. This ‘myelin’ in the crude microsomal fraction was identified as such by flotation on 0.85 m sucrose and the myelin‐characteristic 2 : 1 molar ratio of cholesterol to cerebroside. This suggests myelin from PLP‐null mice is physically more fragile than normal myelin, and that during tissue dispersion, much more PLP‐null myelin is fragmented into small vesicles than is the case for normal myelin. Three hours after intracranial injection of tritiated acetate into PLP‐null mice, cerebroside in myelin isolated from the large particle fraction was at a similar specific radioactivity to that isolated from the small particle (crude microsomal) fraction, suggesting that the most recently deposited PLP‐null myelin is not preferentially unstable. The increased fragility evident during tissue dispersion is indicative of an underlying structural abnormality in PLP‐null myelin. Whether this inherent structural instability affects myelin metabolism is under investigation. Acknowledgements: Supported by USPHS & NMSS grants.  相似文献   

10.
Myelin proteolipid protein--the first 50 years   总被引:1,自引:0,他引:1  
Myelin proteolipid protein (PLP), the most abundant protein of central nervous system (CNS) myelin, is a hydrophobic integral membrane protein. Because of its physical properties, which make it difficult to work with, progress towards determining the exact function(s) and disease associations of myelin PLP has been slow. However, recent molecular biology advances have given new life to investigations of PLP, and suggest that it has multiple functions within myelin and is of importance in several neurological disorders.  相似文献   

11.
This study investigates the effect of nitric oxide (NO) on both the chemical modifications of CNS proteins and the architecture of the myelinated internode. Incubation of rat optic nerves for 2 h with 1 mM concentration of the NO-donors S-nitroso-N-acetyl-penicillamine (SNAP), ethyl-2-[hydroxyimino]-5-nitro-3-hexeneamide (NOR-3), and 4-phenyl-3-furoxan carbonitrile (PFC) led to decompaction of myelin at the level of the intraperiod line (IPL). In contrast, incubation with 1 mM sodium nitroprusside, which slowly releases NO, sodium nitrite, and N-nitrosopyrrolidine failed to cause myelin disassembly. This suggests that free NO and/or some of its direct oxidation products (e.g., N2O3) are the active molecular species. NO-induced alterations in myelin architecture could not be assigned to protein or lipid degradation, lipid peroxidation, ATP depletion, calcium uptake, protein nitration, protein carbonylation, and nerve depolarization. NO-treatment, however, resulted in the S-nitrosation of a number of proteins. In myelin, one of the major S-nitrosated substrates was identified as proteolipid protein (PLP), an abundant cysteine-rich protein that is responsible for IPL stabilization. Peripheral nervous system myelin, whose stability depends on proteins other than PLP, was not decompacted upon incubation of sciatic nerves with SNAP. It is proposed that NO-mediated nitrosation of sulfhydryl groups is likely to interfere with the normal function of PLP and other important CNS myelin proteins leading to the structural demise of this membrane. These findings are relevant to multiple sclerosis and other inflammatory demyelinating disorders where both excessive NO production and myelin instability are known to occur.  相似文献   

12.
The levels of myelin basic protein, proteolipid protein, and 2',3'-cyclic nucleotide 3'-phosphohydrolase (EC 3.1.4.37) in cerebral hemispheres of wild-type, heterozygous jp/+, and hemizygous jp/Y mice of different ages were determined by radioimmunoassay and immunoblotting. In jp/Y brain the level of myelin basic protein was 8% that of wild-type at all ages. All forms of the protein were reduced although the 21.5K Mr form was relatively spared at early ages compared to the 18.5K, 17K, and 14K Mr forms. The level of 2',3'-cyclic nucleotide 3'-phosphohydrolase was 8% that of wild-type at all ages, and proteolipid protein was undetectable at any age. These results are consistent with the hypothesis that the jimpy mutation blocks myelin morphogenesis subsequent to incorporation of 21.5K Mr myelin basic protein but prior to incorporation of proteolipid protein. In jp/+ brain the levels of the three proteins were reduced commensurately to 60-70% those of wild-type. The deficit was apparent as early as 10 days after birth and remained proportionately constant throughout development. These results suggest that in jp/+ mice, X-chromosome inactivation produces a mosaic population of functionally wild-type and functionally jimpy oligodendrocytes. The former elaborate normal amounts of myelin but do not completely compensate for the myelin deficit due to the latter.  相似文献   

13.
Membrane fractions and chloroform-methanol (C-M) extracts ofjimpy (jp) and normal CNS at 17–20 days were examined by immunoblot and sequence analysis to determine whether myelin proteolipid protein (PLP) or DM-20 could be detected in jp CNS. No reactivity was detected in jp samples with several PLP antibodies (Abs) except with one Ab to amino acids 109–128 of normal PLP. Proteins in the immunoreactive bands 26 Mr comigrating with PLP were sequenced for the first 10–12 residues. A sequence corresponding to PLP was found in normal CNS, as expected, but not in the band from jp CNS. Our results provide no evidence for an aberrant form of PLP in jp CNS at 17–20 days. This and other studies suggest that the abnormalities in jp brain are not due to toxicity of the mutant jp PLP/DM-20 proteins. Interestingly, a sequence identical to the amino terminus of the mature proton channel subunit 9 of mitochondrial F0 ATPase was detected in the immunoreactive bands 26 Mr in both normal and jp samples. This identification was supported by reactivity with an Ab to the F0 subunit and by labeling with dicyclohexylcarbodiimide (DCCD). In contrast to PLP isolated from whole CNS, PLP isolated from myelin was devoid of F0 subunit 9 based on sequence analysis and lack of reactivity with an Ab to the F0 subunit, yet still reacted with DCCD. This finding rules out the possibility that contaminating F0 ATPase gives rise to the DCCD binding exhibited by PLP and confirms the possibility that PLP has proton channel activity, as suggested by Lin and Lees (1,2).Abbreviations used Ab antibody - CM conditioned medium - C M chloroform-methanol - DCCD dicyclohexylcarbodiimide - jp jimpy - Mr mobility (apparent m.w×10–3) - PLP proteolipid protein - PVDF polyvinylidene difluoride  相似文献   

14.
Several of the proteins used to form and maintain myelin sheaths in the central nervous system (CNS) and the peripheral nervous system (PNS) are shared among different vertebrate classes. These proteins include one-to-several alternatively spliced myelin basic protein (MBP) isoforms in all sheaths, proteolipid protein (PLP) and DM20 (except in amphibians) in tetrapod CNS sheaths, and one or two protein zero (P0) isoforms in fish CNS and in all vertebrate PNS sheaths. Several other proteins, including 2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNP), myelin and lymphocyte protein (MAL), plasmolipin, and peripheral myelin protein 22 (PMP22; prominent in PNS myelin), are localized to myelin and myelin-associated membranes, though class distributions are less well studied. Databases with known and identified sequences of these proteins from cartilaginous and teleost fishes, amphibians, reptiles, birds, and mammals were prepared and used to search for potential homologs in the basal vertebrate, Ciona intestinalis. Homologs of lipophilin proteins, MAL/plasmolipin, and PMP22 were identified in the Ciona genome. In contrast, no MBP, P0, or CNP homologs were found. These studies provide a framework for understanding how myelin proteins were recruited during evolution and how structural adaptations enabled them to play key roles in myelination.  相似文献   

15.
16.
Abstract— Border disease (BD) of sheep is caused by a virus in the genus Pestivirus that results in decreased myelination throughout the CMS when acquired congenitally. Pregnant ewes were inoculated with BD virus at 50 days of gestation, and myelin proteins were quantified in several regions of the CNS during prenatal and postnatal development of infected lambs for comparison with age-matched controls. Newborn field-infected lambs were also examined. Myelin basic protein (MBP), proteolipid protein (PLP), myelin-associated glycoprotein (MAG), and 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) were measured by densitometric scanning of western blots. Deficiencies in the myelin proteins were detected as early as 116 days of gestation, and the deficiencies of myelin proteins were most pronounced in the cerebellum at all ages examined. PLP and MBP increased from 10–30% of normal in cerebellar white matter at birth to 40–60% of normal at 6 months, suggesting some catch-up in the amount of compact myelin with development. MAG and CNP were between 70 and 80% of control levels in the cerebellum at birth and at 6 months. Similar results were obtained for the corpus callosum and spinal cord of infected lambs, but the deficiencies of myelin proteins were not as great. A common finding in all regions examined was that MBP and PLP were reduced more than MAG and CNP. This is probably explained by a greater deficit of compact myelin, in which MBP and PLP are localized, than of associated oli-godendroglial membranes, in which MAG and CNP are concentrated. Similar results have been obtained in several dysmyelinating mutants, pointing to common factors in virally and genetically caused hypomyelination. Key Words: Border disease—Myelin—Hypomyelination—Development—Sheeo.  相似文献   

17.
Myelin isolated from goldfish brain shows a multilamellar structure with a major dense line and two intraperiod lines. Sodium dodecyl sulfate gel electrophoresis revealed that the protein profile of goldfish brain myelin is distinctly different from that of rat brain myelin. No protein migrating to the position of proteolipid protein or DM-20 was seen in goldfish myelin. Goldfish acclimated to 5 degrees, 15 degrees, and 30 degrees C showed no qualitative differences in myelin proteins. The 13.5 kD protein in goldfish brain myelin and brain homogenate was intensely immunostained with the antiserum to human basic protein by the immunoblot technique. In contrast, none of the proteins of goldfish myelin were immunostained with antiproteolipid protein serum; however, both proteolipid protein and DM-20 of rat brain myelin were immunostained. The significance of the synthesis of myelin proteins by astrocytes in the goldfish brain is discussed.  相似文献   

18.
The central nervous system (CNS) of terrestrial vertebrates underwent a prominent molecular change when a tetraspan membrane protein, myelin proteolipid protein (PLP), replaced the type I integral membrane protein, P0, as the major protein of myelin. To investigate possible reasons for this molecular switch, we genetically engineered mice to express P0 instead of PLP in CNS myelin. In the absence of PLP, the ancestral P0 provided a periodicity to mouse compact CNS myelin that was identical to mouse PNS myelin, where P0 is the major structural protein today. The PLP-P0 shift resulted in reduced myelin internode length, degeneration of myelinated axons, severe neurological disability, and a 50% reduction in lifespan. Mice with equal amounts of P0 and PLP in CNS myelin had a normal lifespan and no axonal degeneration. These data support the hypothesis that the P0-PLP shift during vertebrate evolution provided a vital neuroprotective function to myelin-forming CNS glia.  相似文献   

19.
The hydrophobic myelin proteolipid protein (PLP) contains covalently bound long-chain fatty acids which are attached to intracellular cysteine residues via thioester linkages. To gain insight into the role of acylation in the structure and function of myelin PLP, the amount and pattern of acyl groups attached to the protein during vertebrate evolution was determined. PLP isolated from brain myelin of amphibians, reptiles, birds and several mammals was subjected to alkaline methanolysis and the released methyl esters were analyzed by gas-liquid chromatography. In all species studied, PLP contained approximately the same amount of covalently bound fatty acids (3% w/w), and palmitic, palmitoleic, oleic and stearic acids were always the major acyl groups. Although the relative proportions of these fatty acids changed during evolution, the changes did not necessarily follow the variations in the acyl chain composition of the myelin free fatty acid pool, suggesting fatty acid specificity. The phylogenetic conservation of acylation suggests that this post-translational modification is critical for PLP function.  相似文献   

20.
Incorporation of [14C]leucine into the myelin sheath was studied in brain stem slices prepared from 22-day-old rats. Individual major myelin proteins were separated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate. There was a time lag before incorporation of the label into proteolipid protein (PLP) and intermediate protein (IP) reached maximal rates. Labelling of basic proteins (BP) and Wolfgram proteins (WP) revealed a much shorter lag in entry. Appearance of radioactive proteins in the myelin sheath was significantly hampered by triethyllead (PbEt3) added to the incubation medium at micromolar concentrations. Inhibition values were highest in the case of PLP and were closely followed by the values for IP. BP and WP were less inhibited, although incorporation of these proteins into myelin was still suppressed more than was synthesis of total homogenate protein. Thus, myelin-forming cells seem to be unduly vulnerable to the toxin relative to the rest of the tissue. Furthermore, the results indicate an interference of PbEt3 with certain posttranslational processes involved in furnishing of integral myelin proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号