首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The processes of speciation and macroevolution of root nodule bacteria (rhizobia), based on deep rearrangements of their genomes and occurring in the N2-fixing symbiotic system, are reconstructed. At the first stage of rhizobial evolution, transformation of free-living diazotrophs (related to Rhodopseudomonas) to symbiotic N2-fixers (Bradyrhizobium) occurred due to the acquisition of the fix gene system, which is responsible for providing nitrogenase with electrons and redox potentials, as well as for oxygen-dependent regulation of nitrogenase synthesis in planta, and then of the nod genes responsible for the synthesis of the lipo-chitooligosaccharide Nod factors, which induce root nodule development. The subsequent rearrangements of bacterial genomes included (1) increased volume of hereditary information supported by species, genera (pangenome), and individual strains; (2) transition from the unitary genome to a multicomponent one; and (3) enhanced levels of bacterial genetic plasticity and horizontal gene transfer, resulting in formation of new genera—of which Mesorhizobium, Rhizobium, and Sinorhizobium are the largest—and of over 100 species. Rhizobial evolution caused by development and diversification of the Nod factor-synthesizing systems may result in either relaxed host specificity range (transition of Bradyrhizobium from autotrophic to symbiotrophic carbon metabolism in interaction with a broad spectrum of legumes) or narrowed host specificity range (transition of Rhizobium and Sinorhizobium to “altruistic” interaction with legumes of the galegoid clade). Reconstruction of the evolutionary pathway from symbiotic N2-fixers to their free-living ancestors makes it possible to initiate the studies based on up-to-date genome screening technologies and aimed at the issues of genetic integration of organisms into supraspecies complexes, ratios of the macro- and microevolutionary mechanisms, and development of cooperative adaptations based on altruistic interaction between the symbiotic partners.  相似文献   

2.
Legumes in the genus Adesmia are wild species with forage and medicinal potential. Their nitrogen fixation efficiency depends on their association with soil bacteria known as rhizobia. The aim of this work was to assess the diversity and symbiotic effectiveness of root nodule bacteria from Adesmia boronioides, Adesmia emarginata and Adesmia tenella from different regions of Chile. Adesmia spp. nodules were collected from seven sites obtaining 47 isolates, which resulted in 19 distinct strains. The diversity of the strains was determined via partial sequencing of the dnaK, 16srRNA and nodA genes. The strains were authenticated as root nodule bacteria on their original host and assessed for symbiotic effectiveness on A. emarginata and A. tenella. The strains from Adesmia tenella clustered within the Mesorhizobium clade. Adesmia boronioides nodulated with Mesorhizobium sp., Rhizobium leguminosarum and Bradyrhizobium sp. The rhizobia from A. emarginata were identified as Burkholderia spp, which was symbiotically ineffective on this species and on A. tenella. Strains isolated from Adesmia emarginata nodules, but unable to induce nodulation, were identified as Labrys methylaminiphilus. Labrys strain AG-49 significantly increased root dry weight in A. emarginata. The nodA genes from Adesmia strains were unique and correlated to legume host. A. emarginata was effectively nodulated by Bradyrhizobium AG-64 and A. tenella by Mesorhizobium strains AG-51 and AG.52. It is concluded that Adesmia emarginata, A. tenella and A. boronioides are associated to diverse bacterial symbionts and selection of an effective inoculant is a key step to assist Adesmia spp. adaptation and restoration.  相似文献   

3.

Background and aims

Arsenic (As) is one of the most widespread environmental contaminants. The aim of our study was to test a novel bioremediation system based on the symbiosis between leguminous plant and genetically engineered rhizobia.

Methods

The arsenite [As(III)] S-adenosylmethionine methyltransferase gene (CrarsM) from the alga Chlamydomonas reinhardtii was inserted into the chromosome of Rhizobium leguminosarum bv. trifolii strain R3. The As methylation ability of the recombinant Rhizobium was tested under free living conditions and in symbiosis with red clover plants. Arsenic speciation was determined using high-performance liquid chromatography-inductively coupled plasma mass spectrometry.

Results

Under free-living conditions, CrarsM-recombinant R. leguminosarum gained the ability to methylate As(III) to methylated arsenicals, including methylarsenate [MAs(V)], dimethylarsenate [DMAs(V)] and trimethylarsine oxide [TMAs(V)O]. Red clover plants were inoculated with either control (non-recombinant) or CrarsM-recombinant R. leguminosarum and exposed to 5 or 10 μM arsenite. No methylated As species were detected in red clover plants inoculated with control R. leguminosarum. In contrast, all three methylated species were detected in both the nodules and the shoots when the recombinant Rhizobium established symbiosis with red clover, accounting for 74.7–75.1% and 29.1–42.4% of the total As in the two plant tissues, respectively. The recombinant symbiont also volatilized small amounts of As.

Conclusions

The present study demonstrates that engineered rhizobia expressing an algal arsM gene can methylate and volatilize As, providing a proof of concept for potential future use of legume-rhizobia symbionts for As bioremediation.
  相似文献   

4.
A change in the contents of endogenous salicylic and jasmonic acids in the roots of the host plant at the preinfectious stage of interaction with symbiotic (Rhizobium leguminosarum) and pathogenic (Agrobacterium rizogenes) bacteria belonging for to the family Rhizobiaceae was studied. It was found that the jasmonic acid content increased 1.5–2 times 5 min after inoculation with these bacterial species. It was shown that dynamics of the change in the JA and SA contents depends on the type of infection. Thus, the JA content decreased in the case of pathogenesis, while the SA content increased. At the same time, an increased JA content was observed during symbiosis. The observed regularities could indicate the presence of different strategies of hormonal regulation for interaction with symbiotic and pathogenic bacteria belonging to the family Rhizobiaceae in peas plants.  相似文献   

5.
The symbiotic nitrogen fixing legumes play an essential role in sustainable agriculture. White clover (Trifolium repens L.) is one of the most valuable perennial legumes in pastures and meadows of temperate regions. Despite its great agriculture and economic importance, there is no detailed available information on phylogenetic assignation and characterization of rhizobia associated with native white clover plants in South-Eastern Europe. In the present work, the diversity of indigenous white clover rhizobia originating in 11 different natural ecosystems in North-Eastern Romania were assessed by a polyphasic approach. Initial grouping showed that, 73 rhizobial isolates, representing seven distinct phenons were distributed into 12 genotypes, indicating a wide phenotypic and genotypic diversity among the isolates. To clarify their phylogeny, 44 representative strains were used in sequence analysis of 16S rRNA gene and IGS fragments, three housekeeping genes (atpD, glnII and recA) and two symbiosis-related genes (nodA and nifH). Multilocus sequence analysis (MLSA) phylogeny based on concatenated housekeeping genes delineated the clover isolates into five putative genospecies. Despite their diverse chromosomal backgrounds, test strains shared highly similar symbiotic genes closely related to Rhizobium leguminosarum biovar trifolii. Phylogenies inferred from housekeeping genes were incongruent with those of symbiotic genes, probably due to occurrence of lateral transfer events among native strains. This is the first polyphasic taxonomic study to report on the MLSA-based phylogenetic diversity of indigenous rhizobia nodulating white clover plants grown in various soil types in South-Eastern Europe. Our results provide valuable taxonomic data on native clover rhizobia and may increase the pool of genetic material to be used as biofertilizers.  相似文献   

6.
Comparative sequence analysis of symbiotic genes (nodA, nodC, nodD, nifH), which are elements of accessory component of the rhizobial genome, demonstrated that the strains of Rhizobium leguminosarum bv. viciae, isolated from the nodules of a relic legume, Vavilovia formosa, the closest relative of hypothetical common ancestor of the tribe Fabeae, represented a group separated from the strains of R. leguminosarum bv. viciae, isolated from other representatives of this tribe (Vicia, Lathyrus, Pisum, Lens). No isolation was observed relative to the genes representing the core component of the rhizobial genome (16S rDNA, ITS, glnII) or relative to host specificity of the rhizobia. The data obtained suggest that sequence divergence of symbiotic genes marks the initial stage of sympatric speciation, which can be classified as the isolation of the relic “vaviloviae” symbiotype, a possible evolutionary precursor of the “viciae” biotype.  相似文献   

7.
Lima bean (Phaseolus lunatus L.) is an important legume species that establishes symbiosis with rhizobia, mainly of the Bradyrhizobium genus. The aim of this study was to evaluate the efficiency of rhizobia of the genus Bradyrhizobium in symbiosis with lima bean, in both Leonard jars and in pots with a Latossolo Amarelo distrófico (Oxisol). In the experiment in Leonard jars, 17 strains isolated from nodules of the three legume subfamilies, Papilionoideae (Vigna unguiculata, Pterocarpus sp., Macroptilium atropurpureum, Swartzia sp., and Glycine max), Mimosoideae (Inga sp.), and Caesalpinioideae (Campsiandra surinamensis) and two uninoculated controls, one with a low concentration (5.25 mg L?1) and another with a high concentration (52.5 mg L?1) of mineral nitrogen (N) were evaluated. The six strains that exhibited the highest efficiency in Leonard jars, isolated from nodules of Vigna unguiculata (UFLA 03–144, UFLA 03–84, and UFLA 03–150), Campsiandra surinamensis (INPA 104A), Inga sp. (INPA 54B), and Swartzia sp. (INPA 86A), were compared to two uninoculated controls, one without and another with 300 mg N dm?3 (NH4NO3) applied to pots with samples of an Oxisol in the presence and absence of liming. In this experiment, liming did not affect nodulation and plant growth; the INPA 54B and INPA 86A strains stood out in terms of shoot dry matter production and provided increases of approximately 48% in shoot N accumulation compared to the native rhizobia populations. Our study is the first to indicate Bradyrhizobium strains isolated from the three legume subfamilies are able to promote lima bean growth via biological nitrogen fixation in soil conditions.  相似文献   

8.
9.
The Rhizobia are collectively comprised of gram negative soil bacteria that have the ability to form symbiotic nitrogen-fixing root and/or stem nodules in association with leguminous plants. The taxonomy of these bacteria is continually in a state of flux, in large part due to rapid development of refined molecular biology techniques. The isolation and characterization of new, and often different, legumes-nodulating bacteria on a variety of plant hosts has resulted in the naming of many new rhizobial species. Here we update the taxonomy of the legume-nodulating bacteria and describe newly identified rhizobia capable of nodulating edible legumes and legume trees. In 1990, there was only one bacterial species that was known to nodulate common bean worldwide (Rhizobium leguminosarum sv. phaseoli), one species that nodulated faba bean (Rhizobium leguminosarum sv. viciae), and two species that nodulated soybean (Bradyrhizobium japonicum and Rhizobium fredii). Today, nearly 14, 11, 6, 5, 5, 4, 3 and 2 species have been defined that are capable of nodulating common bean, soybean, cowpea, chickpea, peanut, lentils, faba bean and pea, respectively. The recent use of whole genome based taxonomy (genomotaxonomy) will surely change how we define this important group of bacteria. The identification of several rhizobial species that are able to nodulate and fix nitrogen with edible legumes may enhance the production of these crops and can compensate for worldwide deficiencies in human nutritional needs in the future.  相似文献   

10.
The effects of hybrid lectins—full-sized pea Pisum sativum lectin (PSL) with the carbohydrate-binding region of white melilot Melilotus albus lectin or wild licorice Astragalus glycyphyllos lectin substituted for the corresponding PSL region (PSL/MAL and PSL/AGL, correspondingly)—on the legume-rhizobium symbiosis were studied. The treatment of the Rhizobium leguminosarum bv. viciae in the alfalfa (Medicago sativa) rhizosphere with PSL induced formation of uninfected pseudonodules on its roots, whereas the treatment of the bacteria from Astragalus cicer nodules with PSL/AGL rendered these bacteria able to form infective nodules on alfalfa roots. This ability is associated with expanded and unusual carbohydrate-binding properties (combined specificity for Gal and Glc) of this hybrid protein as compared with the natural legume lectins.  相似文献   

11.
A strain of Serratia sp. Ent16 isolated from internal tissues of pea nodule inhibited in vitro growth of the plant pathogens Fusarium oxysporum and Bipolaris sorokiniana and the model strain Rhizobium leguminosarum bv viceae 1078 but had a considerably weaker antagonistic effect on the Rhizobium strain Rh16 from its own nodule. Cells of the Ent16 strain tagged by the gfp gene (the Ent16-gfp strain) were not seen in the pea endorhizosphere when plants were grown in a rich culture medium. The development of symbiosis was favored by plant germination on filter paper. Confocal microscopy showed that individual cells of the Ent16-gfp strain were attached to the outer side of root hair cell walls, while agglomerations of fluorescent bacterial cells were detected in the zone of exoderm of lateral root formation and in root vessels. A series of scanned sections of pea root revealed the presence of the Ent16-gfp strain in lateral root primordia, through which the bacteria penetrated the endorhizosphere.  相似文献   

12.
13.
The physiological action of the MOD-19 polysaccharide (PS), synthesized similarly to bacterial glucans, on the nodule bacteria Rhizobium leguminosarum bv. viciae and pea seeds was studied. It was found that MOD-19 stimulated nodule bacterium growth and bacterial biomass accumulation. It also altered metabolism in rhizobia grown in solid and liquid media containing this polymer. Treatment of pea seeds with MOD-19 before sowing increased the intensity of root formation, plant tissue peroxidase activity, and general symbiosis efficiency owing to secondary nodule formation on lateral roots and prolongation of their intense nitrogen fixation.  相似文献   

14.
Boletus edulis Bull. is one of the most economically and gastronomically valuable fungi worldwide. Sporocarp production normally occurs when symbiotically associated with a number of tree species in stands over 40 years old, but it has also been reported in 3-year-old Cistus ladanifer L. shrubs. Efforts toward the domestication of B. edulis have thus focused on successfully generating C. ladanifer seedlings associated with B. edulis under controlled conditions. Microorganisms have an important role mediating mycorrhizal symbiosis, such as some bacteria species which enhance mycorrhiza formation (mycorrhiza helper bacteria). Thus, in this study, we explored the effect that mycorrhiza helper bacteria have on the efficiency and intensity of the ectomycorrhizal symbiosis between C. ladanifer and B. edulis. The aim of this work was to optimize an in vitro protocol for the mycorrhizal synthesis of B. edulis with C. ladanifer by testing the effects of fungal culture time and coinoculation with the helper bacteria Pseudomonas fluorescens Migula. The results confirmed successful mycorrhizal synthesis between C. ladanifer and B. edulis. Coinoculation of B. edulis with P. fluorescens doubled within-plant mycorrhization levels although it did not result in an increased number of seedlings colonized with B. edulis mycorrhizae. B. edulis mycelium culture time also increased mycorrhization levels but not the presence of mycorrhizae. These findings bring us closer to controlled B. edulis sporocarp production in plantations.  相似文献   

15.
Diesel fuel is one of the most important sources of hydrocarbon contamination worldwide. Its composition consists of a complex mixture of n-alkanes, branched alkanes and aromatic compounds. Hydrocarbon degradation in Pseudomonas species has been mostly studied under aerobic conditions; however, a dynamic spectrum of oxygen availability can be found in the environment. Pseudomonas extremaustralis, an Antarctic bacterium isolated from a pristine environment, is able to degrade diesel fuel and presents a wide microaerophilic metabolism. In this work RNA-deep sequence experiments were analyzed comparing the expression profile in aerobic and microaerophilic cultures. Interestingly, genes involved in alkane degradation, including alkB, were over-expressed in micro-aerobiosis in absence of hydrocarbon compounds. In minimal media supplemented with diesel fuel, n-alkanes degradation (C13–C19) after 7 days was observed under low oxygen conditions but not in aerobiosis. In-silico analysis of the alkB promoter zone showed a putative binding sequence for the anaerobic global regulator, Anr. Our results indicate that some diesel fuel components can be utilized as sole carbon source under microaerophilic conditions for cell maintenance or slow growth in a Pseudomonas species and this metabolism could represent an adaptive advantage in polluted environments.  相似文献   

16.
The effect of exudates from germinating lupine and soybean seeds on the development of legumerhizobia symbiosis in the same plants was studied. Treatment with the exudates increased the nodulation activity of Bradyrhizobium sp. (Lupinus) and slowed down the formation of nodules by Bradyrhizobium japonicum 634b. The number of nodules produced by B. japonicum 631 on soybean roots increased when the strain was treated with soybean exudate at a lower concentration. The exudates differently affected nodulation on the primary and secondary roots of the host plant. The formation of symbiosis by B. japonicum 631 incubated with legume seed exudates increased the weight of the green parts of plants at the bud stage.  相似文献   

17.
The existence of the cluster of duplicated sit silicon transporter genes in the chromosome of the diatom Synedra acus subsp. radians was shown for the first time. Earlier, the localization of sit genes in the same chromosome and cluster formation caused by gene duplication was shown only for the marine raphid pennate diatom P. tricornutum. Only non-clustered sit genes were found in the genomes of other diatoms. It is reasonable to assume that sit tandem (sit-td) and sit triplet (sit-tri) genes of S. acus subsp. radians occurred as a result of gene duplication followed by divergence of gene copies.  相似文献   

18.
19.
Tuber species produce highly sought-after truffles and host a wide diversity and high abundance of bacteria. It has been suggested that some of these bacteria contribute to the growth, maturity, and aromatic properties of truffles. Here, we characterized and compared the microbiomes of several species of truffles from the Sichuan Province in Southwest China using high-throughput sequencing of bacterial community 16S rRNA genes. Two T. pseudoexcavatum ascocarp samples had relatively similar bacterial communities, as indicated by PCoA analysis. In contrast, three T. indicum samples collected at different maturity stages did not contain similar communities, suggesting that the maturity stage of ascocarps affects community composition in addition to host phylogenetic background. Despite the variation seen among species and maturity stages, the Proteobacteria phylum dominated all communities, which is consistent with previous studies of Tuber-associated bacteria. Moreover, Bradyrhizobium was the dominant genus in most Tuber ascocarps, which is also consistent with previous studies, although the functional role of this genus within truffles is unclear. Notably, Serratia, which are essential producers of thiophene volatiles within T. borchii were dominant in all of our samples. This finding supports the hypothesis that the ability to produce thiophene volatiles is widespread among these bacteria.  相似文献   

20.
The structure of the plasmid locus containing the sym-genes (nod-, nif-, and fix-operons) was investigated in eight Rhizobium leguminosarum strains differing in their origin and host specificity, including five strains of the viciae biovar—symbionts of pea (3), forage beans (1), and Vavilovia (1)—as well as three strains of the biovar trifolii (clover symbionts). Strains of R. leguminosarum bv. viciae, which possess the nodX gene (controlling acetylation of the Nod factor, which is responsible for the ability of rhizobia to form symbioses with a broad spectrum of hosts, including the “Afghan” pea lines, homozygous by the allele sym2A), are characterized by a less compact location of the sym-genes than the strains lacking the nodX gene. The size of the symbiotic cluster in the strains possessing nodX was 94.5 ± 3.5 kb, with the share of the sym-genes of 36.5 ± 1.5%, while for the strains lacking nodX these values were 61.7 ± 3.7 kb and 56.3 ± 1.4%, respectively (significant difference at P 0 < 0.01). Syntenic structures were revealed in the symbiotic regions of strains Vaf12, UPM1131, and TOM, as well as syntenic structures of non-symbiotic regions in strains Vaf12, TOM, and WSM1689. The correlation coefficients between the matrices of genetic distances in the analyzed strains for the nodABC, nifHDK, and fixABC operons were on average 0.993 ± 0.002, while their values for the plasmid sites located between the sym-genes were considerably less (0.706 ± 0.010). In these regions, 21 to 27% of the genes were involved in amino acid transport and metabolism, which was substantially higher than the average for the genome of R. leguminosarum bv. viciae (11–12%). These data suggest that the evolution of R. leguminosarum bv. viciae, defined by narrowing of the host specificity (associated with a loss of the nodX gene), was accompanied by reduction of the regions of plasmids located between the sym-genes, as well as by specialization of these areas to perform the functions related to symbiotic nitrogen fixation. The observed increase of density in the cluster of sym-genes may be associated with intensification of their horizontal transfer in the populations of rhizobia, which determines the speed of evolution of the symbiotic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号