首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RET rearrangement is a recently identified oncogenic mutation in lung adenocarcinoma (LADC) that accounts for approximately 2% of all NSCLCs. More than six fusion partners have been identified in NSCLC, such as KIF5B, CCDC6, NCOA4, TRIM33, CLIP1 and ERC1. Many RET inhibitors have been reported and some have progressed to the clinic. Similar to most kinase inhibitors, patients often respond to current RET inhibitors but relapse can occur due to the emergence of mutant RET kinases, such as RET (S904F) and (V804L/M), which are resistant to inhibition. Our group previously reported that the benzamide aminonaphthyridine HSN356, a multikinase inhibitor, also inhibited RET. In this study, we prepared various nicotinamide analogs of HSN356 and investigated RET inhibition to uncover the salient moieties on HSN356 that are important for kinase inhibition and to also evaluate if HSN356 and analogs thereof could inhibit mutant RET kinases, such as RET (S904F) and (V804L/M). Compound 3 (HSN608), the nicotinamide analog of HSN356, inhibits RET and mutant forms better than reported RET inhibitors such as Alectinib, Sorafenib, Vandetanib and Apatinib, and comparable to BLU667. HSN608 inhibited the growth of CCDC6-RET driven LC-2/ad cell line with IC50 of ~3 nM. Under similar conditions, BLU667 and vandetanib (two drugs being evaluated against RET-driven cancers in the clinic) inhibited the growth of LC-2/ad with IC50 values of ~10 and 328 nM respectively.  相似文献   

2.
Through an integrated molecular- and histopathology-based screening system, we performed a screening for fusions of anaplastic lymphoma kinase (ALK) and c-ros oncogene 1, receptor tyrosine kinase (ROS1) in 1,529 lung cancers and identified 44 ALK-fusion-positive and 13 ROS1-fusion-positive adenocarcinomas, including for unidentified fusion partners for ROS1. In addition, we discovered previously unidentified kinase fusions that may be promising for molecular-targeted therapy, kinesin family member 5B (KIF5B)-ret proto-oncogene (RET) and coiled-coil domain containing 6 (CCDC6)-RET, in 14 adenocarcinomas. A multivariate analysis of 1,116 adenocarcinomas containing these 71 kinase-fusion-positive adenocarcinomas identified four independent factors that are indicators of poor prognosis: age ≥ 50 years, male sex, high pathological stage and negative kinase-fusion status.  相似文献   

3.
Whether Cell block (CB) samples are applicable to detect anaplastic lymphoma kinase (ALK), c-ros oncogene 1 (ROS1) and ret proto-oncogene (RET) fusion genes in lung adenocarcinoma is still unknown. In this study, 108 cytological samples that contained lung adenocarcinoma cells were collected, and made into CB. The CB samples all contained at least 30% lung adenocarcinoma cells. In these patients, 48 harbored EGFR mutation. Among the 50 EGFR wild type patients who detected fusion genes, 14 carried EML4-ALK fusion (28%), 2 had TPM3-ROS1 fusion (4%), and 3 harbored KIF5B-RET fusion (6%). No double fusions were found in one sample. Patients with fusion genes were younger than those without fusion genes (p = 0.032), but no significant difference was found in sex and smoking status (p > 0.05). In the thirty-five patients who received first-line chemotherapy, patients with fusion gene positive had disease control rate (DCR) (72.7% VS 50%, p > 0.05) and objective response rate (ORR) (9.1% VS 4.2%, p > 0.05) compared with those having fusion gene negative. The median progression free survival (mPFS) were 4.0 and 2.7 months in patients harbored fusion mutations and wild type, respectively (p > 0.05). We conclude that CB samples could be used to detect ALK, ROS1 and RET fusions in NSCLC. The frequency distribution of three fusion genes is higher in lung adenocarcinoma with wild-type EGFR, compared with unselected NSCLC patient population. Patients with fusion genes positive are younger than those with fusion gene negative, but they had no significantly different PFS in first-line chemotherapy.  相似文献   

4.
The Cdo-p38MAPK (p38 mitogen-activated protein kinase) signaling pathway plays important roles in regulating skeletal myogenesis. During myogenic differentiation, the cell surface receptor Cdo bridges scaffold proteins BNIP-2 and JLP and activates p38MAPK, but the spatial-temporal regulation of this process is largely unknown. We here report that KIF5B, the heavy chain of kinesin-1 motor, is a novel interacting partner of BNIP-2. Coimmunoprecipitation and far-Western study revealed that BNIP-2 directly interacted with the motor and tail domains of KIF5B via its BCH domain. By using a range of organelle markers and live microscopy, we determined the endosomal localization of BNIP-2 and revealed the microtubule-dependent anterograde transport of BNIP-2 in C2C12 cells. The anterograde transport of BNIP-2 was disrupted by a dominant-negative mutant of KIF5B. In addition, knockdown of KIF5B causes aberrant aggregation of BNIP-2, confirming that KIF5B is critical for the anterograde transport of BNIP-2 in cells. Gain- and loss-of-function experiments further showed that KIF5B modulates p38MAPK activity and in turn promotes myogenic differentiation. Of importance, the KIF5B-dependent anterograde transport of BNIP-2 is critical for its promyogenic effects. Our data reveal a novel role of KIF5B in the spatial regulation of Cdo–BNIP-2–p38MAPK signaling and disclose a previously unappreciated linkage between the intracellular transporting system and myogenesis regulation.  相似文献   

5.
6.
The mitotic kinase Aurora B is concentrated at the anaphase central spindle by the kinesin MKlp2 during mitotic exit and cytokinesis. This pool of Aurora B phosphorylates substrates including the kinesin KIF4A to regulate central spindle length. In this paper, we identify a counteracting system in which PP2A–B56γ and -ε, but not PP2A–B56α, -β, and -δ, are maintained at the central spindle by KIF4A. Biochemical assays show that PP2A–B56γ can dephosphorylate the T799 Aurora B site on KIF4A and thereby counteract the Aurora B– and microtubule-stimulated ATPase activity of KIF4A. In agreement with these observations, combined silencing of PP2A–B56γ and -ε resulted in increased phosphorylation of KIF4A T799 and decreased central spindle growth in anaphase B. Furthermore, reduced turnover of regulatory phosphorylation on another Aurora B substrate MKlp1 was observed, suggesting that PP2A–B56γ and -ε play a general role opposing Aurora B at the central spindle. KIF4A and PP2A–B56γ and -ε therefore create a spatially restricted negative feedback loop counteracting Aurora B in anaphase.  相似文献   

7.
The RET proto-oncogene encodes a receptor with tyrosine kinase activity (RET) that is involved in several neoplastic and non-neoplastic diseases. Oncogenic activation of RET, achieved by different mechanisms, is detected in a sizeable fraction of human thyroid tumors, as well as in multiple endocrine neoplasia types 2A and 2B (MEN2A and MEN2B) and familial medullary thyroid carcinoma tumoral syndromes. Germline mutations of RET have also been associated with a non-neoplastic disease, the congenital colonic aganglionosis, i.e. Hirschsprung's disease (HSCR). To analyse the impact of HSCR mutations on RET function, we have introduced into wild-type RET and activated RET(MEN2A) and RET(MEN2B) alleles three missense mutations associated with HSCR. Here we show that the three mutations caused a loss of function of RET when assayed in two model cell systems, NIH 3T3 and PC12 cells. The effect of different HSCR mutations was due to different molecular mechanisms. The HSCR972 (Arg972-->Gly) mutation, mapping in the intracytoplasmic region of RET, impaired its tyrosine kinase activity, while two extracellular mutations, HSCR32 (Ser32-->Leu) and HSCR393 (Phe393-->Leu), inhibited the biological activity of RET by impairing the correct maturation of the RET protein and its transport to the cell surface.  相似文献   

8.
Applying a next-generation sequencing assay targeting 145 cancer-relevant genes in 40 colorectal cancer and 24 non-small cell lung cancer formalin-fixed paraffin-embedded tissue specimens identified at least one clinically relevant genomic alteration in 59% of the samples and revealed two gene fusions, C2orf44-ALK in a colorectal cancer sample and KIF5B-RET in a lung adenocarcinoma. Further screening of 561 lung adenocarcinomas identified 11 additional tumors with KIF5B-RET gene fusions (2.0%; 95% CI 0.8-3.1%). Cells expressing oncogenic KIF5B-RET are sensitive to multi-kinase inhibitors that inhibit RET.  相似文献   

9.
10.

Background

Enhanced lysosomal trafficking is associated with metastatic cancer. In an attempt to discover cancer relevant lysosomal motor proteins, we compared the lysosomal proteomes from parental MCF-7 breast cancer cells with those from highly invasive MCF-7 cells that express an active form of the ErbB2 (ΔN-ErbB2).

Methodology/Principal Findings

Mass spectrometry analysis identified kinesin heavy chain protein KIF5B as the only microtubule motor associated with the lysosomes in MCF-7 cells, and ectopic ΔN-ErbB2 enhanced its lysosomal association. KIF5B associated with lysosomes also in HeLa cervix carcinoma cells as analyzed by subcellular fractionation. The depletion of KIF5B triggered peripheral aggregations of lysosomes followed by lysosomal destabilization, and cell death in HeLa cells. Lysosomal exocytosis in response to plasma membrane damage as well as fluid phase endocytosis functioned, however, normally in these cells. Both HeLa and MCF-7 cells appeared to express similar levels of the KIF5B isoform but the death phenotype was weaker in KIF5B-depleted MCF-7 cells. Surprisingly, KIF5B depletion inhibited the rapamycin-induced accumulation of autophagosomes in MCF-7 cells. In KIF5B-depleted cells the autophagosomes formed and accumulated in the close proximity to the Golgi apparatus, whereas in the control cells they appeared uniformly distributed in the cytoplasm.

Conclusions/Significance

Our data identify KIF5B as a cancer relevant lysosomal motor protein with additional functions in autophagosome formation.  相似文献   

11.
The cellular molecular motor kinesin-1 mediates the microtubule-dependent transport of a range of cargo. We have previously identified an interaction between the cargo-binding domain of kinesin-1 heavy chain KIF5B and the membrane-associated SNARE proteins SNAP-25 and SNAP-23. In this study we further defined the minimal SNAP-25 binding domain in KIF5B to residues 874-894. Overexpression of a fragment of KIF5B (residues 594-910) resulted in significant colocalization with SNAP-25 with resulting blockage of the trafficking of SNAP-25 to the periphery of cells. This indicates that kinesin-1 facilitates the transport of SNAP-25 containing vesicles as a prerequisite to SNAP-25 driven membrane fusion events.  相似文献   

12.
13.
The association of cargoes to kinesins is thought to promote kinesin activation, yet the validation of such a model with native cargoes is lacking because none is known to activate kinesins directly in an in vitro system of purified components. The RAN‐binding protein 2 (RANBP2), through its kinesin‐binding domain (KBD), associates in vivo with kinesin‐1, KIF5B/KIF5C. Here, we show that KBD and its flanking domains, RAN GTPase‐binding domains 2 and 3 (RBD2/RBD3), activate the ATPase activity of KIF5B approximately 30‐fold in the presence of microtubules and ATP. The activation kinetics of KIF5B by RANBP2 is biphasic and highly cooperative. Deletion of one of its RBDs lowers the activation of KIF5B threefold and abolishes cooperativity. Remarkably, RBD2–KBD–RBD3 induces unfolding and modest activation of KIF5B in the absence of microtubules. Hence, RANBP2 is the first native and positive allosteric activator known to jump‐start and boost directly the activity of a kinesin.  相似文献   

14.
The Ran-binding protein 2 (RanBP2) is a large mosaic protein with a pleiotropic role in cell function. Although the contribution of each partner and domain of RanBP2 to its biological functions are not understood, physiological deficits of RanBP2 downregulate glucose catabolism and energy homeostasis and lead to delocalization of mitochondria components in photosensory neurons. The kinesin-binding domain (KBD) of RanBP2 associates selectively in the central nervous system (CNS), and directly, with the ubiquitous and CNS-specific kinesins, KIF5B and KIF5C, respectively, but not with the highly homologous KIF5A. Here, we determine the molecular and biological bases of the selective interaction between RanBP2 and KIF5B/KIF5C. This interaction is conferred by a approximately 100-residue segment, comprising a portion of the coiled-coil and globular tail cargo-binding domains of KIF5B/KIF5C. A single residue conserved in KIF5B and KIF5C, but not KIF5A, confers KIF5-isotype-specific association with RanBP2. This interaction is also mediated by a conserved leucine-like heptad motif present in KIF5s and KBD of RanBP2. Selective inhibition of the interaction between KBD of RanBP2 and KIF5B/KIF5C in cell lines causes perinuclear clustering of mitochondria, but not of lysosomes, deficits in mitochondrial membrane potential and ultimately, cell shrinkage. Collectively, the data provide a rationale of the KIF5 subtype-specific interaction with RanBP2 and support a novel kinesin-dependent role of RanBP2 in mitochondria transport and function. The data also strengthen a model whereby the selection of a large array of cargoes for transport by a restricted number of motor proteins is mediated by adaptor proteins such as RanBP2.  相似文献   

15.
Different classes of endosomes exhibit a characteristic intracellular steady-state distribution governed by interactions with the cytoskeleton. We found a kinesin-3, KIF16B, that transports early endosomes to the plus end of microtubules in a process regulated by the small GTPase Rab5 and its effector, the phosphatidylinositol-3-OH kinase hVPS34. In vivo, KIF16B overexpression relocated early endosomes to the cell periphery and inhibited transport to the degradative pathway. Conversely, expression of dominant-negative mutants or ablation of KIF16B by RNAi caused the clustering of early endosomes to the perinuclear region, delayed receptor recycling to the plasma membrane, and accelerated degradation. These results suggest that KIF16B, by regulating the plus end motility of early endosomes, modulates the intracellular localization of early endosomes and the balance between receptor recycling and degradation. We propose that this mechanism could have important implications for signaling.  相似文献   

16.
Melanoma is the most aggressive type of cutaneous tumor and the occurrence of metastasis makes it resistant to almost all available treatment and becomes incorrigible. Hence, identifying metastasis‐related biomarkers and effective therapeutic targets will assist in preventing metastasis and ameliorating cutaneous melanoma. In our present study, we reported kinesin family member 18B (KIF18B) as a novel contributor in cutaneous melanoma proliferation and metastasis, and it was found to be of great significance in predicting the prognosis of cutaneous melanoma patients. Bioinformatics analysis based on ONCOMINE, The Cancer Genome Atlas, and Genotype‐Tissue Expression database revealed that KIF18B was highly expressed in cutaneous melanoma and remarkably correlated with unfavorable clinical outcomes. Consistently, the results of the quantitative real‐time polymerase chain reaction exhibited that the expression of KIF18B was significantly higher in cutaneous melanoma cell lines than that in normal cells. In vitro, biological assays found that knockdown of KIF18B in cutaneous melanoma cells noticeably repressed cell proliferation, migration, and invasion, while inducing cell apoptosis. Moreover, the protein expression of E‐cadherin was enhanced while the expression of N‐cadherin, vimentin, and Snail was decreased in M14 cells after knocking down KIF18B. In addition, the phosphorylation of phosphoinositide 3‐kinase (PI3K) and extracellular‐signal‐regulated kinase (ERK) was significantly suppressed in M14 cells with silenced KIF18B. Above all, our results indicated that the repression of cutaneous melanoma cell migration and proliferation caused by KIF18B depletion suggested an oncogenic role of KIF18B in cutaneous melanoma, which acts through modulating epithelial‐mesenchymal transition and ERK/PI3K pathway.  相似文献   

17.
RET tyrosine kinase signaling in development and cancer   总被引:9,自引:0,他引:9  
The variety of diseases caused by mutations in RET receptor tyrosine kinase provides a classic example of phenotypic heterogeneity. Gain-of-function mutations of RET are associated with human cancer. Gene rearrangements juxtaposing the tyrosine kinase domain to heterologous gene partners have been found in sporadic papillary carcinomas of the thyroid (PTC). These rearrangements generate chimeric RET/PTC oncogenes. In the germline, point mutations of RET are responsible for multiple endocrine neoplasia type 2 (MEN 2A and 2B) and familial medullary thyroid carcinoma (FMTC). Both MEN 2 mutations and PTC gene rearrangements potentiate the intrinsic tyrosine kinase activity of RET and, ultimately, activate the RET downstream targets. Loss-of-function mutations of RET cause Hirschsprung's disease (HSCR) or colonic aganglionosis. A deeper understanding of the molecular signaling of normal versus abnormal RET activity in cancer will enable the development of potential new treatments for patients with sporadic and inherited thyroid cancer or MEN 2 syndrome. We now review the role and mechanisms of RET signaling in development and carcinogenesis.  相似文献   

18.
Mitochondria form networks. Formation of mitochondrial networks is important for maintaining mitochondrial DNA integrity and interchanging mitochondrial material, whereas disruption of the mitochondrial network affects mitochondrial functions. According to the current view, mitochondrial networks are formed by fusion of individual mitochondria. Here, we report a new mechanism for formation of mitochondrial networks through KIF5B-mediated dynamic tubulation of mitochondria. We found that KIF5B pulls thin, highly dynamic tubules out of mitochondria. Fusion of these dynamic tubules, which is mediated by mitofusins, gives rise to the mitochondrial network. We further demonstrated that dynamic tubulation and fusion is sufficient for mitochondrial network formation, by reconstituting mitochondrial networks in vitro using purified fusion-competent mitochondria, recombinant KIF5B, and polymerized microtubules. Interestingly, KIF5B only controls network formation in the peripheral zone of the cell, indicating that the mitochondrial network is divided into subzones, which may be constructed by different mechanisms. Our data not only uncover an essential mechanism for mitochondrial network formation, but also reveal that different parts of the mitochondrial network are formed by different mechanisms.  相似文献   

19.
The receptor tyrosine kinases (RTKs) RET, MET, and RON all carry the Met(p+1loop)-->Thr point mutation (i.e., 2B mutation), leading to the formation of tumors with high metastatic potential. Utilizing a novel antibody array, we identified constitutive phosphorylation of STAT3 in cells expressing the 2B mutation but not wild-type RET. MET or RON with the 2B mutation also constitutively phosphorylated STAT3. Members of the EPH, the only group of wild-type RTK that carry Thr(p+1loop) residue, are often expressed unexpectedly in different types of cancers. Ectopic expression of wild-type but not Thr(p+1loop)-->Met substituted EPH family members constitutively phosphorylated STAT3. In both RTK(Metp+1loop) with 2B mutation and wild-type EPH members the Thr(p+1loop) residue is required for constitutive kinase autophosphorylation and STAT3 recruitment. In multiple endocrine neoplasia 2B (MEN-2B) patients expressing RET(M918T), nuclear enrichment of STAT3 and elevated expression of CXCR4 was detected in metastatic thyroid C-cell carcinoma in the liver. In breast adenocarcinoma cell lines expressing multiple EPH members, STAT3 constitutively bound to the promoters of MUC1, MUC4, and MUC5B genes. Inhibiting STAT3 expression resulted in reduced expression of these metastasis-related genes and inhibited mobility. These findings provide insight into Thr(p+1loop) residue in RTK autophosphorylation and constitutive activation of STAT3 in metastatic cancer cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号