首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
In our previous study we have demonstrated that treatment of endometrial explants with LH increased 13,14-dihydro-15-ketoprostaglandin F(2alpha) (PGFM) accumulation in pigs. This was particularly visible on Days 14-16 of the estrous cycle. Action of gonadotropin in porcine endometrium appears to be mediated by LH/hCG receptors whose number is dependent on the day of the estrous cycle. In the current study i.v. infusion (1 hour) of hCG (200 IU) performed on Days 10 (n=4) and 12-14 (n=4) of the porcine estrous cycle did not affect plasma PGFM (ng/ml+/-SEM) concentrations. In contrast, administration of hCG on Days 15-17 produced, depending on plasma PGFM level before the infusion period, three different types of response: I. plasma PGFM surge of amplitude 0.62+/-0.15 was observed when the mean basal pre-infusion PGFM plasma level was 0.23+/-0.05 (n=6 gilts); II. the delayed PGFM surge of amplitude 0.62+/-0.15 was determined when basal pre-infusion PGFM level was 0.80+/-0.20 (n=6); and III. lack of PGFM response to hCG was found when basal pre-infusion PGFM level was 1.09+/-0.61 (n=6). Concentrations of plasma PGFM before and after saline infusion did not differ on Days 12-14 and 16 of the estrous cycle. In the next experiment blood samples were collected every 1 hour on Days 12-19 of the estrous cycle to determine concentrations of LH, PGFM and progesterone in four gilts. In particular gilts, plasma peaks of LH closely preceded surges of PGFM in 72.7, 84.6, 75.0 and 66.6 percent, respectively. The highest PGFM surges followed a decline in plasma progesterone concentration. We conclude that the increased PGF(2alpha) metabolite production after hCG infusion during the late luteal phase of the estrous cycle as well as the relationship between plasma LH and PGFM peaks suggest the LH involvement in the elevation of endometrial PGF(2alpha) secretion in pigs, and, in consequence, induction of luteolysis.  相似文献   

2.
Twenty-five normally cyclic Holstein heifers were used to examine the effects of oxytocin on cloprostenol-induced luteolysis, subsequent ovulation, and early luteal and follicular development. The heifers were randomly assigned to 1 of 4 treatments: Group SC-SC (n=6), Group SC-OT (n=6), Group OT-SC (n=6) and Group OT-OT (n=7). The SC-SC and SC-OT groups received continuous saline infusion, while Groups OT-SC and OT-OT received continuous oxytocin infusion (1:9 mg/d) on Days 14 to 26 after estrus. All animals received 500 microg, i.m. cloprostenol 2 d after initiation of infusion (Day 16) to induce luteolysis. Groups SC-OT and OT-OT received oxytocin twice daily (12 h apart) (0.33 USP units/kg body weight, s.c.) on Days 3 to 6 of the estrous cycle following cloprostenol-induced luteolysis, while Groups SC-SC and OT-SC received an equivalent volume of saline. Daily plasma progesterone (P4) concentrations prior to cloprostenol-induced luteolysis and rates of decline in P4 following the induced luteolysis did not differ between oxytocin-infused (OT-OT and OT-SC) and saline-infused (SC-SC and SC-OT) groups (P >0.1). Duration of the estrous cycle was shortened in saline-infused heifers receiving oxytocin daily during the first week of the estrous cycle. In contrast, oxytocin injections did not result in premature inhibition of luteal function and return to estrus in heifers that received oxytocin infusion (OT-OT). Day of ovulation, size of ovulating follicle and time of peak LH after cloprostenol administration for oxytocin and saline-treated control heifers did not differ (P >0.1). During the first 3 d of the estrous cycle following luteal regression, fewer (P <0.01) follicles of all classes were observed in the oxytocin-infused animals. Day of emergence of the first follicular wave in heifers treated with oxytocin was delayed (P <0.05). The results show that continuous infusion of oxytocin during the mid-luteal stage of the estrous cycle has no effect on cloprostenol-induced luteal regression, timing of preovulatory LH peak or ovulation. Further, the finding support that an episodic rather than continuous administration of oxytocin during the first week of the estrous cycle results in premature loss of luteal function. The data suggest minor inhibitory effects of oxytocin on follicular growth during the first 3 d of the estrous cycle following cloprostenol-induced luteolysis.  相似文献   

3.
Friesian heifers (n = 10) were assigned randomly to receive an intravenous injection of estradiol-17 beta (E2; 3 mg) or saline:ethanol vehicle solution (6 ml; 1:1) on day 13 of the estrous cycle. Blood was collected from the jugular vein by venipuncture into heparinized vacutainer tubes at 30 minute intervals for 2 hours (h) preinjection, 10.5 h postinjection and then at 3 h intervals until estrus. Repeated hormone measurements of 15-keto-13,14-dihydro-PGF2 alpha (PGFM) and progesterone (P4) were evaluated by split-plot analysis of variance. Mean concentration of PGFM for the 12.5 h acute sampling phase was 164.1 +/- .14 pg/ml. A treatment by time interaction was detected (P less than .01). After treatment with E2, PGFM concentrations began to increase at approximately 3.5 h, reached a mean peak of 330.4 +/- 44.5 pg/ml (n = 5) at 5.5 +/- .3 h, and returned to basal concentration by 9.0 +/- .6 h. Vehicle treatment did not alter concentrations of PGFM. Injection of E2 on day 13 of the estrous cycle caused luteolysis (P4 concentration less than 1 ng/ml) to occur earlier following injection (96.9 +/- 10.6 h less than 153.6 +/- 17.7 h; P less than 0.05) than did the vehicle control treatment. During the chronic sampling phase of 3 h intervals, 39 of 606 samples (6.4%) were classified as PGFM spikes (323.0 +/- 50.0 pg/ml); 21 (53%) of the spikes occurred at a mean interval of 18.9 +/- 3.86 h before the time of completed luteolysis. Exogenous E2 induced an acute increase in PGFM that may be indicative of uterine PGF2 alpha production. Peaks of PGFM in plasma were temporally associated with luteolysis on a within cow basis.  相似文献   

4.
Luteolysis in the cow depends upon an interaction between prostaglandin F(2alpha) (PGF(2alpha)) and oxytocin. The objectives of our study were 1) to determine oxytocin concentrations in postpartum dairy cows and 2) to identify the temporal relationship between oxytocin and PGF(2alpha) release patterns during luteolysis in normal and abbreviated estrous cycles in the postpartum period. Serum oxytocin and PGF(2alpha) metabolite (PGFM) concentrations from nine cows which had short estrous cycles (< 17 d) were compared with those of six cows which had normal estrous cycles. Serum basal oxytocin concentrations in short estrous cycle cows (23.7 to 31.1 pg/ml) were higher (P<0.05) than those of normal estrous cycle cows (14.6 to 19.8 pg/ml). Oxytocin concentrations increased to peak values in both short and normal cycle cows, during luteolysis. Basal PGFM concentrations (112.2 to 137.4 pg/ml) were higher in cows with short cycle (P<0.05) than in cows with normal cycles (62.9 to 87.5 pg/ml). The increase in PGFM concentrations during luteolysis was significant in both normal cycle and short cycle cows (P<0.05). Increases in serum PGFM concentrations were always associated with increases in serum oxytocin concentrations in normal cycle and short cycle cows and the levels decreased simultaneously before the subsequent estrus. Results support the idea of a positive relationship between PGF(2alpha) and oxytocin concentration during the estrous cycle as well as a possible synergistic action of these hormones in the induction of luteolysis in dairy cattle.  相似文献   

5.
Plasma concentrations of neurophysin I/II (N-I/II), 13,14-dihydro-15-keto-prostaglandin F (PGFM) and progesterone were measured by radioimmunoassay in plasma samples collected from four sheep at hourly intervals between 0700 and 1900 h from Days 12–17 of the estrous cycle. Plasma samples were also collected from a fifth sheep at 2-hourly intervals during Days 12–16 of the cycle. In all sheep, intermittent surges in the plasma concentrations of PGFM and N-I/II occurred during the period of luteal regression. On at least one occasion in each sheep a surge in the plasma concentration of N-I/II was observed coincident with a rise in PGFM concentrations. In general, the highest levels of N-I/II were observed early in luteolysis (Days 13–14 of the cycle) while the corresponding levels of PGFM in plasma were maximal around Day 15 when luteolysis was well advanced.It is suggested from this temporal data that oxytocin, which is considered to be released in association with N-I/II, may play an important role in ovine luteolysis by stimulating the secretion of prostaglandin F from the uterus during Days 13–15 of the estrous cycle.  相似文献   

6.
The effect of intrauterine iodine infusion on estrous cycle length was studied in four cows. The infusions were performed at various times of the estrous cycle: early, middle, late, and during luteolysis. Blood samples were drawn every third hour from the jugular vein. Progesterone and 15-keto-13,14-dihydroprostaglandin F2α (the main metabolite of PGF2α) were measured to monitor luteal activity and prostaglandin release. No release of prostaglandins was observed immediately following intrauterine infusion. Infusion in two cows on day 5 of the estrous cycle resulted in prostaglandin release after 54 and 69 hrs., respectively, followed by luteal regression and the occurrence of estrus at approx. five days after infusion. Infusions performed on days 11 or 12 resulted in prostaglandin release after 147 and 120 hrs., respectively, followed by luteolysis and heat after a 19 day estrous cycle. Infusion in two cows at days 16 and 17 resulted in prostaglandin release after 117 hrs. in both animals. One cycle was prolonged whereas the other cycle was normal in duration. One cow infused on day 20 following the occurrence of the first prostaglandin surge had a cycle length of 26 days, whereas another cow infused on day 20 was not affected because luteolysis was essentially complete by the time of infusion. One animal infused on day 5 did not respond to the iodine infusion. In this animal, however, the corpus luteum was not completely developed prior to the infusion. From this study it can be concluded: 1) intrauterine iodine infusions performed after the development of a progesterone secreting corpus luteum result in prostaglandin release within three to six days with the subsequent occurrence of luteolysis; 2) luteolysis wras in all cases observed in connection with prostaglandin F2α release of the same order of magnitude and duration as during normal luteolysis. kw|Keywords|k]prostaglandin release; k]progesterone; k]cow; k]es trous cycle; k]iodine infusion  相似文献   

7.
The relationships between the effects of single or repeated subcutaneous injections of 25 mg progesterone on luteal function during the estrous cycle in goats as well as the secretion of 20alpha-dihydroprogesterone or 15-keto-13, 14-dihydro-prostaglandin F(2alpha) (PGFM), the major metabolite of PGF(2alpha), were investigated. A single dose of progesterone given on Day 4, 10, or 18 of the estrous cycle increased the concentration of 20alpha-dihydroprogesterone and did not affect the length of the cycle. Each dose of progesterone on Days 2 to 5 increased the concentration of 20alpha-dihydroprogesterone (with a later decrease each day to a nadir which then increased daily) and shortened the cycle. The 20alpha-dihydroprogesterone concentration remained high; when it decreased, the concentration of the luteolytic agent PGFM began to increase. Daily doses of 25 mg 20alpha-dihydroprogesterone given on Days 2 to 5 had no effect on the length of the cycle. These results indicate that during the estrous cycle in goats, progesterone is catabolized to the biologically inactive steroid 20alpha-dihydroprogesterone, but much of the progesterone that is given early in the luteal phase of the estrous cycle causes premature luteolysis by stimulating an increase in the release of PGF(2alpha) . The secretion of 20alpha-dihydroprogesterone may help to regulate progesterone production during the estrous cycle in goats.  相似文献   

8.
Intravenous administration of endotoxin to mares causes synthesis and release of PGF(2alpha); this process affects corpus luteum function, either causing a transient drop in progesterone levels or complete luteolysis with shortening of the estrous cycle. It seems likely that any disease associated with endotoxemia can cause important prostaglandin-mediated effects on reproductive function in the mare.  相似文献   

9.
Two trials were conducted to study the effects of intrauterine infusions of prostaglandin E(2) (PGE(2)) on luteal function in nonpregnant gilts. Cannulae were surgically implanted on day 9 postestrus into the lumen of each horn with a cephalic vein cannula inserted for collection of peripheral blood. Intrauterine infusions of 0, 25, 75 or 200 mug of PGE(2) were initiated at 0900 h on day 12 and administered thereafter every 12 hr until estrus or day 22 in the first trial. The second trial protocol included an increase in the dose of PGE(2) administered as well as the frequency of infusion. Infusion of 0, 200, 300 or 400 mug PGE(2) was begun at 0300 h on day 12 and continued every 6 hr until estrus or day 22. Cephalic plasma samples for progesterone analysis were collected every six hours from 0300 h on day 11 to 2100 h on day 26 in both trials. In Trial 1 mean plasma progesterone concentrations for all treatments were not different (P>0.05) from the controls on any given day of the estrous cycle. Interestrous interval was unaffected by intrauterine infusion of PGE(2). The mean plasma progesterone concentrations for all treatments were not different (P>0.05) from the controls on days 11-18 of the estrous cycle in Trial 2. However, plasma progesterone concentrations for the 200-mug and 300-mug PGE(2) groups appeared to be greater than the controls on days 14 and 15, indicating a possible delay in the decline of progesterone for these groups. The mean plasma progesterone concentrations for the treatment groups were lower (P<0.05) than the controls on days 20-26 of the cycle. treatment cycle length did not differ (P>0.05) from previous cycle length; thus treatment with PGE(2) had no effect on interestrous interval. PGE(2) may have retarded the decline of progesterone secretion by the corpus luteum in some cases, but at these dosages and frequencies of administration PGE(2) was ineffective in prolonging luteal maintenance.  相似文献   

10.
There is a well-documented increase in luteolytic failure, resulting in spontaneously prolonged corpus luteum (SPCL) function, during estrous cycles of horses in autumn. The cause of this phenomenon may be due to seasonal alterations in PGF and/or in prolactin (PRL) secretion around luteolysis. To investigate this, progesterone (P4), 13, 14-dihydro, 15-keto PGF (PGFM) and PRL concentrations were compared between summer and autumn estrous cycles during natural luteolysis and luteolysis induced by benign uterine stimulation. A single estrous cycle from mares in June–July (n = 12) was compared to multiple estrous cycles from these 12 mares plus 8 additional mares in September through December. Reproductive behavior was monitored by bringing a stallion in close proximity to the mare and ovarian events by ultrasonography. Blood was collected via jugular cannula every 6 h from d 13 to 17 post-ovulation in untreated control mares (n = 8 summer, n = 9 autumn). In treated mares, blood collection occurred at 0, 15, 30, 45, 60, 90, 120, 180 and 240 min followed by 6 h intervals for a total of 5 d following intrauterine saline infusion on d 7 (n = 4 summer, n = 11 autumn). Mares failing to return to estrus for 30 d received intrauterine saline and the described intensive blood sampling protocol on d 30. Progesterone and PRL were determined on daily samples and PGFM on frequent plasma collections by RIA. Duration of ovarian luteal and follicular phases, P4 and PRL concentrations and PGFM secretion around luteolysis were compared between treatments and seasons by ANOVA. Mean P4 declined from June to December in all groups. Pulses of PGFM were detected on d 13–17 in controls and d 7–11 in saline-infused mares. Pulse patterns were not different between groups. The incidence of SPCL increased during autumn in the control group. PGFM pulses were absent on d 13–17 in mares with SPCL, but PGFM pulses could be induced in these mares by saline infusion at d 30. Autumn PGFM profiles were unchanged during spontaneous or saline-induced luteolysis compared with summer. Circulating PRL increased around natural or induced luteolysis. These results provide evidence that changes in luteal function during the autumn transition are not the result of alterations in the ability of the uterus to produce PGF nor due to changed CL sensitivity to PGF. We conclude that seasonal changes in luteolytic function are caused by an alteration in the signal for PGF release.  相似文献   

11.
In Exp. I oxytocin (60 micrograms/100 kg/day) was infused into the jugular vein of 3 heifers on Days 14-22, 15-18 and 16-19 of the oestrous cycle respectively. In Exp. II 5 heifers were infused with 12 micrograms oxytocin/100 kg/day from Day 15 of the oestrous cycle until clear signs of oestrus. Blood samples were taken from the contralateral jugular vein at 2-h intervals from the start of the infusion. The oestrous cycle before and after treatment served as the controls for each animal. Blood samples were taken less frequently during the control cycles. In Exp. III 3 heifers were infused with 12 micrograms oxytocin/100 kg/day for 50 h before expected oestrus and slaughtered 30-40 min after the end of infusion for determination of oxytocin receptor amounts in the endometrium. Three other heifers slaughtered at the same days of the cycle served as controls. Peripheral concentrations of oxytocin during infusion ranged between 155 and 641 pg/ml in Exp. I and 18 and 25 pg/ml in Exp. II. In 4 our of 8 heifers of Exps I and II, one high pulse of 15-keto-13,14-dihydro-prostaglandin F-2 alpha (PGFM) appeared soon after the start of oxytocin infusion followed by some irregular pulses. The first PGFM pulse was accompanied by a transient (10-14 h) decrease of blood progesterone concentration. High regular pulses of PGFM in all heifers examined were measured between Days 17 and 19 during spontaneous luteolysis. No change in length of the oestrous cycle or secretion patterns of progesterone, PGFM and LH was observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Twenty prepubertal Holstein heifers were utilized to assess plasma 13, 14-dihydro-15-keto-prostaglandin F(2)alpha (PGFM), serum progesterone (P(4)) and estradiol-17beta (E(2)) concentrations as well as the E(2):P(4) ratio during the onset of puberty in cattle. All animals were maintained as a group along with a sterile marker bull to assist in the detection of estrus. Upon detection of the first estrus (Day=O), daily blood samples were collected from a jugular vein until the heifers had completed 3 estrous cycles. The average body weight and age at first estrus were 247.6+/-4.8 kg and 304.0+/-7.5 days, respectively. Frequency of abnormal length estrous cycles was greater (P<0.02) during the first (40%) and second (35%) cycles than during the third estrous cycle (0%). All heifers had normal cycle lengths (18 to 24 days) by the third estrous cycle. Serum P(4) was greater during the third cycle (P<0.05) from Day 10 to Day 4 before the next estrus compared with the same period of the first estrous cycle. Serum E(2) did not peak until the day of estrus in the first cycle, whereas E(2) reached a maximal level 2 days before estrus in the third estrous cycle. Serum E(2) was higher (P<0.0001) 2 days before estrus in the third cycle than in the first estrous cycle. Plasma PGFM reached maximum concentrations 3 days before estrus in the third cycle compared with 1 day before estrus at the end of first estrous cycle. As estrus approached during the third cycle, PGFM rose 1 day before E(2) rose and P(4) declined, while the rise in PGFM and E(2) occurred simultaneously, with P(4) declining at the end of the first estrous cycle. During diestrus, the E(2):P(4) ratio was lower (P<0.07) in the third cycle than in the first, but it was higher (P<0.04) at estrus and 1 day before in the third estrous cycle. These data reveal a high incidence of abnormal length estrous cycles during the first two estrous cycles of the peripubertal period, and demonstrate anomalies in uterine and ovarian endocrine activity during the peripubertal period in cattle.  相似文献   

13.
The purpose of this experiment was to determine if intramammary inflammation during the periovulatory period affects the occurrence of ovulation in lactating dairy cows. Ten lactating, cyclic, Holstein dairy cows received 2 injections of prostaglandin F2alpha at eleven-day intervals, to synchronize luteolysis. The day of the second injection was designated as day 0. Ovulation was anticipated to occur 3-5 days later (on days 3-5). Beginning at the morning milking on day 1, cows received intramammary infusions of either Escherichia coli endotoxin (10 microg; n=5) or infusion vehicle (pyrogen free Hank's balanced salt solution; n=5) into 2 quarters immediately after milking. The same quarters were infused after each milking through day 4. Venous blood samples were collected daily from day -1 through 13 for determination of progesterone to monitor luteolysis and formation of a new corpus luteum. Blood samples were also collected at 4-h intervals (days -1 to 2), then at 2-h intervals (days 2 to 5) to measure concentrations of luteinizing hormone. Ovaries were examined ultrasonographically on days -1 through 5 and on day 12 to monitor follicular growth and formation of the corpus luteum. Collectively, these observations were used to determine if and when ovulation occurred. Intramammary infusion of E. coli endotoxin induced an immediate increase in the concentration of somatic cells in milk from treated quarters. However, this treatment had no effect on the occurrence or timing of ovulation. Based on ultrasonography and concentrations of progesterone, four of five cows in each treatment group appeared to have ovulated. Preovulatory surges of LH were detected within the intensive bleeding periods for three cows in each treatment group. The magnitude of the LH surge was reduced in cows receiving endotoxin.  相似文献   

14.
The present study was developed to determine if administration of progesterone, early in the estrous cycle of the cow, stimulated an advanced pulsatile release of PGF2 alpha from the uterine endometrium resulting in a decreased interestrous interval. Twenty-three cyclic beef cows were randomly assigned to receive either sesame oil or progesterone (100 mg) on Day 1, 2, 3 and 4 of the estrous cycle. Peripheral plasma concentrations of progesterone and the metabolite of prostaglandin F2 alpha, 15-keto-13,14-dihydro-prostaglandin F2 alpha (PGFM) were measured by radioimmunoassay. Administration of exogenous progesterone increased peripheral plasma concentration of progesterone in treated (3.67 ng/ml) compared to control (1.28 ng/ml) cows from Day 2 through 5 of the estrous cycle. Progesterone administration shortened the interestrous interval (16.7 d) compared to controls (21.6 d). The shortened interestrous intervals in treated cows resulted from an earlier decline in peripheral plasma progesterone. Decline of peripheral plasma progesterone concentrations is coincident with an increased pulsatile release of PGFM in both progesterone treated and control cows. Results indicate that administration of exogenous progesterone stimulates an earlier maturation of endometrial development, causing an advanced release of PGF2 alpha which shortens the interestrous interval of the cow.  相似文献   

15.
Progesterone was administered in pulses to 12 dairy heifers from days 17.5 to 22.5 post-estrus in order to determine its ability to modify secretion of PGF2 alpha around the time of luteolysis. Control heifers exhibited pulses of PGFM concomitant with a sharp decline in progesterone concentrations and thus these pulses were temporally associated with luteolysis. Additional pulses of PGFM were observed in heifers receiving exogenous progesterone, but these were not statistically predictable by either dose of progesterone (50 or 100 micrograms) or time of administration (3 or 6 hour intervals). However, all heifers (4/4) treated with progesterone at 3 hour intervals had additional pulses of PGFM as compared to only one heifer (1/4) treated at 6 hour intervals. When pulses of PGFM were induced by exogenous progesterone there was a substantial lag time between the initiation of progesterone treatment and their occurrence. The limited response to progesterone administration and the lack of synchrony is not consistent with an ability of exogenous progesterone to directly stimulate secretion of PGF2 alpha at the time of luteolysis.  相似文献   

16.
The aim of this study was to determine the effect of intrauterine Escherichia coli infusion on the patterns of plasma LH, prolactin, progesterone, androstenedione, testosterone, oestrone, oestradiol-17beta, cortisol and 13,14-dihydro-15-keto-prostaglandin F2alpha (PGFM) in gilts during the oestrous cycle. On day 4 of the oestrous cycle (day 0), 25 mL of saline or 25 mL of Escherichia coli suspension, containing 10(7) colony forming units x mL(-1), was infused once into the each uterine horn in group I or II respectively. The control gilts developed a new oestrous cycle at the expected time but not bacteria-treated. Endometritis and vaginal discharge developed in all gilts after Escherichia coli infusion. The administration of Escherichia coli resulted in a reduction of plasma levels of LH, prolactin, oestrone and oestradiol-17beta (P < 0.05-0.001), mainly on days 15-18 after treatment (expected perioestrous period). During this time, the plasma androstenedione level was elevated (P < 0.05-0.001) after bacteria infusion. In the gilts receiving bacteria, progesterone concentration decreased from day 8 after treatment and was low until the end of the study (P < 0.05-0.001). On days 8-12 after bacteria administration, the level of PGFM was higher (P < 0.001) than that found in the control group. These results suggest that the developing inflammatory process of the endometrium in gilts following Escherichia coli infusion significantly affects the pituitary-ovarian axis function as well as prostaglandin production leading to anoestrus.  相似文献   

17.
The objective of this study was to determine if the primary circulating metabolite of PGF2alpha, 13,14-dihydro-15-keto-PGF2alpha (PGFM), is biologically active and would induce luteolysis in nonpregnant mares. On Day 9 after ovulation, mares (n = 7/group) were randomly assigned to receive: 1) saline control, 2) 10 mg PGF2alpha or 3) 10 mg PGFM in 5 mL 0.9% sterile saline i.m. On Days 0 through 16, blood was collected for progesterone analysis. In addition, blood was collected immediately prior to treatment, hourly for 6 h, and then at 12 and 24 h after treatment for progesterone and PGFM analysis; PGFM was measured to verify that equivalent amounts of hormone were administered to PGF2alpha- and PGFM-treated mares. Mares were considered to have undergone luteolysis if progesterone decreased to < or = 1.0 ng/mL within 24 h following treatment. Luteolysis was induced in 0/7 control, 7/7 PGF2alpha-treated, and 0/7 PGFM-treated mares. There was no difference (P>0.1) in the occurrence of luteolysis in control and PGFM-treated mares. More (P<0.001) PGF2alpha-treated mares underwent luteolysis than control or PGFM-treated mares. There was no difference (P>0.1) in progesterone concentrations between control and PGFM-treated mares on Days 10 through 16. Progesterone concentrations were lower (P<0.01) on Days 10 through 14 in PGF2alpha-treated compared with control and PGFM-treated mares. There was no difference (P>0.05) in PGFM concentrations between PGF2alpha- and PGFM-treated mares; PGFM concentrations in both groups were higher (P<0.001) than in control mares. These results do not support the hypothesis that PGFM is biologically active in the mare, since there was no difference in corpora luteal function between PGFM-treated and control mares.  相似文献   

18.
B.E. Seguin 《Theriogenology》1979,11(6):445-452
The effect of estradiol cyclopentylpropionate (EC) on corpus luteum (CL) function in diestrous cows was evaluated. Two doses of EC (4 and 20 mg) were given by intramuscular (IM) injection and one dose of EC (4 mg) was given by intrauterine (IU) infusion. Control cows were treated with physiologic sterile saline (PSS) IU or corn oil IU (negative controls) or prostaglandin F (PGF, 30 mg IM, positive control). A total of 24 cows, four per treatment, were treated on days 8 to 12 of the estrous cycle (day 0 equals day of estrus). Luteal function was monitored by serum progesterone through 96 hours after treatment. A decrease in serum progesterone from pretreatment diestrous concentrations to less than 1.0 ng/ml was considered indicative of luteolysis.Intrauterine injection of PSS and corn oil had no effect on luteal function. Neither IM nor IU administration of EC caused consistent or rapid luteolytic effects. Prostaglandin F consistently induced rapid luteal regression. These results indicate that EC should not be considered luteolytic in the same sense as is PGF.  相似文献   

19.
Concentrations of progesterone, oxytocin and PGFM (pulmonary metabolite of PGF-2 alpha) were measured in plasma from peripheral blood samples collected from 5 fallow does every hour or 2 h for 12-h periods on Days 15-20 inclusive of the oestrous cycle (i.e. luteolysis). For 3 does that exhibited oestrus on Day 21, plasma progesterone concentrations fluctuated between 3 and 10 ng/ml on Days 15-18 inclusive. Thereafter, values declined progressively to attain minimum concentrations of less than 0.05 ng/ml on Day 20. Basal concentrations of plasma oxytocin and PGFM fluctuated between 5 and 20 pg/ml and 10 and 100 pg/ml respectively. Episodic pulses of plasma oxytocin (greater than 300 pg/ml) occurred on Days 15 and 16, whereas pulses of plasma PGFM (greater than 400 pg/ml) occurred on Days 19 and 20. There was little apparent correlation between episodic pulses of the two hormones. For 2 does that exhibited oestrus on Day 22, plasma progesterone concentrations declined to minimum values of 1.0-1.5 ng/ml by Day 20. One of these does showed very high levels of oxytocin secretion throughout the sampling period while the other showed an apparent paucity of oxytocin secretory periods. Two does hysterectomized on Day 13 of their second oestrous cycle failed to exhibit further oestrous cycles. Continual elevation of plasma progesterone concentrations (2-6 ng/ml) for an 8-month period indicated persistence of the corpus luteum after hysterectomy. It is concluded that luteolysis in fallow deer involves episodic secretion of both oxytocin and PGF-2 alpha.  相似文献   

20.
The experimental objective was to evaluate how continuous infusion of oxytocin during the anticipated period of luteolysis in cattle would influence secretion of progesterone, oestradiol and 13,14-dihydro-15-keto-prostaglandin F-2 alpha (PGFM). In Exp. I, 6 non-lactating Holstein cows were infused with saline or oxytocin (20 IU/h, i.v.) from Day 13 to Day 20 of an oestrous cycle in a cross-over experimental design (Day 0 = oestrus). During saline cycles, concentrations of progesterone decreased from 11.0 +/- 2.0 ng/ml on Day 14 to 2.0 +/- 1.3 ng/ml on Day 23; however, during oxytocin cycles, luteolysis was delayed and progesterone secretion remained near 11 ng/ml until after Day 22 (P less than 0.05). Interoestrous interval was 1.6 days longer in oxytocin than in saline cycles (P = 0.07). Baseline PGFM and amplitude and frequency of PGFM peaks in blood samples collected hourly on Day 18 did not differ between saline and oxytocin cycles. In Exp. II, 7 non-lactating Holstein cows were infused with saline or oxytocin from Day 13 to Day 25 after oestrus in a cross-over experimental design. Secretion of progesterone decreased from 6.8 +/- 0.7 ng/ml on Day 16 to less than 2 ng/ml on Day 22 of saline cycles; however, during oxytocin cycles, luteolysis did not occur until after Day 25 (P less than 0.05). Interoestrous interval was 5.9 days longer for oxytocin than for saline cycles (P less than 0.05). In blood samples taken every 2 h from Day 17 to Day 23, PGFM peak amplitude was higher (P less than 0.05) in saline (142.1 +/- 25.1 pg/ml) than in oxytocin cycles (109.8 +/- 15.2 pg/ml). Nevertheless, pulsatile secretion of PGFM was detected during 6 of 7 oxytocin cycles. In both experiments, the anticipated rise in serum oestradiol concentrations before oestrus, around Days 18-20, was observed during saline cycles, but during oxytocin cycles, concentrations of oestradiol remained at basal levels until after oxytocin infusion was discontinued. We concluded that continuous infusion of oxytocin caused extended oestrous cycles, prolonged the secretion of progesterone, and reduced the amplitude of PGFM pulses. Moreover, when oxytocin was infused, pulsatile secretion of PGFM was not abolished, but oestrogen secretion did not increase until oxytocin infusion stopped.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号