首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fgf signaling plays crucial roles in morphogenesis. Fgf19 is required for zebrafish forebrain development. Here, we examined the roles of Fgf19 in the formation of the lens and retina in zebrafish. Knockdown of Fgf19 caused a size reduction of the lens and the retina, failure of closure of the choroids fissure, and a progressive expansion of the retinal tissue to the midline of the forebrain. Fgf19 expressed in the nasal retina and lens was involved in cell survival but not cell proliferation during embryonic lens and retina development. Fgf19 was essential for the differentiation of lens fiber cells in the lens but not for the neuronal differentiation and lamination in the retina. Loss of nasal fate in the retina caused by the knockdown of Fgf19, expansion of nasal fate in the retina caused by the overexpression of Fgf19 and eye transplantation indicated that Fgf19 in the retina was crucial for the nasal-temporal patterning of the retina that is critical for the guidance of retinal ganglion cell axons. Knockdown of Fgf19 also caused incorrect axon pathfinding. The present findings indicate that Fgf19 positively regulates the patterning and growth of the retina, and the differentiation and growth of the lens in zebrafish.  相似文献   

2.
The telencephalon shows the greatest degree of size variation in the vertebrate brain. Understanding the genetic cascade that regulates telencephalon growth is crucial to our understanding of how evolution of the normal human brain has supported such a variation in size. Here, we present a simple and quick approach to analyze this cascade that combines caged-mRNA technology and the use of antisense morpholino oligonucleotides in zebrafish embryos. Lhx2, a LIM-homeodomain protein, and Six3s (Six3b and Six3a), another homeodomain proteins, show very similar expression patterns early in forebrain development, and these are known to be involved in the growth of this part of the brain. The telencephalon of six3b and six3a double morphant (six3 morphant) embryos is markedly reduced in size due to impaired cellular proliferation. Head-specific overexpression of Lhx2 by photoactivation of a caged-lhx2 mRNA completely rescued this size reduction, whereas similar head-specific activation of Six3b could not rescue the knockdown effect of lhx2. In the forebrain of medaka embryos, Six3 facilitates cellular proliferation by sequestration of Geminin from Cdt1, a key component in the assembly of the prereplication complex. Our results suggest that Lhx2 may mediate an alternative or parallel pathway for control of cellular proliferation in the developing forebrain via Six3.  相似文献   

3.
We have investigated fibroblast growth factor (FGF) signaling during the development of the zebrafish pharyngeal dentition with the goal of uncovering novel roles for FGFs in tooth development as well as phylogenetic and topographic diversity in the tooth developmental pathway. We found that the tooth-related expression of several zebrafish genes is similar to that of their mouse orthologs, including both epithelial and mesenchymal markers. Additionally, significant differences in gene expression between zebrafish and mouse teeth are indicated by the apparent lack of fgf8 and pax9 expression in zebrafish tooth germs. FGF receptor inhibition with SU5402 at 32 h blocked dental epithelial morphogenesis and tooth mineralization. While the pharyngeal epithelium remained intact as judged by normal pitx2 expression, not only was the mesenchymal expression of lhx6 and lhx7 eliminated as expected from mouse studies, but the epithelial expression of dlx2a, dlx2b, fgf3, and fgf4 was as well. This latter result provides novel evidence that the dental epithelium is a target of FGF signaling. However, the failure of SU5402 to block localized expression of pitx2 suggests that the earliest steps of tooth initiation are FGF-independent. Investigations of specific FGF ligands with morpholino antisense oligonucleotides revealed only a mild tooth shape phenotype following fgf4 knockdown, while fgf8 inhibition revealed only a subtle down-regulation of dental dlx2b expression with no apparent effect on tooth morphology. Our results suggest redundant FGF signals target the dental epithelium and together are required for dental morphogenesis. Further work will be required to elucidate the nature of these signals, particularly with respect to their origins and whether they act through the mesenchyme.  相似文献   

4.
In cranial skeletal development, the establishment of the ectomesenchymal lineage within the cranial neural crest is of great significance. Fgfs are polypeptide growth factors with diverse functions in development and metabolism. Fgf20b knockdown zebrafish embryos showed dysplastic neurocranial and pharyngeal cartilages. Ectomesenchymal cells from cranial neural crest cells were significantly decreased in Fgf20b knockdown embryos, but cranial neural crest cells with a non-ectomesnchymal fate were increased. However, the proliferation and apoptosis of cranial neural crest cells were essentially unchanged. Fgfr1 knockdown embryos also showed dysplastic neurocranial and pharyngeal cartilages. The present findings indicate that Fgf20b is required for ectomesenchymal fate establishment via the activation of Fgfr1 in zebrafish.  相似文献   

5.
6.
7.
Cardiomelic or heart–hand syndromes include congenital defects affecting both the forelimb and heart, suggesting a hypothesis where similar signals may coordinate their development. In support of this hypothesis, we have recently defined a mechanism by which retinoic acid (RA) signaling acts on the forelimb progenitors to indirectly restrict cardiac cell number. However, we still do not have a complete understanding of the mechanisms downstream of RA signaling that allow for the coordinated development of these structures. Here, we test the hypothesis that appropriate Fgf signaling in the cardiac progenitor field downstream of RA signaling is required for the coordinated development of the heart and forelimb. Consistent with this hypothesis, we find that increasing Fgf signaling can autonomously increase cardiac cell number and non-autonomously inhibit forelimb formation over the same time period that embryos are sensitive to loss of RA signaling. Furthermore, we find that Fgf8a, which is expressed in the cardiac progenitors, is expanded into the posterior in RA signaling-deficient zebrafish embryos. Reducing Fgf8a function in RA signaling-deficient embryos is able to rescue both heart and forelimb development. Together, these results are the first to directly support the hypothesis that RA signaling is required shortly after gastrulation in the forelimb field to temper Fgf8a signaling in the cardiac field, thus coordinating the development of the heart and forelimb.  相似文献   

8.
9.
The epibranchial placodes are cranial, ectodermal thickenings that give rise to sensory neurons of the peripheral nervous system. Despite their importance in the developing animal, the signals responsible for their induction remain unknown. Using the placodal marker, sox3, we have shown that the same Fgf signaling required for otic vesicle development is required for the development of the epibranchial placodes. Loss of both Fgf3 and Fgf8 is sufficient to block placode development. We further show that epibranchial sox3 expression is unaffected in mutants in which no otic placode forms, where dlx3b and dlx4b are knocked down, or deleted along with sox9a. However, the forkhead factor, Foxi1, is required for both otic and epibranchial placode development. Thus, both the otic and epibranchial placodes form in a common region of ectoderm under the influence of Fgfs, but these two structures subsequently develop independently. Although previous studies have investigated the signals that trigger neurogenesis from the epibranchial placodes, this represents the first demonstration of the signaling events that underlie the formation of the placodes themselves, and therefore, the process that determines which ectodermal cells will adopt a neural fate.  相似文献   

10.
11.
NDRG4 is a novel member of the NDRG family (N-myc downstream-regulated gene). The roles of NDRG4 in development have not previously been evaluated. We show that, during zebrafish embryonic development, ndrg4 is expressed exclusively in the embryonic heart, the central nervous system (CNS) and the sensory system. Ndrg4 knockdown in zebrafish embryos causes a marked reduction in proliferative myocytes and results in hypoplastic hearts. This growth defect is associated with cardiac phenotypes in morphogenesis and function, including abnormal heart looping, inefficient circulation and weak contractility. We reveal that ndrg4 is required for restricting the expression of versican and bmp4 to the developing atrioventricular canal. This constellation of ndrg4 cardiac defects phenocopies those seen in mutant hearts of heartstrings (hst), the tbx5 loss-of-function mutants in zebrafish. We further show that ndrg4 expression is significantly decreased in hearts with reduced tbx5 activities. Conversely, increased expression of tbx5 that is due to tbx20 knockdown leads to an increase in ndrg4 expression. Together, our studies reveal an essential role of ndrg4 in regulating proliferation and growth of cardiomyocytes, suggesting that ndrg4 may function downstream of tbx5 during heart development and growth.  相似文献   

12.
13.
During normal forebrain development in vertebrates, rostral neural tissue must be protected from Wnt signals via the actions of locally expressed Wnt antagonistic factors. In zebrafish zygotic oep (Zoep) mutants, forebrain structure is severely disrupted with reduced expression of the Wnt antagonists secreted frizzled related protein1 and dickkopf1. To analyze the temporal effects of Wnt antagonism on forebrain development, we generated transgenic zebrafish that overexpressed the dominant negative form of frizzled8a (DNfz8a) in wild-type and Zoep mutants under the control of a heat-inducible promoter. This model allowed for assessment of the dynamics of Wnt antagonistic signaling during forebrain development. Our results demonstrated that overexpression of DNfz8a in Zoep embryos between 7 and 16 hpf increased putative forebrain region demarcated by anf and distal-less2 expressions. These results suggest that normal forebrain development requires continual Wnt antagonism from the early gastrula to the mid-somitogenesis stage.  相似文献   

14.
The inner ear develops from an ectodermal placode that is specified by inductive signals from the adjacent neurectoderm and underlying mesoderm. In chick, fibroblast growth factor (Fgf)-19 is expressed in mesoderm underlying the presumptive otic placode, and human FGF19 induces expression of otic markers in a tissue explant containing neural plate and surface ectoderm. We show here that mouse Fgf15 is the sequence homolog of chick and human Fgf19/FGF19. In addition, we show that FGF15, like FGF19, is sufficient to induce expression of otic markers in a chick explant assay, suggesting that these FGFs are orthologs. Mouse embryos lacking Fgf15, however, do not have otic abnormalities at E9.5-E10.5, suggesting that Fgf15 is not uniquely required for otic induction or early patterning of the otocyst. To compare FGF15 and FGF19 signaling components and assess where signals potentially redundant with FGF15 might function, we determined the expression patterns of Fgf15 and Fgf19. Unlike Fgf19, Fgf15 is not expressed in mesoderm underlying the presumptive otic placode, but is expressed in the adjacent neurectoderm. Fgfr4, which encodes the likely receptor for both FGF19 and FGF15, is expressed in the neurectoderm of both species, and is also expressed in the mesoderm only in chick. These results suggest the hypotheses that during otic induction, FGF19 signals in either an autocrine fashion to the mesoderm or a paracrine fashion to the neurectoderm, whereas FGF15 signals in an autocrine fashion to the neurectoderm. Thus, the FGFs that signal to the neurectoderm are the best potential candidates for redundancy with FGF15 during mouse otic development.  相似文献   

15.
Tbx1 has been implicated as a candidate gene responsible for defective pharyngeal arch remodeling in DiGeorge/Velocardiofacial syndrome. Tbx1(+/-) mice mimic aspects of the DiGeorge phenotype with variable penetrance, and null mice display severe pharyngeal hypoplasia. Here, we identify enhancer elements in the Tbx1 gene that are conserved through evolution and mediate tissue-specific expression. We describe the generation of transgenic mice that utilize these enhancer elements to direct Cre recombinase expression in endogenous Tbx1 expression domains. We use these Tbx1-Cre mice to fate map Tbx1-expressing precursors and identify broad regions of mesoderm, including early cardiac mesoderm, which are derived from Tbx1-expressing cells. We test the hypothesis that fibroblast growth factor 8 (Fgf8) functions downstream of Tbx1 by performing tissue-specific inactivation of Fgf8 using Tbx1-Cre mice. Resulting newborn mice display DiGeorge-like congenital cardiovascular defects that involve the outflow tract of the heart. Vascular smooth muscle differentiation in the great vessels is disrupted. This data is consistent with a model in which Tbx1 induces Fgf8 expression in the pharyngeal endoderm, which is subsequently required for normal cardiovascular morphogenesis and smooth muscle differentiation in the aorta and pulmonary artery.  相似文献   

16.
The adrenal cortex has a complex vasculature that is essential for growth, tissue maintenance, and access of secreted steroids to the bloodstream. However, the interaction between vasculature and adrenal cortex during early organogenesis remains largely unclear. In this study, we focused on the zebrafish counterpart of adrenal cortex, interrenal tissue, to explore the possible role of endothelium in the development of steroidogenic tissues. The ontogeny of interrenal tissue was found to be tightly associated with the endothelial cells (ECs) that constitute the axial vessels. The early interrenal primordia emerge as two clusters of cells that migrate centrally and converge at the midline, whereas the central convergence was abrogated in the avascular cloche (clo) mutant. Neither loss of blood circulation nor perturbations of vessel assembly could account for the interrenal convergence defect, implying a role of endothelial signaling prior to the formation of axial blood vessels. Moreover, as the absence of trunk endothelium in clo mutant was rescued by the forced expression of SCL, the interrenal fusion defect could be alleviated. We thus conclude that endothelial signaling is involved in the morphogenetic movement of early interrenal tissue.  相似文献   

17.
In the developing vertebrate embryo, proper dorsal-ventral patterning relies on BMP antagonists secreted by the organizer during gastrulation. The BMP antagonist chordin has a complex interaction with BMPs that is governed in part by its interaction with the secreted protein twisted gastrulation (tsg). In different contexts, tsg has activity as either a BMP agonist or as a BMP antagonist. Using morpholino oligonucleotides in Xenopus tropicalis, we show that reducing tsg gene product results in a ventralized embryo, and that tsg morphants specifically lack a forebrain. We provide new evidence that tsg acts as a BMP antagonist during X. tropicalis gastrulation since the tsg depletion phenotype can be rescued in two ways: by chordin overexpression and by BMP depletion. We conclude that tsg acts as a BMP antagonist in the context of the frog gastrula, and that it acts cooperatively with chordin to establish dorsal structures and particularly forebrain tissue during development.  相似文献   

18.
19.
20.
nanos1 is required to maintain oocyte production in adult zebrafish   总被引:1,自引:0,他引:1  
Development of the germline requires the specification and survival of primordial germ cells (PGCs) in the embryo as well as the maintenance of gamete production during the reproductive life of the adult. These processes appear to be fundamental to all Metazoans, and some components of the genetic pathway regulating germ cell development and function are evolutionarily conserved. In both vertebrates and invertebrates, nanos-related genes, which encode RNA-binding zinc finger proteins, have been shown to play essential and conserved roles during germ cell formation. In Drosophila, maternally supplied nanos is required for survival of PGCs in the embryo, while in adults, nanos is required for the continued production of oocytes by maintaining germline stem cells self-renewal. In mice and zebrafish, nanos orthologs are required for PGC survival during embryogenesis, but a role in adults has not been explored. We show here that nanos1 in zebrafish is expressed in early stage oocytes in the adult female germline. We have identified a mutation in nanos1 using a reverse genetics method and show that young female nanos mutants contain oocytes, but fail to maintain oocyte production. This progressive loss of fertility in homozygous females is not a phenotype that has been described previously in the zebrafish and underlines the value of a reverse genetics approach in this model system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号