首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isomers in thioredoxins of spinach chloroplasts   总被引:7,自引:0,他引:7  
We have developed a method for the concomitant purification of several components of the ferredoxin/thioredoxin system of spinach chloroplasts. By applying this method to spinach-leaf extract or spinach-chloroplast extract we separated and purified three thioredoxins indigenous to chloroplasts. The three thioredoxins, when reduced, will activate certain chloroplast enzymes such as fructose-1,6-bisphosphatase and NADP-dependent malate dehydrogenase. Fructose-1,6-bisphosphatase is activated by thioredoxin f exclusively. Malate dehydrogenase is activated by thioredoxin mb and thioredoxin mc in a similar way, and it is also activated by thioredoxin f but with different kinetics. All three thioredoxins have very similar relative molecular masses of about 12,000 but distinct isoelectric points of 6.1 (thioredoxin f), 5.2 (thioredoxin mb) and 5.0 (thioredoxin mc). The amino acid composition as well as the C-terminal and N-terminal sequences have been determined for each thioredoxin. Thioredoxin f exhibits clear differences in amino acid composition and terminal sequences when compared with the m-type thioredoxins. Thioredoxin mb and thioredoxin mc, however, are very similar, the only difference being an additional lysine residue at the N-terminus of thioredoxin mb. Amino acid analyses, terminal sequences, immunological tests and the activation properties of the thioredoxins support our conclusion that thioredoxins mb and mc are N-terminal redundant isomers coming from one gene whereas thioredoxin f is a different protein coded by a different gene.  相似文献   

2.
Chloroplast thioredoxin m from the green alga Chlamydomomas reinhardtii is very efficiently reduced in vitro and in vivo in the presence of photoreduced ferredoxin and a ferredoxin dependent ferredoxin-thioredoxin reductase. Once reduced, thioredoxin m has the capability to quickly activate the NADP malate dehydrogenase (EC 1.1.1.82) a regulatory enzyme involved in an energy-dependent assimilation of carbon dioxide in C4 plants. This activation is the result of the reduction of two disulfide bridges by thioredoxin m, that are located at the N- and C-terminii of the NADP malate dehydrogenase. The molecular structure of thioredoxin m was solved using NMR and compared to other known thioredoxins. Thioredoxin m belongs to the prokaryotic type of thioredoxin, which is divergent from the eukaryotic-type thioredoxins also represented in plants by the h (cytosolic) and f (chloroplastic) types of thioredoxins. The dynamics of the molecule have been assessed using (15)N relaxation data and are found to correlate well with regions of disorder found in the calculated NMR ensemble. The results obtained provide a novel basis to interpret the thioredoxin dependence of the activation of chloroplast NADP-malate dehydrogenase. The specific catalytic mechanism that takes place in the active site of thioredoxins is also discussed on the basis of the recent new understanding and especially in the light of the dual general acid-base catalysis exerted on the two cysteines of the redox active site. It is proposed that the two cysteines of the redox active site may insulate each other from solvent attack by specific packing of invariable hydrophobic amino acids.  相似文献   

3.
Physiological functions of thioredoxin and thioredoxin reductase.   总被引:46,自引:0,他引:46  
  相似文献   

4.
5.
Thioredoxin h has been purified to electrophoretic homogeneity from spinach roots using a procedure devised for leaves. The root thioredoxin (h2 form) differed from chloroplast and animal thioredoxins in showing an atypical active site (Cys-Ala-Pro-Cys) but otherwise resembled animal thioredoxin in structure. Sequence data for a total of 72 residues of spinach root thioredoxin h2 (about 69% of the primary structure) showed 43-44% identity with rabbit and rat thioredoxin. Analysis of cell fractions from the endosperm of germinating castor beans revealed that thioredoxin h occurs in the cytosol, endoplasmic reticulum, and mitochondria. The present findings demonstrate a similarity between plant thioredoxin h and animal thioredoxins in structure and intracellular location and raise the question of whether these proteins have similar functions.  相似文献   

6.
All living organisms contain redox systems involving thioredoxins (Trx), proteins featuring an extremely conserved and reactive active site that perform thiol-disulfide interchanges with disulfide bridges of target proteins. In photosynthetic organisms, numerous isoforms of Trx coexist, as revealed by sequencing of Arabidopsis genome. The specific functions of many of them are still unknown. In an attempt to find new molecular targets of Trx in Chlamydomonas reinhardtii, an affinity column carrying a cytosolic Trx h mutated at the less reactive cysteine of its active site was used to trap Chlamydomonas proteins that form mixed disulfides with Trx. The major protein bound to the column was identified by amino-acid sequencing and mass spectrometry as a thioredoxin-dependent 2Cys peroxidase. Isolation and sequencing of its gene revealed that this peroxidase is most likely a chloroplast protein with a high homology to plant 2Cys peroxiredoxins. It is shown that the Chlamydomonas peroxiredoxin (Ch-Prx1) is active with various thioredoxin isoforms, functions as an antioxidant toward reactive oxygen species (ROS), and protects DNA against ROS-induced degradation. Expression of the peroxidase gene in Chlamydomonas was found to be regulated by light, oxygen concentration, and redox state. The data suggest a role for the Chlamydomonas Prx in ROS detoxification in the chloroplast.  相似文献   

7.
Characterization of Escherichia coli-Anabaena sp. hybrid thioredoxins   总被引:2,自引:0,他引:2  
Thioredoxin is a small redox protein with an active-site disulfide/dithiol. The protein from Escherichia coli has been well characterized. The genes encoding thioredoxin in E. coli and in the filamentous cyanobacterium Anabaena PCC 7119 have been cloned and sequenced. Anabaena thioredoxin exhibits 50% amino acid identity with the E. coli protein and interacts with E. coli enzymes. The genes encoding Anabaena and E. coli thioredoxin were fused via a common restriction site in the nucleotide sequence coding for the active site of the proteins to generate hybrid genes, coding for two chimeric thioredoxins. These proteins are designated Anabaena-E. coli (A-E) thioredoxin for the construct with the Anabaena sequence from the N-terminus to the middle of the active site and the E. coli sequence to the C-terminus, and E. coli-Anabaena (E-A) for the opposite construct. The gene encoding the A-E thioredoxin complements all phenotypes of an E. coli thioredoxin-deficient strain, whereas the gene encoding E-A thioredoxin is only partially effective. Purified E-A thioredoxin exhibits a much lower catalytic efficiency with E. coli thioredoxin reductase and ribonucleotide reductase than either E. coli or Anabaena thioredoxin. In contrast, the A-E thioredoxin has a higher catalytic efficiency in these reactions than either parental protein. Reaction with antibodies to E. coli and Anabaena thioredoxins shows that the antigenic determinants for thioredoxin are located in the C-terminal part of the molecule and retain the native conformation in the hybrid proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
A procedure has been developed for the simultaneous purification to apparent homogeneity of chloroplast thioredoxins f and m, and nonchloroplast thioredoxin h, from the green alga Acetabularia mediterranea. In the chloroplast fraction, three thioredoxins were isolated: one f type thioredoxin (Mr 13.4 kDa) and two m type thioredoxin forms (Mr of 12.9 and 13.8 kDa). A Western blot analysis of crude and purified chloroplast thioredoxin preparations revealed that Acetabularia thioredoxin m was immunologically related to its higher-plant counterparts whereas thioredoxin f was not. In the nonchloroplast fraction, a single form of thioredoxin h (Mr 13.4 kDa) and its associated enzyme NADP-thioredoxin reductase (NTR) were evidenced. Acetabularia NTR was partially purified and shown to be an holoenzyme composed of two 33.0-kDa subunits as is the case for other plant and bacterial NTRs. Similarity was confirmed by immunological tests: the algal enzyme was recognized by antibodies to spinach and Escherichia coli NTRs. Acetabularia thioredoxin h seemed to be more distant from higher-plant type h thioredoxins as recognition by antibodies to thioredoxin h from spinach and wheat was weak. The algal thioredoxin h was also slightly active with spinach and E. coli NTRs. These results suggest that in green algae as in the green tissues of higher plants the NADP and chloroplast thioredoxin systems are present simultaneously, and might play an important regulatory role in their respective cellular compartments.  相似文献   

9.
RT-PCR从玉米幼叶总RNA中克隆f型和m型硫氧还蛋白(Thioredoxin, Trx)的编码基因,分别将两种类型Trx活性中心的第二个保守Cys残基定点突变成Ser残基和Ala残基。在大肠杆菌分别重组表达和纯化了含组氨酸标签的Trx及其突变体蛋白,SDS-PAGE显示纯化的蛋白显示一条主带,蛋白分子量分别估计为f型Trx为18kDa,m型Trx为14kDa;纯化的含有SUMO标签融合Trx,用SUMO专一性SUMO水解酶Ulp除去SUMO,等点聚焦电泳显示m型和f型Trx的等电点分别为4.6和5.9。m型Trx比f型Trx有更强的还原胰岛素能力,而突变体蛋白几乎没有还原能力。用Cys残基专一性标记化合物AMS标记Trx,显示野生型Trx有氧化还原态,而突变体蛋白仅有还原态。SDS-PAGE电泳显示固定化的f型Trx突变体比m型Trx突变体捕获的玉米幼叶靶蛋白更具有多样性。  相似文献   

10.
Oxidation-reduction midpoint potentials have been measured for the two chloroplast thioredoxins, thioredoxin f and m , for ferredoxin:thioredoxin reductase (FTR) and for the thioredoxin-regulated enzymes fructose-1,6-bisphosphatase (FBPase), phosphoribulokinase and NADP-malate dehydrogenase. The effects of pH on the midpoint potentials of these chloroplast proteins have been measured so that the effect of the light-induced increase in chloroplast stromal pH on the redox properties of the proteins can be calculated. Spectroscopic measurements on FTR and on an N-ethylmaleimide-modified derivative of the enzyme have been used to elucidate the role of the [4Fe-4S] cluster of FTR during the reduction of the enzyme's active-site disulfide by ferredoxin.  相似文献   

11.
The so-called thioredoxin system, thioredoxin (Trx), thioredoxin reductase (Trr), and NADPH, acts as a disulfide reductase system and can protect cells against oxidative stress. In Saccharomyces cerevisiae, two thioredoxins (Trx1 and Trx2) and one thioredoxin reductase (Trr1) have been characterized, all of them located in the cytoplasm. We have identified and characterized a novel thioredoxin system in S. cerevisiae. The TRX3 gene codes for a 14-kDa protein containing the characteristic thioredoxin active site (WCGPC). The TRR2 gene codes for a protein of 37 kDa with the active-site motif (CAVC) present in prokaryotic thioredoxin reductases and binding sites for NADPH and FAD. We cloned and expressed both proteins in Escherichia coli, and the recombinant Trx3 and Trr2 proteins were active in the insulin reduction assay. Trx3 and Trr2 proteins have N-terminal domain extensions with characteristics of signals for import into mitochondria. By immunoblotting analysis of Saccharomyces subcellular fractions, we provide evidence that these proteins are located in mitochondria. We have also constructed S. cerevisiae strains null in Trx3 and Trr2 proteins and tested them for sensitivity to hydrogen peroxide. The Deltatrr2 mutant was more sensitive to H2O2, whereas the Deltatrx3 mutant was as sensitive as the wild type. These results suggest an important role of the mitochondrial thioredoxin reductase in protection against oxidative stress in S. cerevisiae.  相似文献   

12.
An elevated prevalence of cryptococcal infection is a tendency in low-income countries and constitutes a global public health problem due to factors such as the limited efficacy of antifungal therapy and the AIDS/transplant immunocompromised patients. The fungus Cryptococcus neoformans, implicated in this burden, has had several genes validated as drug targets. Among them, the thioredoxin system is one of the major regulators of redox homeostasis and antioxidant defense acting on protein disulfide bonds. Thioredoxin 1 from C. neoformans (CnTrx1) was cloned and expressed in E. coli and the recombinant protein was purified and crystallized. Functional assay shows that CnTrx1 catalyzes the reduction of insulin disulfide bonds using dithiothreitol, while acting as a monomer in solution. The crystal structure of oxidized CnTrx1 at 1.80 Å resolution presents a dimer in the asymmetric unit with typical Trx-fold. Differences between the monomers in the asymmetric unit are found specially in the loop leading to the Cys-Gly-Pro-Cys active-site motif, being even larger when compared to those found between reduced and oxidized states of other thioredoxins. Although the thioredoxins have been isolated and characterized from many organisms, this new structural report provides important clues for understanding the binding and specificity of CnTrx1 to its targets.  相似文献   

13.
Thioredoxin is a small protein (Mr approximately 12,000) found in all living cells from archaebacteria to humans. The active site is highly conserved and has two redox-active cysteine residues in the sequence: -Trp-Cys-Gly-Pro-Cys-. Besides the function of the reduced form as a powerful protein disulfide oxidoreductase, thioredoxin is known to regulate and activate different target enzymes, i.e. ribonucleotide reductase and the mitochondrial 2-oxoacid dehydrogenase multienzyme complexes. Despite the high degree of homology between thioredoxin proteins from different species, there exists a strong variation in the capability of activating target enzymes. This is yet unexplainable, since there still exists no model of a thioredoxin/receptor complex.On the basis of the recently determined amino acid sequence of the thioredoxin Trx2 from rat mitochondria, which is known to be highly efficient in activating mitochondrial 2-oxoacid dehydrogenase multienzyme complexes, we construct the 3-D structure of this protein by homology modelling methods, using the X-ray structures of thioredoxin from E. coli and human as background information. We analyze the differences in the electrostatic properties of the different protein structures and show, that despite the observed homology between the primary sequences, the dipole moment of the protein structures shows significant variations, which might lead to deviations with respect to the binding to the target protein. Using the AMBER 4.0 program package we further investigate and compare the force field energies of the different thioredoxin structures.Electronic Supplementary Material available.  相似文献   

14.
秦童  黄震 《植物学报》2019,54(1):119-132
硫氧还蛋白(Trx)属于巯基-二硫键氧化还原酶家族, 通过作用于底物蛋白侧链2个半胱氨酸残基之间的二硫键(还原、异构和转移)来调控胞内蛋白的结构和功能。叶绿体Trx系统包括Trx及Trx类似蛋白、铁氧还蛋白(Fd)依赖的硫氧还蛋白还原酶(FTR)和还原型烟酰腺嘌呤二核苷磷酸(NADPH)依赖的硫氧还蛋白还原酶C (NTRC)。除了基质蛋白酶类活性变化及叶绿体蛋白的转运受Trx系统调控之外, 在叶绿体中还存在1条跨类囊体膜的还原势传递途径, 把基质Trx的还原势经跨膜转运蛋白介导, 最终传递给类囊体腔蛋白。FTR和NTRC共同作用维持叶绿体的氧化还原平衡。该文对叶绿体硫氧还蛋白系统的调节机制进行了综述, 同时讨论了叶绿体硫氧还蛋白系统对维持植物光合效率的重要意义。  相似文献   

15.
Thioredoxin derivatives lacking SH groups such as S,S'-dicarboxymethyl-, dicarboxamidomethyl-thioredoxin and cysteine----serine mutant protein are capable of activating chloroplast NADP malate dehydrogenase and fructose-bisphosphatase when added to enzyme assays together with suboptimal amounts of native thioredoxin. The modified thioredoxins alone are inactive. These findings indicate that protein-protein interactions play a significant role in addition to disulfide/thiol exchange reactions in the light-driven regulation of plant enzymes by the various plant thioredoxins.  相似文献   

16.
17.
Present in virtually every species, thioredoxins catalyze disulfide/dithiol exchange with various substrate proteins. While the human genome contains a single thioredoxin gene, plant thioredoxins are a complex protein family. A total of 19 different thioredoxin genes in six subfamilies has emerged from analysis of the Arabidopsis thaliana genome. Some function specifically in mitochondrial and chloroplast redox signaling processes, but target substrates for a group of eight thioredoxin proteins comprising the h subfamily are largely uncharacterized. In the course of a structural genomics effort directed at the recently completed A. thaliana genome, we determined the structure of thioredoxin h1 (At3g51030.1) in the oxidized state. The structure, defined by 1637 NMR-derived distance and torsion angle constraints, displays the conserved thioredoxin fold, consisting of a five-stranded beta-sheet flanked by four helices. Redox-dependent chemical shift perturbations mapped primarily to the conserved WCGPC active-site sequence and other nearby residues, but distant regions of the C-terminal helix were also affected by reduction of the active-site disulfide. Comparisons of the oxidized A. thaliana thioredoxin h1 structure with an h-type thioredoxin from poplar in the reduced state revealed structural differences in the C-terminal helix but no major changes in the active site conformation.  相似文献   

18.
Yeast thioredoxin genes   总被引:14,自引:0,他引:14  
Based on the conserved protein sequence of thioredoxins from yeast and other organisms, two primers were synthesized for polymerase chain reaction of yeast genomic DNA. A 34-base pair (bp) sequence around the active site of yeast thioredoxin was obtained from the polymerase chain reaction product. This specific sequence was used as a probe in Southern blot analysis of total yeast genomic DNA digested with various restriction enzymes. Under conditions of high stringency, more than one DNA species hybridized with the probe, suggesting that more than one gene encodes yeast genomic library. Two Sau3A1 fragments, 825 and 2045 bp, respectively, from two different clones were cloned into pUC13. Sequence analysis of these fragments gave two different open reading frames without introns. The 825-bp Sau3A1 fragment encodes a 103-amino acid residue protein named thioredoxin I. The 2045-bp Sau3A1 fragment contains a sequence encoding thioredoxin II which has 102 amino acid residues. This is the first report of the cloning and sequencing of eukaryotic thioredoxin genes from any source. Both yeast thioredoxins contain a dithiol active site sequence, Cys-Gly-Pro-Cys. Thioredoxins I and II show 78% amino acid sequence identity. They display more amino acid sequence similarity with mammalian thioredoxin than with Escherichia coli and plant chloroplast thioredoxins.  相似文献   

19.
Thioredoxin reductase (TR) and thioredoxin (Trx) define a major cellular redox system that maintains cysteine residues in numerous proteins in the reduced state. Both cytosolic (TR1 and Trx1) and mitochondrial (TR3 and Trx2) enzymes are essential in mammals, but the function of the mitochondrial system is less understood. In this study, we characterized subcellular localization of three TR3 forms that are generated by alternative first exon splicing and that differ in their N-terminal sequences. Only one of these forms resides in mitochondria, whereas the two other isoforms are cytosolic. Consistent with this finding, TR3 did not have catalytic preferences for mitochondrial Trx2 versus cytosolic Trx1, both of which could serve as TR3 substrates. Similarly, TR1 was equally active with Trx1, Trx2, or a bacterial Trx. We generated recombinant selenoprotein forms of TR1 and TR3 and found that these enzymes were inhibited by zinc, but not by calcium or cobalt ions. We further developed a proteomic method for identification of targets of TRs in mammalian cells utilizing affinity columns containing recombinant TR3 forms differing in C-terminal sequences. Using this procedure, we found that Trx1 was the major target of TR3 in both rat and mouse liver cytosol. The truncated form of TR3 lacking selenocysteine was particularly efficient in binding Trx1, consistent with the previously observed role of truncated TR1 in apoptosis. Overall, these data establish that the function of TR3 is not limited to its role in Trx2 reduction.  相似文献   

20.
Contrasting evolutionary histories of chloroplast thioredoxins f and m   总被引:3,自引:0,他引:3  
Fourteen thioredoxin sequences were used to construct a minimal phylogenetic tree by using parsimony. The bacterial thioredoxins clustered into three groups: one containing the photosynthetic purple bacteria, Escherichia and Corynebacterium; a second containing the photosynthetic green bacterium, Chlorobium; and a third containing cyanobacteria. These groupings are similar to those generated from earlier 16s RNA analyses. Animal thioredoxins formed a fourth group. The two thioredoxins of chloroplasts (f and m) showed contrasting phylogenetic patterns. As predicted from prior studies, spinach chloroplast thioredoxin m grouped with its counterparts from cyanobacteria and eukaryotic algae, but, unexpectedly, thioredoxin f grouped with the animal thioredoxins. The results indicate that, during evolution, thioredoxin m of contemporary photosynthetic eukaryotic cells was derived from a prokaryotic symbiont, whereas thioredoxin f descended from an ancestral eukaryote common to plants and animals. The findings illustrate the potential of thioredoxin as a phylogenetic marker and suggest a relationship between the animal and f-type thioredoxins.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号