首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(dI-dC).poly(dI-dC) was studied using vibrational circular dichroism and IR spectroscopy in both the base deformation C = O and symmetric PO2- stretching regions. VCD spectra of this duplex under low salt conditions are consistent with its having a B-form structure. Addition of 5 M NaCl leads to relatively uniform VCD intensity loss which is consistent with loss of helical structure rather than formation of an intermediate state between the B and Z forms. This duplex polymer under high salt conditions with added NiCl2 shows aggregation effects, but its IR and VCD spectra have characteristic features of the Z-form DNA conformation. The cooperative change of backbone and base pair structure upon thermal denaturation is indicated by the simultaneous collapse of the VCD at 65 degrees C in both the PO2- and C = O stretching regions. This study further demonstrates that the VCD bandshape of a specific localized nucleic acid vibrational transition can be a useful indicator of the helical handedness. The empirical conformational interpretations are supported by simulated VCD spectra, which are in excellent agreement with the experimental results, based on dipole coupling calculations.  相似文献   

2.
Simulated ir absorption and vibrational CD (VCD) spectra of four alanine-based octapeptides, each having its main chain constrained to a different secondary structure conformation, were analyzed and compared with experimental results for several different peptides. The octapeptide simulations were based on transfer of property tensors from a series of ab initio calculations for a short L-alanine based segment containing 3 peptide bonds with relative straight phi, psi angles fixed to those appropriate for alpha-helix, 3(10)-helix, ProII-like helix, and beta-sheet-like strand. The tripeptide force field (FF) and atomic polar tensors were obtained with density functional theory techniques at the BPW91/6-31G** level and the atomic axial tensor at the mixed BPW91/6-31G**/HF/6-31G level. Allowing for frequency correction due to the FF limitations, the octapeptide results obtained are qualitatively consistent with experimental observations for ir and VCD spectra of polypeptides and oligopeptides in established conformations. In all cases, the correct VCD sign patterns for the amide I and II bands were predicted, but the intensities did have some variation from the experimental patterns. Predicted VCD changes upon deuteration of either the peptide or side-chains as well as for (13)C isotopic labeling of the amide C=O at specific sites in the peptide chain were computed for analysis of experimental observations. A combination of theoretical modeling with experimental data for labeled compounds leads both to enhanced resolution of component transitions and added conformational applicability of the VCD spectra.  相似文献   

3.
The use of isotopic difference spectra in vibrational optical activity is demonstrated as a supplemental aide in determining the absolute configuration of chiral molecules. It is shown that IR and VCD difference spectra associated with isotopic substitution observed in experimental spectra can be accurately reproduced by density functional theory calculations when the IR and VCD spectra of the original isotopomer are calculated to reasonable accuracy. Results for isotopically substituted nonamethoxy cyclotriveratrylene are presented to illustrate the degree of agreement between measured and calculated IR and VCD difference spectra for several isotopomers of this molecule. These findings highlight the utility of isotoptic substitution as an aide to verifying the determination of absolute configuration using vibrational optical activity.  相似文献   

4.
The vibrational circular dichroism (VCD) spectra of dicarvone ( 1 ), dipinocarvone ( 2 ), and dimenthol ( 3 ) have been recorded in the range 900–3200 cm−1, encompassing the mid-infrared (mid-IR), the CO stretching, and the CH-stretching regions. For compound 3 also, the fundamental and the first overtone OH stretching regions have been investigated by IR/NIR absorption and VCD. Density functional theory (DFT) calculations allow one to interpret the IR and VCD spectra and to confirm the configuration/conformational studies previously conducted by X-ray diffraction. The most intense VCD signals are associated with the vibrational normal modes involving symmetry-related groups close to the CC bond connecting covalently the two molecular units. The vibrational exciton (VCDEC) model is fruitfully tested on the VCD data of compounds 1 and 2 for the spectroscopic regions at ~1700 cm−1, and the local mode model is tested on compound 3 at ~3500 and ~6500 cm−1. For compounds 1 and 2 also, ECD spectra are reported, and the exciton mechanism is tested also there, and connections to the VCDEC model are examined.  相似文献   

5.
Infrared (IR) vibrational circular dichroism (VCD), absorption, and linear dichroism (LD) spectra of four homopolyribonucleotides, poly(rA), poly(rG), poly(rC), and poly(rU), have been calculated, in the 1750-1550 cm-1 spectral region, using the DeVoe polarizability theory. A newly derived algorithm, which approximates the Hilbert transform of imaginaries to reals, was used in the calculations to obtain real parts of oscillator polarizabilities associated with each normal mode. The calculated spectra of the polynucleotides were compared with previously measured solution spectra. The good agreement between calculated and measured polynucleotide spectra indicates, for the first time, that the DeVoe theory is a useful means of calculating the VCD and IR absorption spectra of polynucleotides. For the first time, calculated DeVoe theory VCD and IR absorption spectra of oriented polynucleotides are presented. The calculated VCD spectra for the oriented polynucleotides are used to predict the spectra for such measurements made in the future. The calculated IR spectra for the oriented polynucleotides are useful in interpreting the linear dichroism of the polynucleotides.  相似文献   

6.
Choi JH  Hahn S  Cho M 《Biopolymers》2006,83(5):519-536
Using the constrained MD simulation method in combination with quantum chemistry calculation, Hessian matrix reconstruction, and fragmentation approximation methods, we established a computational scheme for numerical simulations of amide I IR absorption, vibrational circular dichroism (VCD), and 2D IR photon echo spectra of peptides in solution. Six different secondary structure peptides, i.e., alpha-helix, 3(10)-helix, pi-helix, antiparallel and parallel beta-sheets, and polyproline II (P(II)), are considered, and the vibrational characteristic features in their linear and nonlinear spectra in the amide I band region are discussed. Isotope-labeling effects on IR and VCD spectra are notable only for alpha- and pi-helical peptides due to the strong vibrational couplings between two nearest neighboring amide I local oscillators. The amplitudes of difference 2D IR spectra are shown to be strongly dependent on both the extent of mode delocalization and the relative orientation of local mode transition dipoles determined by secondary structure.  相似文献   

7.
The DeVoe polarizability theory is used to calculate vibrational circular dichroism (VCD) and infrared (IR) absorption spectra of four polyribonucleotides: poly(rA) x poly(rU), poly(rU) x poly(rA) x poly(rU), poly(rG) x poly(rC), and poly(rC+) x poly(rI) x poly(rC). This is the first report on the use of the DeVoe theory to calculate VCD, oriented VCD, IR absorption, and IR linear dichroism (LD) spectra of double- and triple-stranded polyribonucleotides. Results are reported for DeVoe theory calculations--within the base-stretching 1750-1550 cm(-1) spectral region--on several proposed multistranded polyribonucleotide geometries. The calculated spectra obtained from these proposed geometries are compared with previously reported measured and calculated VCD and IR spectral results. Base-base hydrogen-bonding effects on the frequencies and magnitudes of the base carbonyl stretching modes are explicitly considered. The good agreements found between calculated and measured spectra are proposed to be further evidence of the usefulness of the DeVoe theory in drawing three-dimensional structural conclusions from measured polyribonucleotide VCD and IR spectra.  相似文献   

8.
The IR and vibrational circular dichroism (VCD) spectra of a model two-stranded beta hairpin are compared to those of a related cyclic two-stranded model, which are both stabilized by DPro- Gly turns. The spectra are compared to ab initio based simulations to support specific assignments of the dominant features and suggest a revised interpretation of the IR and VCD spectra for beta sheet containing proteins.  相似文献   

9.
Ultraviolet absorption (UV) and electronic circular dichroism (ECD) spectra of enantiopure (Z)-8-methoxy-4-cyclooctenone (MCO) were measured in hexane to give a normal single UV absorption band at 298 nm, which is assigned to the carbonyl's pi*<--n transition. Unexpectedly, the ECD spectrum exhibited an apparent couplet pattern with vibrational fine structures. Obviously, the conventional CD exciton coupling mechanism cannot be applied to this bisignate CD signal observed for single-chromophoric MCO. Variable temperature-ECD and vibrational circular dichroism (VCD) spectral measurements, simultaneous UV and ECD spectral band resolution, and density functional theory (DFT) calculations of energy and structure revealed that this apparent CD couplet originates from a rather complicated spectral overlap of more than three conformers of MCO, two of which exhibit mirror-imaged ECD spectra at appreciably deviated wavelengths. In the simultaneous band-resolution analysis, the observed UV and ECD spectra were best fitted to four overlapping bands. Two major conformers were identified by comparing the experimental IR and VCD spectra with the simulated ones, and the other two by comparing the observed UV and ECD spectra with the theoretical ones obtained by time-dependent DFT calculations. It was shown that the combined use of experimental ECD and VCD spectra and theoretical DFT calculations can give a reasonable interpretation for the Cotton effects of the conformationally flexible molecule MCO.  相似文献   

10.
The four-stranded intercalated DNA structure exemplified by the oligonucleotide 5'-d(CCCCCCCCCCCC) (d(C)12) was studied at acidic pH by infrared absorption (IR) and vibrational circular dichroism (VCD) spectroscopy and compared with spectra of the same oligonucleotide at neutral pH to establish distinct VCD markers for the intercalation motif. The most striking feature is a new absorption at 1694 cm(-1) and its corresponding VCD couplet with reversed sign. These are unique for the intercalated structure and have not been observed for other parallel stranded duplexes. Significant characteristic features resulting from the spatial arrangement of the sugar-phosphate backbone are also clearly present for d(C)12 at acidic pH. An extensive network of CH...O bonds twists the backbone such that multiple through-space vibrational coupling occurs among neighbouring sugar-phosphate residues resulting in unusual VCD signals.  相似文献   

11.
The Raman and absorption spectra of tetraphenylporphyrin (TPP) were calculated and compared to experiment. The computation was based on the harmonic molecular force field and electric tensors obtained ab initio at the BPW91/6-31G* level. Good agreement was found between experimental and calculated frequencies and intensities. In order to estimate whether induced optical activity in chiral complexes interferes with the signal of peptide vibrations, the vibrational circular dichroism (VCD) spectra of TPP were simulated. The magnetic field perturbation theory (MFP) and the gauge-invariant atomic orbitals (GIAO) were used for the simulation. Such spectra were compared to theoretical VCD intensities of a model tripeptide as well to experimental spectra of a complex of the peptide and tetrakis(p-sulfonatophenyl)porphyrin (TSPP). No significant contribution to VCD signal from the TPP residue was found in experimental spectra. Thus, possible peptide conformational changes occurring during the complexation can be monitored directly in the amide I frequency region.  相似文献   

12.
The vibrational circular dichroism (VCD) and IR absorption spectra of a dodecamer d(CCTCTGGTCTCC).d(GGAGACCAGAGG) coordinated with cisplatin are distinct compared to those of the dodecamer without cisplatin. Although the intensity of PO(2)/deoxyribose absorptions (1150-850 cm(-1)) increases noticeably relative to those of the carbonyl and ring deformations of the bases (1750-1500 cm(-1)), the VCD spectra differ to a much greater extent. Overlapping positive and negative bands can be assigned relatively easily to individual vibrational modes. The effect of platination on the dodecamer duplex is expressed most prominently in VCD arising solely from the vibrations of the guanines bound to the platinum atom. The effect on the VCD features of other bases leads to minute wavenumber shifts at most. These observations are in agreement with previous NMR and X-ray experiments on the same oligonucleotide. The assignment of the absorption and VCD bands strongly resembles those of the octamer duplex d(CCTGGTCC).d(GGACCAGG) when coordinated with platinum. The spectra of the dodecamer did not indicate any isomerization of the complex with time, as is clearly the case for the octamer.  相似文献   

13.
Morita HE  Kodama TS  Tanaka T 《Chirality》2006,18(10):783-789
Infrared (IR) and vibrational circular dichroism (VCD) spectra of chiral camphor, camphorquinone and camphor-10-sulfonic acid (CSA), known as standard compounds for electronic circular dichroism (ECD) spectroscopy, are measured and their vibrational frequencies, infrared intensities, and rotational strengths are calculated using density functional theory (DFT). The observed IR and VCD spectra of chiral camphor and camphorquinone in carbon tetrachloride solution are reproduced by the DFT calculations, but those of CSA are not. DFT calculations of hydration models, where an anionic CSA specifically binds a few water molecules, are carried out. The average of the simulated VCD spectra in the hydration models is more consistent with the observed spectra. In addition, the wavelengths and dipole and rotational strengths for chiral camphor, camphorquinone, anionic CSA, and the hydration models were calculated by time-dependent DFT. In the region of 280-300 nm, the calculated wavelengths of the ECD bands for chiral camphor and camphorquinone coincide with the observed wavelengths that have been reported, and the calculated wavelengths for the hydration models are closer to the observed wavelengths reported than are those calculated for chiral anionic CSA. Consequently, the analysis combined with VCD and ECD spectroscopy using DFT calculations can elucidate the chirality of optically active molecules, even in an aqueous solution.  相似文献   

14.
H R Wyssbrod  M Diem 《Biopolymers》1992,32(9):1237-1242
IR vibrational CD (VCD) has been observed for the cyclic pentapeptide cyclo-(-Gly-Pro-Gly-D-Ala-Pro-) in solution in CDBr3. The observed VCD spectra do not resemble the VCD features of any of the previously reported peptide secondary structures, such as alpha-helical, "random coil," or sheet structures, and might be due to the beta-turn contained in this molecule. To shed light onto the origin of the observed spectra, VCD intensity calculations, based on the solution and solid-state structures of cyclo-(-Gly-Pro-Gly-D-Ala-Pro-), have been carried out. In addition, calculated VCD data for pure beta-turns are discussed.  相似文献   

15.
L Wang  T A Keiderling 《Biochemistry》1992,31(42):10265-10271
The vibrational circular dichroism (VCD) spectra of several natural DNAs as well as tRNA, poly(dG-dC).poly(dG-dC), and poly(dA-dT).poly(dA-dT) are reported for the base deformation modes in the IR region from 1700 to 1550 cm-1 for the polymers in D2O as well as in high alcohol dehydrating conditions. Spectra of both the B- and A-forms were identified. The A-form DNA VCD, not previously reported, has characteristics that can be found in the VCD spectra of RNAs as would be expected from the similarity of their structures. The VCD is sequence-dependent. Under the dehydrating conditions studied, poly(dA-dT)poly(dA-dT),poly(dA).poly(dT), and a high-A-T fraction natural DNA had a different bandshape from the other DNAs, which was similar to that of poly(rA).poly(rU). Poly(dG-dC).poly-(dG-dC) did not form an A-form in high-alcohol conditions but instead had a VCD spectrum much like that of its high-salt-induced Z-form. Qualitative differences seen experimentally between A- and B-form DNA VCD were suggested by the differences in the coupled oscillator VCD calculated for the two forms.  相似文献   

16.
Vibrational absorption and vibrational circular dichroism (VCD) spectra of valinomycin are measured, in different solvents, in the ester and amide carbonyl stretching regions. The influence of cations, namely Li(+), Na(+), K(+), and Cs(+), in methanol-d(4) solvent is also investigated. Ab initio quantum mechanical calculations using density functional theory and 6-31G* basis set are used to predict the absorption and VCD spectra. A bracelet-type structure for valinomycin that reproduces the experimental absorption and VCD spectra in inert solvents is identified. For the structure of valinomycin in polar solvents, a propeller-type structure was optimized, but further investigations are required to confirm this structure. A symmetric octahedral environment for the ester carbonyl groups in the valinomycin-K(+) complex is supported by the experimental VCD spectra. The results obtained in the present study demonstrate that even for large macrocyclic peptides, such as valinomycin, VCD can be used as an independent structural tool for the study of conformations in solution.  相似文献   

17.
The IR and Near infrared (NIR) vibrational circular dichroism (VCD) spectra of molecules endowed with noncentral chirality have been investigated. Data for fundamental, first, and second overtone regions of (S)-2,3-pentadiene, exhibiting axial chirality, and methyl-d(3) (R)- and (S)-[2.2]paracyclophane-4-carboxylate, exhibiting planar chirality have been measured and analyzed. The analysis of NIR and IR VCD spectra was based on the local-mode model and the use of density functional theory (DFT), providing mechanical and electrical anharmonic terms for all CH-bonds. The comparison of experimental and calculated spectra is satisfactory and allows one to monitor fine details in the asymmetric charge distribution in the molecules: these details consist in the harmonic frequencies, in the principal anharmonicity constants, in both the atomic polar and axial tensors and in their first and second derivatives with respect to the CH-stretching coordinates.  相似文献   

18.
The reliability of vibrational circular dichroism (VCD) spectroscopy to discriminate four diastereomeric cedranol acetates 1 , 2 , 3 , 4 by means of their absolute configuration is examined. The usage of CompareVOA software to quantify comparisons of the measured infrared (IR) and VCD spectra with the corresponding simulated spectra at the B3LYP/DGDZVP and B3PW91/DGDZVP levels of theory for each diastereomer enabled the B3PW91 functional to be qualified as superior to the B3LYP functional for vibrational calculations of 1 , 2 , 3 , 4 . Analogously, a set of quantitative VCD spectra cross‐comparisons of 1 , 2 , 3 , 4 unambiguously distinguished the diastereomers using B3PW91 and failed using B3LYP. Remarkably, quantitative IR spectra cross‐comparisons of 1 , 2 , 3 , 4 using B3PW91 or B3LYP functionals demonstrated that the achiral spectroscopic IR technique is not able to distinguish cedranol acetate diastereomers. VCD comparisons using anisotropy g‐factor values of bands in the 1550–950 cm‐1 region of the spectra were of aid to facilitate visual spectra matching for each diastereomer. Chirality 25:939‐951, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
Vibrational circular dichroism (VCD) spectroscopy was used to investigate the solution conformations of cyclosporins A, C, D, G, and H in CDCl(3), in the amide I and NH/OH-stretching regions, and their corresponding magnesium complexes in CD(3)CN, in the amide I region. VCD spectra are sensitive to the chiral arrangement of Cdbond;O and NH bonds in this cyclic undecapeptide. Calculations of molecular geometries, as well as IR and VCD intensities of model cyclosporin fragments that include the intramolecular hydrogen bonds of the crystal conformations of cyclosporins A and H (CsA and CsH), were carried out at the density functional theory (DFT; BPW91 functional/6-31G* basis set) level. The good agreement between IR and VCD spectra from experiment and DFT calculations provides evidence that the crystal conformation of CsA is dominant in CDCl(3) solution; CsH, however, assumes both an intramolecularly hydrogen-bonded crystal conformation and more open forms in solution. Comparisons of the experimental and calculated VCD spectra in the NH/OH-stretching region of the noncomplexed cyclosporins indicate that conformers with both free and hydrogen-bonded NH and OH groups are present in solution. Differences between the IR and VCD spectra for the metal-free and magnesium-complexed cyclosporins are indicative of strong interactions between cyclosporins and magnesium ions.  相似文献   

20.
The vibrational circular dichroism (VCD) and infrared absorption (IR) spectra of the mismatched octamer oligonucleotides d(CGTGCGCG)(2) (CGT) and d(CGCGTGCG)(2) (CGC) and their complexes with the antitumor drug daunomycin were measured in D(2)O, interpreted, and compared to the octamer d(CGCGCGCG)(2) (CG). The IR spectra of the mismatched octamers in the carbonyl-stretching region are similar to those of the parent CG, whereas the VCD spectra differ in several respects between each other. The main VCD feature due to carbonyl stretching is informative for the mismatches and CG. Vibrational modes in the sugar-phosphate region remain essentially unchanged especially for PO(2) (-) symmetric stretching. Differences between the free and complexed mismatch octamers occurred mainly in the carbonyl-stretching region (1,700-1,600 cm(-1)). The absorption intensity of the C==O peak of G is more prominent for CGC than CGT and resembles CG in this respect. The detailed composition of this doublet is clearly visible, indicating the geometric rearrangement of the base pairs in the presence of the mismatch and upon forming the daunomycin complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号