首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nanomechanical properties of gram-negative bacteria (Shewanella putrefaciens) were investigated in situ in aqueous solutions at two pH values, specifically, 4 and 10, by atomic force microscopy (AFM). For both pH values, the approach force curves exhibited subsequent nonlinear and linear regimens that were related to the progressive indentation of the AFM tip in the bacterial cell wall, including a priori polymeric fringe (nonlinear part), while the linear part was ascribed to compression of the plasma membrane. These results indicate the dynamic of surface ultrastructure in response to changes in pH, leading to variations in nanomechanical properties, such as the Young's modulus and the bacterial spring constant.  相似文献   

2.
The heterogeneity in bacterial surface macromolecules was probed by examining individual macromolecules on the surface of Pseudomonas putida KT2442 via single-molecule force spectroscopy (SMFS). Using an atomic force microscope (AFM), the silicon nitride tip was brought into contact with biopolymer molecules on bacterial cells and these macromolecules were stretched. Force-extension measurements on different bacterial cells showed a range of adhesion affinities and polymer lengths. However, substantial heterogeneity was also observed in the force-extension curves on a single bacterium. A given bacterium has biopolymers that range in size from tens to hundreds of nanometers, with adhesion affinities for the AFM tip from nearly zero to greater than 1 nN. A distribution of polymer sizes was confirmed by size-exclusion chromatography. The freely jointed chain (FJC) model for polymer elasticity was applied to individual force-extension curves in order to estimate the contour lengths and segment lengths of the polymer chains. A range of segment lengths was obtained using the FJC model, from 0.154-0.45 nm in water, 0.154-0.32 nm in 0.01 M KCl, and 0.154-0.65 nm in 0.1 M KCl. The modeling confirms that the heterogeneity in biopolymers is more than a matter of differences in molecular weights, since a range of stiffnesses (segment lengths) was also observed. The effect of salt concentration on biopolymer conformation and adhesion was also explored. While the biopolymers were flexible in all solvents, they were slightly more extended in water than in either of the salt solutions (0.01 and 0.1 M KCl). The adhesion of polysaccharides with the AFM tip was not dependent on salt concentration, because the polymers were not highly charged and heterogeneity overwhelmed any trends that could be observed in adhesion with respect to solution ionic strength. These experiments indicate that heterogeneity in biopolymer properties on an individual bacterium and within a population of bacterial cells may be much greater than previously believed and should be incorporated into models of bacterial adhesion.  相似文献   

3.
Mechanosensitivity in living biological tissue is a study area of increasing importance, but investigative tools are often inadequate. We have developed a noncontact nanoscale method to apply quantified positive and negative force at defined positions to the soft responsive surface of living cells. The method uses applied hydrostatic pressure (0.1-150 kPa) through a pipette, while the pipette-sample separation is kept constant above the cell surface using ion conductance based distance feedback. This prevents any surface contact, or contamination of the pipette, allowing repeated measurements. We show that we can probe the local mechanical properties of living cells using increasing pressure, and hence measure the nanomechanical properties of the cell membrane and the underlying cytoskeleton in a variety of cells (erythrocytes, epithelium, cardiomyocytes and neurons). Because the cell surface can first be imaged without pressure, it is possible to relate the mechanical properties to the local cell topography. This method is well suited to probe the nanomechanical properties and mechanosensitivity of living cells.  相似文献   

4.
The photodynamic antimicrobial chemotherapy as a promising approach for efficiently killing pathogenic microbes is attracting increasing interest. In this study, the cytotoxic and phototoxic effects of hematoporphyrin monomethyl ether (HMME) on the Gram-positive and Gram-negative bacteria were investigated. The cell viability was assessed by colony-forming unit method, and the results indicated that there was no significant cytotoxicity but high phototoxicity in the examined concentrations. Notably, the Gram-positive bacteria were more sensitive to HMME in phototoxicity. Simultaneously, an atomic force microscope (AFM) was used to detect the changes in morphological and nanomechanical properties of bacteria before and after HMME treatment. AFM images indicate that upon photoinactivation, the bacterial surface changed from a smooth, homogeneous architecture to a heterogenous, crackled morphology. The force spectroscopy measurements reveal that the cell wall became less rigid and the Young’s modulus decreased about 50%, whereas the tip-cell-surface adhesion forces increased significantly compared to those of native cells. It was speculated that the photodynamic effects of HMME induced the changes in the chemical composition of the outer membrane and exposure of some proteins inside the envelope. AFM can be utilized as a powerful and sensitive method for studying the interaction between bacteria and drugs.  相似文献   

5.
The ultrastructural and mechanical properties of single resting, activated and apoptosis lymphocyte have been investigated by atomic force microscopy (AFM). Using topographic imaging, we showed that the surface of the resting lymphocyte is smooth, while lymphocyte activation and apoptosis are often accompanied by changes in cell morphology. The apoptosis lymphocyte is rougher than those of the two other morphotypes, and coated with many big particles. Using spatially resolved force–distance curves, we found that the valve of the activated lymphocyte is about two to three times stiffer (Young's modulus of ~20 kPa) than those of the two other morphotypes (5–11 kPa). These results can improve our understanding of the mechanical properties of cells during growth and differentiation.  相似文献   

6.
Recent advances in atomic force microscopy (AFM) have enabled researchers to obtain images of supercoiled DNAs deposited on mica surfaces in buffered aqueous milieux. Confining a supercoiled DNA to a plane greatly restricts its configurational freedom, and could conceivably alter certain structural properties, such as its twist and writhe. A program that was originally written to perform Monte Carlo simulations of supercoiled DNAs in solution was modified to include a surface potential. This potential flattens the DNAs to simulate the effect of deposition on a surface. We have simulated transfers of a 3760-basepair supercoiled DNA from solution to a surface in both 161 and 10 mM ionic strength. In both cases, the geometric and thermodynamic properties of the supercoiled DNAs on the surface differ significantly from the corresponding quantities in solution. At 161 mM ionic strength, the writhe/twist ratio is 1.20-1.33 times larger for DNAs on the surface than for DNAs in solution and significant differences in the radii of gyration are also observed. Simulated surface structures in 161 mM ionic strength closely resemble those observed by AFM. Simulated surface structures in 10 mM ionic strength are similar to a minority of the structures observed by AFM, but differ from the majority of such structures for unknown reasons. In 161 mM ionic strength, the internal energy (excluding the surface potential) decreases substantially as the DNA is confined to the surface. Evidently, supercoiled DNAs in solution are typically deformed farther from the minimum energy configuration than are the corresponding surface-confined DNAs. Nevertheless, the work (Delta A(int)) done on the internal coordinates, which include uniform rotations at constant configuration, during the transfer is positive and 2.6-fold larger than the decrease in internal energy. The corresponding entropy change is negative, and its contribution to Delta A(int) is positive and exceeds the decrease in internal energy by 3.6 fold. The work done on the internal coordinates during the solution-to-surface transfer is directed primarily toward reducing their entropy. Evidently, the number of configurations available to the more deformed solution DNA is vastly greater than for the less deformed surface-confined DNA.  相似文献   

7.
The nanostructure and nanomechanical properties of aggrecan monomers extracted and purified from human articular cartilage from donors of different ages (newborn, 29 and 38 year old) were directly visualized and quantified via atomic force microscopy (AFM)-based imaging and force spectroscopy. AFM imaging enabled direct comparison of full length monomers at different ages. The higher proportion of aggrecan fragments observed in adult versus newborn populations is consistent with the cumulative proteolysis of aggrecan known to occur in vivo. The decreased dimensions of adult full length aggrecan (including core protein and glycosaminoglycan (GAG) chain trace length, end-to-end distance and extension ratio) reflect altered aggrecan biosynthesis. The demonstrably shorter GAG chains observed in adult full length aggrecan monomers, compared to newborn monomers, also reflects markedly altered biosynthesis with age. Direct visualization of aggrecan subjected to chondroitinase and/or keratanase treatment revealed conformational properties of aggrecan monomers associated with chondroitin sulfate (CS) and keratan sulfate (KS) GAG chains. Furthermore, compressive stiffness of chemically end-attached layers of adult and newborn aggrecan was measured in various ionic strength aqueous solutions. Adult aggrecan was significantly weaker in compression than newborn aggrecan even at the same total GAG density and bath ionic strength, suggesting the importance of both electrostatic and non-electrostatic interactions in nanomechanical stiffness. These results provide molecular-level evidence of the effects of age on the conformational and nanomechanical properties of aggrecan, with direct implications for the effects of aggrecan nanostructure on the age-dependence of cartilage tissue biomechanical and osmotic properties.  相似文献   

8.
This paper describes the combined use of atomic force microscopy (AFM) and total internal reflection fluorescence microscopy (TIRFM) to examine the transmission of force from the apical cell membrane to the basal cell membrane. A Bioscope AFM was mounted on an inverted microscope, the stage of which was configured for TIRFM imaging of fluorescently labeled human umbilical vein endothelial cells (HUVECs). Variable-angle TIRFM experiments were conducted to calibrate the coupling angle with the depth of penetration of the evanescent wave. A measure of cellular mechanical properties was obtained by collecting a set of force curves over the entire apical cell surface. A linear regression fit of the force-indentation curves to an elastic model yields an elastic modulus of 7.22 +/- 0. 46 kPa over the nucleus, 2.97 +/- 0.79 kPa over the cell body in proximity to the nucleus, and 1.27 +/- 0.36 kPa on the cell body near the edge. Stress transmission was investigated by imaging the response of the basal surface to localized force application over the apical surface. The focal contacts changed in position and contact area when forces of 0.3-0.5 nN were applied. There was a significant increase in focal contact area when the force was removed (p < 0.01) from the nucleus as compared to the contact area before force application. There was no significant change in focal contact coverage area before and after force application over the edge. The results suggest that cells transfer localized stress from the apical to the basal surface globally, resulting in rearrangement of contacts on the basal surface.  相似文献   

9.
BackgroundEpidemiologic studies suggest that diabetes is associated with an increased risk of cancer. Concurrently, clinical trials have shown that metformin, which is a first-line antidiabetic drug, displays anticancer activity. The underlying mechanisms for these effects are, however, still not well recognized.MethodsMethods based on atomic force microscopy (AFM) were used to directly evaluate the influence of metformin on the nanomechanical and adhesive properties of endothelial and cancer cells in chronic hyperglycemia. AFM single-cell force spectroscopy (SCFS) was used to measure the total adhesion force and the work of detachment between EA.hy926 endothelial cells and A549 lung carcinoma cells. Nanoindentation with a spherical AFM probe provided information about the nanomechanical properties of cells, particularly the length and grafting density of the glycocalyx layer. Fluorescence imaging was used for glycocalyx visualization and monitoring of E-selectin and ICAM-1 expression.ResultsSCFS demonstrated that metformin attenuates adhesive interactions between EA.hy926 endothelial cells and A549 lung carcinoma cells in chronic hyperglycemia. Nanoindentation experiments, confirmed by confocal microscopy imaging, revealed metformin-induced recovery of endothelial glycocalyx length and density. The recovery of endothelial glycocalyx was correlated with a decrease in the surface expression of E-selectin and ICAM-1.ConclusionOur results identify metformin-induced endothelial glycocalyx restoration as a key factor responsible for the attenuation of adhesion between EA.hy926 endothelial cells and A549 lung carcinoma cells.General significanceMetformin-induced glycocalyx restoration and the resulting attenuation of adhesive interactions between the endothelium and cancer cells may account for the antimetastatic properties of this drug.  相似文献   

10.
Hwang G  Kang S  El-Din MG  Liu Y 《Biofouling》2012,28(6):525-538
Extracellular polymeric substances (EPS) significantly influence bacterial adhesion to solid surfaces, but it is difficult to elucidate the role of EPS on bacterial adhesion due to their complexity and variability. In the present study, the effect of EPS on the initial adhesion of B. cepaciaepacia PC184 and P. aeruginosa PAO1 on glass slides with and without an EPS precoating was investigated under three ionic strength conditions. The surface roughness of EPS coated slides was evaluated by atomic force microscopy (AFM), and its effect on initial bacterial adhesion was found to be trivial. X-ray photoelectron spectroscopy (XPS) studies were performed to determine the elemental surface compositions of bacterial cells and substrata. The results showed that an EPS precoating hindered bacterial adhesion on solid surfaces, which was largely attributed to the presence of proteins in the EPS. This observation can be attributed to the increased steric repulsion at high ionic strength conditions. A steric model for polymer brushes that considers the combined influence of steric effects and DLVO interaction forces is shown to adequately describe bacterial adhesion behaviors.  相似文献   

11.
The type III secretion system (T3SS) encoded by Salmonella Pathogenicity Island 2 (SPI2) is essential for virulence and intracellular proliferation of Salmonella enterica. We have previously identified SPI2-encoded proteins that are secreted and function as a translocon for the injection of effector proteins. Here, we describe the formation of a novel SPI2-dependent appendage structure in vitro as well as on the surface of bacteria that reside inside a vacuole of infected host cells. In contrast to the T3SS of other pathogens, the translocon encoded by SPI2 is only present singly or in few copies at one pole of the bacterial cell. Under in vitro conditions, appendages are composed of a filamentous needle-like structure with a diameter of 10 nm that was sheathed with secreted protein. The formation of the appendage in vitro is dependent on acidic media conditions. We analyzed SPI2-encoded appendages in infected cells and observed that acidic vacuolar pH was not required for induction of SPI2 gene expression, but was essential for the assembly of these structures and their function as translocon for delivery of effector proteins.  相似文献   

12.
DNA in living cells is generally processed via the generation and the protection of single-stranded DNA involving the binding of ssDNA-binding proteins (SSBs). The studies of SSB-binding mode transition and cooperativity are therefore critical to many cellular processes like DNA repair and replication. However, only a few atomic force microscopy (AFM) investigations of ssDNA nucleoprotein filaments have been conducted so far. The point is that adsorption of ssDN A-SSB complexes on mica, necessary for AFM imaging, is not an easy task. Here, we addressed this issue by using spermidine as a binding agent. This trivalent cation induces a stronger adsorption on mica than divalent cations, which are commonly used by AFM users but are ineffective in the adsorption of ssDNA-SSB complexes. At low spermidine concentration (<0.3 mM), we obtained AFM images of ssDNA-SSB complexes (E. coli SSB, gp32 and yRPA) on mica at both low and high ionic strengths. In addition, partially or fully saturated nucleoprotein filaments were studied at various monovalent salt concentrations thus allowing the observation of SSB-binding mode transition. In association with conventional biochemical techniques, this work should make it possible to study the dynamics of DNA processes involving DNA-SSB complexes as intermediates by AFM.  相似文献   

13.
Atomic force microscopy (AFM) is a force sensing nanoscopic tool that can be used to undertake a multiscale approach to understand the mechanisms that underlie cell shape change, ranging from the cellular to molecular scale. In this review paper, we discuss the use of AFM to characterize the dramatic shape changes of mitotic cells. AFM-based mechanical assays can be applied to measure the considerable rounding force and hydrostatic pressure generated by mitotic cells. A complementary AFM technique, single-molecule force spectroscopy, is able to quantify the interactions and mechanisms that functionally regulate individual proteins. Future developments of these nanomechanical methods, together with advances in light microscopy imaging and cell biological and genetic tools, should provide further insight into the biochemical, cellular and mechanical processes that govern mitosis and other cell shape change phenomena.  相似文献   

14.
Mechanical stability of single DNA molecules   总被引:10,自引:0,他引:10       下载免费PDF全文
Using a modified atomic force microscope (AFM), individual double-stranded (ds) DNA molecules attached to an AFM tip and a gold surface were overstretched, and the mechanical stability of the DNA double helix was investigated. In lambda-phage DNA the previously reported B-S transition at 65 piconewtons (pN) is followed by a second conformational transition, during which the DNA double helix melts into two single strands. Unlike the B-S transition, the melting transition exhibits a pronounced force-loading-rate dependence and a marked hysteresis, characteristic of a nonequilibrium conformational transition. The kinetics of force-induced melting of the double helix, its reannealing kinetics, as well as the influence of ionic strength, temperature, and DNA sequence on the mechanical stability of the double helix were investigated. As expected, the DNA double helix is considerably destabilized under low salt buffer conditions (相似文献   

15.
Atomic force microscopy (AFM) has emerged as a powerful technique for mapping the surface morphology of biological specimens, including bacterial cells. Besides creating topographic images, AFM enables us to probe both physicochemical and mechanical properties of bacterial cell surfaces on a nanometer scale. For AFM, bacterial cells need to be firmly anchored to a substratum surface in order to withstand the friction forces from the silicon nitride tip. Different strategies for the immobilization of bacteria have been described in the literature. This paper compares AFM interaction forces obtained between Klebsiella terrigena and silicon nitride for three commonly used immobilization methods, i.e., mechanical trapping of bacteria in membrane filters, physical adsorption of negatively charged bacteria to a positively charged surface, and glutaraldehyde fixation of bacteria to the tip of the microscope. We have shown that different sample preparation techniques give rise to dissimilar interaction forces. Indeed, the physical adsorption of bacterial cells on modified substrata may promote structural rearrangements in bacterial cell surface structures, while glutaraldehyde treatment was shown to induce physicochemical and mechanical changes on bacterial cell surface properties. In general, mechanical trapping of single bacterial cells in filters appears to be the most reliable method for immobilization.  相似文献   

16.
Atomic force microscopy (AFM) has emerged as a powerful technique for mapping the surface morphology of biological specimens, including bacterial cells. Besides creating topographic images, AFM enables us to probe both physicochemical and mechanical properties of bacterial cell surfaces on a nanometer scale. For AFM, bacterial cells need to be firmly anchored to a substratum surface in order to withstand the friction forces from the silicon nitride tip. Different strategies for the immobilization of bacteria have been described in the literature. This paper compares AFM interaction forces obtained between Klebsiella terrigena and silicon nitride for three commonly used immobilization methods, i.e., mechanical trapping of bacteria in membrane filters, physical adsorption of negatively charged bacteria to a positively charged surface, and glutaraldehyde fixation of bacteria to the tip of the microscope. We have shown that different sample preparation techniques give rise to dissimilar interaction forces. Indeed, the physical adsorption of bacterial cells on modified substrata may promote structural rearrangements in bacterial cell surface structures, while glutaraldehyde treatment was shown to induce physicochemical and mechanical changes on bacterial cell surface properties. In general, mechanical trapping of single bacterial cells in filters appears to be the most reliable method for immobilization.  相似文献   

17.
The contribution of the intermediate filament (IF) network to the mechanical response of cells has so far received little attention, possibly because the assembly and regulation of IFs are not as well understood as that of the actin cytoskeleton or of microtubules. The mechanical role of IFs has been mostly inferred from measurements performed on individual filaments or gels in vitro. In this study we employ atomic force microscopy (AFM) to examine the contribution of vimentin IFs to the nanomechanical properties of living cells under native conditions. To specifically target and modulate the vimentin network, Rat-2 fibroblasts were transfected with GFP-desmin variants. Cells expressing desmin variants were identified by the fluorescence microscopy extension of the AFM instrument. This allowed us to directly compare the nanomechanical response of transfected and untransfected cells at high spatial resolution by means of AFM. Depending on the variant desmin, transfectants were either softer or stiffer than untransfected fibroblasts. Expression of the non-filament forming GFP-DesL345P mutant led to a collapse of the endogenous vimentin network in the perinuclear region that was accompanied by localized stiffening. Correlative confocal microscopy indicates that the expression of desmin variants specifically targets the endogenous vimentin IF network without major rearrangements of other cytoskeletal components. By measuring functional changes caused by IF rearrangements in intact cells, we show that IFs play a crucial role in mechanical behavior not only at large deformations but also in the nanomechanical response of individual cells.  相似文献   

18.
Bacterial initial adhesion to inert surfaces in aquatic environments is highly dependent on the surface properties of the substratum, which can be altered significantly by the formation of conditioning films. In this study, the impact of conditioning films formed with extracellular polymeric substances (EPS) on bacterial adhesion was investigated. Adhesion of wild type Pseudomonas aeruginosa PAO1 to slides coated with model EPS components (alginate, humic substances, and bovine serum albumin (BSA)) was examined. Surface roughness of conditioning film coated slides was evaluated by atomic force microscopy (AFM), and its effect on the bacterial initial adhesion was not significant. X-ray photoelectron spectroscopy (XPS) studies were performed to determine the elemental surface compositions of bacterial cells and substrates. Results showed that bacterial adhesion to bare slides and slides coated with alginate and humic substances increased as ionic strength increased. Conversely, BSA coating enhanced bacterial adhesion at low ionic strength but hindered adhesion at higher ionic strength. It was concluded that forces other than hydrophobic and electrostatic interactions were involved in controlling bacterial adhesion to BSA coated surfaces. A steric model for polymer brushes that considers the combined influence of steric effects and DLVO interaction forces was shown to adequately describe the observed bacterial adhesion behaviors.  相似文献   

19.
Adhesion of bacteria occurs on virtually all natural and synthetic surfaces and is crucial for their survival. Once they are adhering, bacteria start growing and form a biofilm, in which they are protected against environmental attacks. Bacterial adhesion to surfaces is mediated by a combination of different short- and long-range forces. Here we present a new atomic force microscopy (AFM)-based method to derive long-range bacterial adhesion forces from the dependence of bacterial adhesion forces on the loading force, as applied during the use of AFM. The long-range adhesion forces of wild-type Staphylococcus aureus parent strains (0.5 and 0.8 nN) amounted to only one-third of these forces measured for their more deformable isogenic Δpbp4 mutants that were deficient in peptidoglycan cross-linking. The measured long-range Lifshitz-Van der Waals adhesion forces matched those calculated from published Hamaker constants, provided that a 40% ellipsoidal deformation of the bacterial cell wall was assumed for the Δpbp4 mutants. Direct imaging of adhering staphylococci using the AFM peak force-quantitative nanomechanical property mapping imaging mode confirmed a height reduction due to deformation in the Δpbp4 mutants of 100 to 200 nm. Across naturally occurring bacterial strains, long-range forces do not vary to the extent observed here for the Δpbp4 mutants. Importantly, however, extrapolating from the results of this study, it can be concluded that long-range bacterial adhesion forces are determined not only by the composition and structure of the bacterial cell surface but also by a hitherto neglected, small deformation of the bacterial cell wall, facilitating an increase in contact area and, therewith, in adhesion force.  相似文献   

20.
Atomic-force microscopy (AFM) is an efficient method for studying the surface ultrastructure and nanomechanical properties of biological objects, including microorganisms. A correctly selected method of microorganism immobilization that provides a strong attachment of cells on the surface of a biologically inert substrate and preservation of their native properties is important for AFM scanning in liquid media. Comparative characteristics of methods of microorganism immobilization applied in dynamic AFM studies are discussed in the review. Technologies of mechanical entrapment and chemical binding of cells to a substrate, as well as protein and immunospecific adsorption, are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号