共查询到20条相似文献,搜索用时 15 毫秒
1.
I. Poirier P.-A. Maréchal C. Evrard P. Gervais 《Applied microbiology and biotechnology》1998,50(6):704-709
Escherichia coli and Lactobacillus plantarum were subjected to final water potentials of −5.6 MPa and −11.5 MPa with three solutes: glycerol, sorbitol and NaCl. The water potential decrease was realized either rapidly (osmotic shock) or slowly (20 min) and a difference in cell viability between these conditions was only observed when the solute was NaCl. The cell mortality during osmotic shocks induced by NaCl cannot be explained by a critical volume decrease or by the intensity of the water flow across the cell membrane. When the osmotic stress is realized with NaCl as the solute, in a medium in which osmoregulation cannot take place, the application of a slow decrease in water potential resulted in the significant maintenance of cell viability (about 70–90%) with regard to the corresponding viability observed after a sudden step change to same final water potential (14–40%). This viability difference can be explained by the existence of a critical internal free Na+ concentration. Received: 20 May 1998 / Received revision: 31 July 1998 / Accepted: 31 July 1998 相似文献
2.
Eboigbodin KE Newton JR Routh AF Biggs CA 《Applied microbiology and biotechnology》2006,73(3):669-675
The hypothesis tested in this paper is that quorum sensing influences the microbial surface electrokinetic properties. Escherichia coli MG1655 and MG1655 LuxS- mutant (lacking quorum-sensing gene for Autoinducer synthase AI-2) were used for this study. AI-2 production (or lack of) in both strains was analyzed using the Vibrio harveyi bioassay. The levels of extracellular AI-2 with and without glucose in the growth medium were consistent with previously published work. The surface electrokinetic properties were determined for each strain of E. coli MG1655 by measuring the electrophoretic mobility using a phase amplitude light-scattering (PALS) Zeta potential analyser. The findings show that the surface charge of the cells is dependent upon the stage in the growth phase as well as the ability to participate in quorum sensing. In addition, significant differences in the electrophoretic mobility were observed between both strains of E. coli. These findings suggest that quorum sensing plays a significant role in the surface chemistry of bacteria during their growth. 相似文献
3.
L.M. REESE, K.O. CUTLER AND C.E. DEUTCH. 1996. The sensitivity of wild-type Escherichia coli K-12 to a series of proline analogues was determined in cultures containing increasing concentrations of NaCl under both aerobic and anaerobic conditions. The bacteria were most sensitive to L-azetidine-2–carboxylate and L-thiazolidine-4–carboxylate. The minimum inhibitory concentrations for these compounds decreased progressively during osmotic stress, but the bacteria were much more sensitive to these proline analogues under aerobic conditions than during anaerobiosis. The reduced sensitivity under anaerobic conditions did not reflect degradation of the compounds in the culture medium. Since both urine and medullary renal tissue contain relatively low oxygen concentrations, these results raise doubts about the potential use of proline or glycine betaine analogues in treating urinary tract infections. 相似文献
4.
James L. Botsford 《FEMS microbiology letters》1990,72(3):355-360
Two strains of Escherichia coli isogenic except for the cya (adenylate cyclase) allele were grown with [35S]methionine and cysteine in minimal defined glucose medium and in this medium with 600 mM NaCl to induce osmotic stress. Cells were grown for approximately two generations. The labeled proteins were separated by 2-dimensional electrophoresis and were quantified fluorographically. Of the 263 major proteins (proteins incorporating 0.10% or more of the total radioactivity) in the cya+ control culture, radioactivity in 41 proteins was at least ten times greater in cells grown with osmotic stress. Six of these individual proteins each accounted for 1.0% or more of the total radioactive label in the cells. Conversely, radioactivity in 31 major proteins appeared to decrease at least ten times when cells grew with osmotic stress. These data indicate that the response of the bacterium to osmotic stress involves induction of some proteins and repression of others. 61% of the proteins that appear to be stimulated by salt stress were found in both strains indicating there is no obligatory requirement for cAMP. 相似文献
5.
6.
When transport of polyamines in Escherichia coli was examined, putrescine excretion was observed under two different physiological conditions: (i) strictly correlated to growth and (ii) following a hyperosmotic shock. Spermidine was not excreted. Characterization of a deletion mutant showed that PotE is not involved in these transport processes. 相似文献
7.
The biosynthesis of trehalose has been previously shown to serve as an important osmoprotectant and stress protectant in Escherichia coli. Our results indicate that overproduction of trehalose (integrated lacI-Ptac-otsBA) above the level produced by the native regulatory system can be used to increase the growth of E. coli in M9-2% glucose medium at 37 degrees C to 41 degrees C and to increase growth at 37 degrees C in the presence of a variety of osmotic-stress agents (hexose sugars, inorganic salts, and pyruvate). Smaller improvements were noted with xylose and some fermentation products (ethanol and pyruvate). Based on these results, overproduction of trehalose may be a useful trait to include in biocatalysts engineered for commodity chemicals. 相似文献
8.
Regulation of envelope protein composition during adaptation to osmotic stress in Escherichia coli. 总被引:9,自引:13,他引:9
下载免费PDF全文

Adaptation to osmotic stress alters the amounts of several specific proteins in the Escherichia coli K-12 envelope. The most striking feature of the response to elevated osmolarity was the strong induction of a periplasmic protein with an Mr of 31,000. This protein was absent in mutants with lambda plac Mu insertions in an osmotically inducible locus mapping near 58 min. The insertions are likely to be in proU, a locus encoding a transport activity for the osmoprotectants glycine betaine and proline. Factors affecting the extent of proU induction were identified by direct examination of periplasmic proteins on sodium dodecyl sulfate gels and by measuring beta-galactosidase activity from proU-lac fusions. Expression was stimulated by increasing additions of salt or sucrose to minimal medium, up to a maximum at 0.5 M NaCl. Exogenous glycine betaine acted as an osmoregulatory signal; its addition to the high-osmolarity medium substantially repressed the expression of the 31,000-dalton periplasmic protein and the proU-lac+ fusions. Elevated osmolarity also caused the appearance of a second periplasmic protein (Mr = 16,000), and severe reduction in the amounts of two others. In the outer membrane, the well-characterized repression of OmpF by high osmolarity was observed and was reversed by glycine betaine. Additional changes in membrane composition were also responsive to glycine betaine regulation. 相似文献
9.
Frank Ebel Till Podzadel Manfred Rohde reas U. Kresse Sylvia Krämer Christina Deibel Carlos A. Guzmán & Trinad Chakraborty 《Molecular microbiology》1998,30(1):147-161
Shiga toxin-producing Escherichia coli (STEC) induce so-called attaching and effacing lesions that enable the tight adherence of these pathogens to the gut epithelium. All of the genes necessary for this process are present in the locus of enterocyte effacement, which encodes a type III secretion system, the secreted Esp proteins and the surface protein intimin. In this study we sequenced the espA gene of STEC, generated and characterized a corresponding deletion mutant and raised EspA-specific monoclonal antibodies to analyse the functional role of this protein during infection. EspA was detected in often filament-like structures decorating all bacteria that had attached to HeLa cells. These appendages were especially prominent on bacteria that had not yet induced the formation of actin pedestals, indicating that they mediate the initial contact of STEC to their target cells. Consistently, a deletion of the espA gene completely abolished the capacity of such STEC mutants to bind to HeLa cells and to induce actin rearrangements. Surface appendages similar to those described in this study are also formed by Pseudomonas syringae and may represent a structural element common to many bacterial pathogens that deliver proteins into their target cells via a type III secretion system. 相似文献
10.
A L Koch 《Journal of bacteriology》1984,159(3):919-924
The immediate response of growing Escherichia coli to changing external osmotic pressure was studied with stopped-flow turbidimetric measurements with a narrow-beam spectrophotometer. It is shown theoretically that in such a photometer rod-shaped bacteria have an apparent absorbance which is proportional to the inverse of the surface area. The apparent optical density, corrected for effects of alteration of the index of refraction of the medium, increased continuously as the external osmotic pressure was raised. Because of the short time scale of the measurements, the turbidity increases could result either from shrinkage of the cells or from plasmolysis, or both, but not from growth or metabolic adaptation. With low concentrations of pentose such that the external osmotic pressure was not greater than that inside the cells, plasmolysis would not occur and, consequently, only shrinkage of the previously stretched sacculus remains to account for the observed optical effects. Taking the osmotic pressure of the growing cells as 5 atmospheres (506 kPa), the turbidity changes correspond to the murein fabric having been stretched 20% beyond its unstressed equilibrium area during growth under the conditions used. 相似文献
11.
We investigated the dynamics of the SOS response induction and the frequency of reversions induced by the monofunctional alkylating compound N-methyl-N'-nitro-N-nitrosoguanidine in Escherichia coli cells exposed to osmotic stress for 1 h. During the stress treatment of the wild-type cultures adapted and not adapted to the alkylating agent, the maximum SOS response values and induced reversion frequencies were recorded twice. The SOS response values and induced reversion frequencies remained unchanged during the whole period after attaining the maximum values in adapted and nonadapted cells carrying a mutation in the excision repair gene. Presumably, the SOS mutagenesis mechanisms are turned on in the cells with an inactivated excision repair system earlier than in wild-type cells. 相似文献
12.
Nonspecific inhibition of proline dehydrogenase synthesis in Escherichia coli during osmotic stress 总被引:2,自引:0,他引:2
C E Deutch J M Hasler R M Houston M Sharma V J Stone 《Canadian journal of microbiology》1989,35(8):779-785
L-Proline, which is accumulated by Escherichia coli during growth in media of high osmolality, also induces the synthesis of the enzyme degrading it to glutamate. To determine if proline catabolism is inhibited during osmotic stress, proline utilization and the formation of proline dehydrogenase were examined in varying concentrations of NaCl and sucrose. Although the specific growth rate of E. coli with proline as the sole nitrogen source diminished as the solute osmolality increased, a comparable reduction in growth rate occurred with ammonium as the primary nitrogen source. Proline catabolism, as measured in whole cells by the conversion of [14C]proline to [14C]glutamate, was only slightly inhibited by solute osmolalities up to 1.0 osmol/kg; more than 50% of the initial activity was still found at 2.0 osmol/kg. By contrast, the specific activity of proline dehydrogenase in bacteria grown in the presence of added solutes decreased to less than 20% of the control level. This reduction was related to a lower rate of synthesis, but was independent of genes currently known to be involved in osmoregulation or proline metabolism. The specific activities of tryptophanase, beta-galactosidase, and histidinol dehydrogenase were also reduced under similar growth conditions. These results indicate that while proline catabolism is not directly inhibited by high solute concentrations, prolonged exposure to osmotic stress leads to its reduction as part of a more general metabolic response. 相似文献
13.
Bacterial hemoglobins and flavohemoglobins for alleviation of nitrosative stress in Escherichia coli
Frey AD Farrés J Bollinger CJ Kallio PT 《Applied and environmental microbiology》2002,68(10):4835-4840
Escherichia coli MG1655 cells expressing novel bacterial hemoglobin and flavohemoglobin genes from a medium-copy-number plasmid were grown in shake flask cultures under nitrosative and oxidative stress. E. coli cells expressing these proteins display enhanced resistance against the NO(.) releaser sodium nitroprusside (SNP) relative to that of the control strain bearing the parental plasmid. Expression of bacterial hemoglobins originating from Campylobacter jejuni (CHb) and Vitreoscilla sp. (VHb) conferred resistance on SNP-challenged cells. In addition, it has been shown that NO(.) detoxification is also a common feature of flavohemoglobins originating from different taxonomic groups and can be transferred to a heterologous host. These observations have been confirmed in a specific in vitro NO(.) consumption assay. Protein extracts isolated from E. coli strains overexpressing flavohemoglobins consumed authentic NO(.) more readily than protein extracts from the wild-type strain. Oxidative challenge to the cells evoked nonuniform responses from the various cell cultures. Improved oxidative-stress-sustaining properties had also been observed when the flavohemoglobins from E. coli, Klebsiella pneumoniae, Deinococcus radiodurans, and Pseudomonas aeruginosa were expressed in E. coli. 相似文献
14.
Stimulation of glutamine transport by osmotic stress in Escherichia coli K-12. 总被引:1,自引:0,他引:1
下载免费PDF全文

Osmotic stress produced by high concentrations of sucrose stimulated the high-affinity transport of glutamine in Escherichia coli cells. Glutamine transport via a low-affinity system was not affected. Osmotic stress produced by NaCl, in contrast, inhibited the transport of glutamine and some other amino acids. Maltose transport was strongly inhibited by osmotic stress. 相似文献
15.
16.
17.
Twenty-nine strains of Escherichia coli that adhere to HEp-2 cells with a'stacked brick' pattern (EAggEC), and four nonadherent control strains, wereexamined for the ability to hybridize with gene probes for aggregative (AA) and diffuse (DA)HEp-2 cell adhesion phenotypes. These strains were also tested for the ability to express an 18 kDa membrane-associated outer- membrane protein (MAP), to agglutinate erythrocytes, and toproduce a pellicle during broth culture. Thirteen of the 29 HEp-2 adherent strains of E. coli hybridized with the gene probes for both AA and DA, and expressed an 18 kDa outermembrane protein (OMP) which was antigenically related to the MAP expressed by strains of E. coli O126:H27. The strains that did not carry the additional DA genes did notexpress an 18 kDa OMP. Although strains of EAggEC share the ability to adhere to HEp-2 cellswith a stacked brick pattern, these strains exhibit a diverse range of physical and biochemicalproperties. From the results of this study, it was concluded that currently, the possession ofEAggEC genes or the ability to adhere to HEp-2 cells in a stacked brick formation, remain theonly reliable means of identifying EAggEC. 相似文献
18.
The dependence of Escherichia coli membrane H+ conductance (Gm H+) with a steady-state pH in the presence and absence of an external source of energy (glucose) was studied, when cells were grown under anaerobic and aerobic conditions, with an assay pH of 7.0. Energy-dependent H+ efflux by intact cells growing at pH of 4.5-7.5 was also measured. The elevated H+ conductance and lowered H+ flux were shown for cells growing in acidic pH and under anaerobic conditions, when bacteria were fermenting glucose. The atp mutant, which is deprived of the F0F1- adenosine triphosphatase, had less Gm H+ independent of growth conditions. In contrast with wild-type or precursor strain, a remarkable difference in Gm H+ for atp mutant was observed between aerobic and anaerobic conditions; such a difference was significant at pH 4.5. These results could indicate distinguishing pathways determining Gm H+ under anaerobic conditions after the fermentation of glucose at different pH and an input of the F0F1-adenosine triphosphatase in Gm H+. In addition, the effect of osmotic stress was demonstrated with grown cells. Gm H+ and H+ efflux both were increased after hyperosmotic stress at pH 7.5, and these changes were inhibited by N,N\'-dicyclohexylcarbodiimide, whereas these changes were lower in atp mutant. A role of the F0F1-adenosine triphosphatase in osmo-sensitivity of bacteria was confirmed under fermentative conditions. 相似文献
19.
The thermodynamic association of RNA polymerase (RNAP) with DNA is sensitive to salt concentration in vitro. Paradoxically, previous studies of changes in osmolarity during steady-state cell growth found no dependence between the association of RNAP to DNA and K+ concentration in Escherichia coli. We reevaluated this issue by following the interaction of RNAP and genomic DNA in time-course experiments during the hyper-osmotic response. Our results show that the interaction is temporally controlled by the same physical chemistry principle in the cell as in vitro. RNAP rapidly dissociates from the genome during the initial response when the cytoplasmic K+ accumulates transiently, and concurrently the nucleoid becomes hyper-condensed. The freed RNAP re-associates with the genome during a subsequent osmoadaptation phase when organic osmoprotectants accumulate as K+ levels decrease. RNAP first surrounds the hyper-condensed nucleoid forming a sphere of RNAP before it progressively moves in to the center of the nucleoid. Our findings reinterpret the dynamic protein–DNA interactions during osmotic stress response. We discuss the implications of the dissociation/association of RNAP for osmotic protection and nucleoid structure. 相似文献
20.
Koseki S Tamplin ML Bowman JP Ross T McMeekin TA 《Letters in applied microbiology》2012,54(3):203-208
Aims: To elucidate the potential use of microelectrode ion flux measurements to evaluate bacterial responses to heat treatment. Methods and Results: Escherichia coli K12 was used as a test bacterium to determine whether various heat treatments (55–70°C for 15 min) affected net ion flux across E. coli cell membranes using the MIFE? system to measure net K+ fluxes. No difference in K+ fluxes was observed before and after heat treatments regardless of the magnitude of the treatment. Applying hyperosmotic stress (3% NaCl w/v) during flux measurement led to a net K+ loss from the heat‐treated E. coli cells below 65°C as well as from nonheated cells. In contrast, with E. coli cells treated at and above 65°C, hyperosmotic stress disrupted the pattern of K+ flux observed at lower temperatures and resulted in large flux noise with random scatter. This phenomenon was particularly apparent above 70°C. Although E. coli cells lost the potential to recover and grow at and above 62°C, K+ flux disruption was not clearly observed until 68°C was reached. Conclusions: No changes in net K+ flux from heat‐stressed E. coli cells were observed directly as a result of thermal treatments. However, regardless of the magnitude of heat treatment above 55°C, loss of viability indicated by enrichment culture correlated with disrupted K+ fluxes when previously heated cells were further challenged by imposing hyperosmotic stress during flux measurement. This two‐stage process enabled evaluation of the lethality of heat‐treated bacterial cells within 2 h and may be an alternative and more rapid method to confirm the lethality of heat treatment. Significance and Impact of the Study: The ability to confirm the lethality of thermal treatments and to specify minimal time/temperature combinations by a nonculture‐dependent test offers an alternative system to culture‐based methods. 相似文献