首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stable isotope tracers are a promising tool for investigating the ecology of terrestrial slugs, including predator‐prey relationships, migration behaviour, nutrient turnover and dietary routing. The objective of the present feasibility study was to label two economically important slug groups, Deroceras reticulatum and keeled slugs (families Limacidae and Milacidae, respectively), with the stable isotope 15N under controlled laboratory conditions. Significant isotopic enrichment in slug tissue was detected after 4 days and persisted for at least 10 days after slugs had been fed on 15N enriched food for a period of 15 days. The time course of 15N uptake into slug tissues and its relation to food consumption were well described mathematically. Estimated mean 15N assimilation efficiencies from labelled maize mixed with unlabelled wheat bran were 30% and 38%, respectively, for the species groups studied. These findings suggest that slugs can be readily and efficiently labelled and that it is feasible to devise protocols for producing large numbers of isotopically labelled slugs for use in ecological studies. A simple method is described for the collection and analysis of cutaneous mucus from individual slugs which can be used to test uniformity of isotopic labelling.  相似文献   

2.
3.
The natural 15N abundance of amide-exporting nodules was compared to that of shoots in 12 plant species. Nodules were statistically less abundant in 15N than shoots in one of three cultivars of Pisum sativum L., in Vicia faba L. and in Medicago sativa L., but the 15N depletion of nodules was very samall. Nodules were statistically more abundant in 15N than shoots in Trifolium pratense L., depending on time during the growing season, Cyamopsis tetragonaloba L. Taub. and 7 Lupinus species, but the enrichment was small except for C. tetragonalova and 6 Lupinus species. Nodules of 3 Lupinus species infected with Rhizobium lupini isolated from Lupinus subcarnosa Hook, were only slightly enriched in 15N, but nodules of two of these species were substantially enriched in 15N when infected with a mix of other Rhizobium lupini strains. The third species, L. texensis Hook., was not infected by this mix of strains. Differences in 15N abundance between nodules and other tissues of amide-exporting and ureide-exporting nodules from several studies are tabulated. All ureide-exporting nodules in this tabulation are enriched in 15N. Amide-exporting nodules are considerably more variable in this regard. These results confirm that events associated with ureide synthesis or transport cannot be the sole cause of the substantial 15N enrichment seen in nodules.  相似文献   

4.
The natural abundance of 13C and 15N was measured in basidiocarps of at least 115 species in 88 genera of ectomycorrhizal, wood-decomposing and litter-decomposing fungi from Japan and Malaysia. The natural abundance of 13C and 15N was also measured in leaves, litter, soil and wood from three different sites. 15N and 13C were enriched in ectomycorrhizal and wood-decomposing fungi, respectively, relative to their substrates. Ectomycorrhizal and wood-decomposing fungi could be distinguished on the basis of their δ13C and δ15N signatures. Although there was high variability in the isotopic composition of fungi, the following isotope- enrichment factors (ε, mean±SD) of the fungi relative to substrates were observed:
εectomycorrhizal fungi/litter = 6.1±0.4‰15N
εectomycorrhizal fungi/wood = 1.4±0.8‰13C
εwood-decomposing fungi/wood = −0.6±0.7‰15N
εwood-decomposing fungi/wood = 3.5±0.9‰13C
The basis of isotope fractionation in C metabolism from wood to wood-decomposing fungus is discussed.  相似文献   

5.
The objectives of this study were to assess the roles of plant species, time, and site on competition for tracer 15N (without carrier) in tussock tundra ecosystems. Six experimental sites were located in northern Alaska. After one year across the experimental sites, the recovery of 15N by litter (11.3–16.3%) and mosses (5.4–16.4%) was significantly greater than for aboveground vascular plants (2.6-5.0%). 15N recoveries by tundra vascular plants (2.6–5.0%) were low when compared to forest trees (9–25%) which suggest that competition for nitrogen is particularly severe in these cold-dominated tundra ecosystems. There were no significant differences among sites in 15N recoveries by vascular plants, by mosses, or by litter. There was a statistically significant decline in 15N recovery with time for Vaccinium vitis-idaea and Eriophorum vaginatum between the second and third year. The shallow rooted Vaccinium vitis-ideae was more highly labeled than the deep rooted Eriophorum vaginatum . Nearness to the source of the applied 15N played a critical role in competition for surface applied nitrogen.  相似文献   

6.
We compared influxes and internal transport in soybean plants (Glycine max cv. Kingsoy) of labelled N from external solutions where either ammonium or nitrate was labelled with the stable isotope15N and the radioactive isotope13N. The objective was to see whether mass spectrometric determinations of tissue 15N content were sufficiently sensitive to measure influxes accurately over short time periods. Our findings were as follows. (1) There was a close quantitative correspondence between estimates of N influx of individual plants using 15N or 13N measurements with either NO3/? or NH4+ at 4 or 2 mol?3, respectively in the external solution. (2) Transport to the shoot of N from NO3 absorbed over a 5–15 min period could be monitored when the external NO3? concentration ranged from 0–05 to 4 mol m?3. NH4+ as the N source labelled shoot tissue more slowly, and estimates of the transport between root and shoot could be made only with 13N. (3) Influx of NO3? into root tissue could be measured by 15N enrichment after 5–10 min at concentrations approaching the probable KM of the high-affinity transport system. (4) There was some indication of isotope discrimination, especially with respect to the movement of labelled N to the shoot, when NO3? is the N source. For many purposes, 15N tracing can be used satisfactorily to estimate influxes of both NO3? and NH4+ in soybean roots. Use of the short-lived radio nuclide 13N remains the method of choice for more refined measurements of internal distribution and assimilation.  相似文献   

7.
8.
We assessed the effects of doubling atmospheric CO2 concentration, [CO2], on C and N allocation within pedunculate oak plants (Quercus robur L.) grown in containers under optimal water supply. A short-term dual 13CO2 and 15NO3? labelling experiment was carried out when the plants had formed their third growing flush. The 22-week exposure to 700 μl l?1 [CO2] stimulated plant growth and biomass accumulation (+53% as compared with the 350 μl l?1 [CO2] treatment) but decreased the root/shoot biomass ratio (-23%) and specific leaf area (-18%). Moreover, there was an increase in net CO2 assimilation rate (+37% on a leaf dry weight basis; +71% on a leaf area basis), and a decrease in both above- and below-ground CO2 respiration rates (-32 and -26%, respectively, on a dry mass basis) under elevated [CO2]. 13C acquisition, expressed on a plant mass basis or on a plant leaf area basis, was also markedly stimulated under elevated [CO2] both after the 12-h 13CO2 pulse phase and after the 60-h chase phase. Plant N content was increased under elevated CO2 (+36%), but not enough to compensate for the increase in plant C content (+53%). Thus, the plant C/N ratio was increased (+13%) and plant N concentration was decreased (-11%). There was no effect of elevated [CO2] on fine root-specific 15N uptake (amount of recently assimilated 15N per unit fine root dry mass), suggesting that modifications of plant N pools were merely linked to root size and not to root function. N concentration was decreased in the leaves of the first and second growing flushes and in the coarse roots, whereas it was unaffected by [CO2] in the stem and in the actively growing organs (fine roots and leaves of the third growth flush). Furthermore, leaf N content per unit area was unaffected by [CO2]. These results are consistent with the short-term optimization of N distribution within the plants with respect to growth and photosynthesis. Such an optimization might be achieved at the expense of the N pools in storage compartments (coarse roots, leaves of the first and second growth flushes). After the 60-h 13C chase phase, leaves of the first and second growth flushes were almost completely depleted in recent 13C under ambient [CO2], whereas these leaves retained important amounts of recently assimilated 13C (carbohydrate reserves?) under elevated [CO2].  相似文献   

9.
Understanding ecosystem carbon (C) and nitrogen (N) cycling under global change requires experiments maintaining natural interactions among soil structure, soil communities, nutrient availability, and plant growth. In model Douglas-fir ecosystems maintained for five growing seasons, elevated temperature and carbon dioxide (CO2) increased photosynthesis and increased C storage belowground but not aboveground. We hypothesized that interactions between N cycling and C fluxes through two main groups of microbes, mycorrhizal fungi (symbiotic with plants) and saprotrophic fungi (free-living), mediated ecosystem C storage. To quantify proportions of mycorrhizal and saprotrophic fungi, we measured stable isotopes in fungivorous microarthropods that efficiently censused the fungal community. Fungivorous microarthropods consumed on average 35% mycorrhizal fungi and 65% saprotrophic fungi. Elevated temperature decreased C flux through mycorrhizal fungi by 7%, whereas elevated CO2 increased it by 4%. The dietary proportion of mycorrhizal fungi correlated across treatments with total plant biomass (n= 4, r2= 0.96, P= 0.021), but not with root biomass. This suggests that belowground allocation increased with increasing plant biomass, but that mycorrhizal fungi were stronger sinks for recent photosynthate than roots. Low N content of needles (0.8–1.1%) and A horizon soil (0.11%) coupled with high C : N ratios of A horizon soil (25–26) and litter (36–48) indicated severe N limitation. Elevated temperature treatments increased the saprotrophic decomposition of litter and lowered litter C : N ratios. Because of low N availability of this litter, its decomposition presumably increased N immobilization belowground, thereby restricting soil N availability for both mycorrhizal fungi and plant growth. Although increased photosynthesis with elevated CO2 increased allocation of C to ectomycorrhizal fungi, it did not benefit plant N status. Most N for plants and soil storage was derived from litter decomposition. N sequestration by mycorrhizal fungi and limited N release during litter decomposition by saprotrophic fungi restricted N supply to plants, thereby constraining plant growth response to the different treatments.  相似文献   

10.
The contribution of pre-defoliation reserves and current assimilates to leaf and root growth was examined in Lolium perenne L. during regrowth after defoliation. Differential steady-state labelling with 13C (CO2 with δ13C = -0.0281 and -0.0088) and 15N (NO3? with 1.0 and 0.368 atom percentage, i.e. δ15N = 1.742 and 0.0052, respectively) was applied for 2 weeks after defoliation. Rapidly growing tissues were isolated, i.e. the basal elongation and maturation zones of the most rapidly expanding leaves and young root tips, with a biomass turnover rate > 1 d?1. C and N weights of the elongation zone showed a transient decline. The dry matter and C concentration in fresh biomass of leaf growth zones transiently decreased by up to 25% 2 d after defoliation, while the N concentration remained constant. This ‘dilution’ of growth zone C indicates a decreased net influx of carbohydrates relative to growth-related influx of water and N in expanding cells, immediately after defoliation. Recovery of the total C and N weights of the leaf elongation zone coincided with net incorporation of currently absorbed C and N, as shown by the kinetics of δ13C and atom percentage 15N in the growth zones after defoliation. C isotope discrimination (Δ13C) in leaf growth zones was about 23‰, 1–2‰ higher than the Δ in root tips. Δ15N in the leaf and root growth zones was 10±3‰. The leaf elongation zones (at 0–0.03 m from the tiller base) and the distant root tips (about 0.2 m from the base) exhibited similar kinetics of current C and N incorporation. The amount of pre-defoliation C and N in the growth zones, expressed as a fraction of total C and N, decreased from 1.0 to 0.5 at 3 (C) and 5 (N) d after defoliation, and to 0.1 at 5 (C) and 14 (N) d after defoliation. Thus, the dependence of growth zones on current assimilate supply was significant, and stronger for C than for N. The important roles of current assimilates (as compared to pre-defoliation reserves) and ‘dilution’ of dry matter in regrowth after defoliation are discussed in relation to the method of labelling and the functional and morphological heterogeneity of shoot tissues.  相似文献   

11.
12.
13.
To develop further the methods for estimation of NOx absorption by plants supplied with 15N-labelled fertilizer, we proposed a new calculation method, total N fixed method (TNF), and compared with the 15N dilution method and the classical mass balance method (MB).
Hydroponically grown soybean plants were supplied with 15N-labelled nitrate and exposed to 200–250 nl l−1 NO2 for 7 d. The proportions of the N derived from NO2 to total N in exposed plants were estimated by the three methods.
The reported rates of NO2 absorption by several plant species, estimated by the 15N dilution method, were recalculated using the TNF method. The results of the two methods were compared and showed that: (1) The 15N dilution method overestimated the content of NO2-N in exposed plants compared with the MB method whilst the TNF method produced estimations of NO2-N closer to those by the MB method when the plants were supplied with 5 m M nitrate. (2) The differences in estimations between the MB method and either the 15N dilution method or the TNF method increased with decreasing supply of 15N-labelled nitrate to roots.  相似文献   

14.
Mosses have been used as biomonitors of atmospheric pollution for some years, but few studies have been carried out on the effect of NOx emissions from traffic on moss tissue N. Eight species of moss (102 samples) growing on walls or roofs next to roads exposed to different traffic densities were collected from urban and rural sites in the UK. The shoots were sampled for total N, their stable isotope 15N/14N content (δ15N) and heavy metal content (Pb, Zn). There was a lack of correlation between tissue total N and traffic exposure, but a very good correlation between traffic exposure and tissue δ15N. Plants collected near motorways or busy urban roads had δ15N values ranging between +6 and −1‰, while in rural areas with hardly any traffic these ranged from −2 to −12‰. In a separate survey of mosses, the average δ15N of shoots from busy roadsides in London was +3.66‰, whereas from samples collected from farm buildings near poultry or cattle pens it was −7.8‰. This indicates that the two main atmospheric N sources, NOx and NHx, have different δ15N signatures, the former tending to be positive and the latter negative. Tissue concentrations of both Pb and Zn show a strong positive correlation with traffic exposure, with Zn in particular being greater than Pb. The results are discussed with regard to the use of moss tissue Zn as a means for monitoring or mapping pollution from vehicles, and of δ15N as an aid to distinguish between urban (NOx) and rural (NHx) forms of N pollution.  相似文献   

15.
In vivo 15N and 14N nuclear magnetic resonance spectroscopy was used to investigate the assimilation of nitrate and ammonium in seedlings of Norway spruce (Picea abies [L.] Karst.). The main objective was to study accumulation of free NH+4 and examine to what extent the nitrogen source affects the composition of the free amino acid pools in roots, stems and needles. NH+4 concentrations in plants growing in the presence of 0.5–50 mM ammonium were quantified using 14N NMR. The NH+4 values in tissues ranged from 6 to 46 μmol (g fresh weight)?1. with highest concentrations in roots and needles. The tissue NH+4 peaked at 5.0 mM NH+4 in the medium. and failed to increase when NH+4 in the medium was increased to 50 mM, indicating metabolic control of the concentration of this cation in tissues. The 14N NMR spectra were used to estimate pH of the NH+4 storage pools. Based on the pH sensitivity of the quintet of 14NH+4 resonance, we suggest that the pH of the ammonium storage compartments in the roots and stems should be 3.7–3.8, and in needles 3.4–3.5, representing extremely low pH values of the tissue. 15N from nitrate or ammonium was first incorporated into the amide group of glutamine and then into α-amino groups, confirming that the glutamine synthetase/ glutamate synthase cycle is the major route of nitrogen assimilation into amino acids and thus plays a role in lowering the levels of NH+4 in the cytoplasm. NH+4 can also be assimilated in roots in plants growing in darkness. The main 15N-labelled amino acids were glutamine. arginine and alanine. Almost no 15N signals from needles were observed. Double labelling (δN + w, wN) of arginine is consistent with the operation of the ornithine cycle, and enrichment indicates that this cycle is a major sink of newly assimilated nitrogen. Nitrogen assimilation in roots in the presence of added methionine sulphoximine and glutamate indicated the catabolic action of glutamate dehydrogenase. The 15N NMR spectra of plants grown on 15N-urea showed a marked increase in the labelling of ammonium and glutamine. indicating high urease activity. Amino acids were also quantified using high pressure liquid chromatography. Arginine was found to be an important transport form of nitrogen in the stem.  相似文献   

16.
Uptake of [15N]-ammonia was more sensitive to UV-B exposure than the total 14CO2 fixation rate of Lithodesmium variabile Takano. Short-term UV-B radiation (15 min) had practically no effect on the kinetics of [15N]-ammonia, whereas there was an effect on [14C]-bicarbonate uptake rate. A significant reduction was found after 30 and 60 min UV-B stress. The time course of photosynthetic uptake of 15NH4Cl at several wavelengths was markedly depressed at shorter wavelengths (irradiation with WG 280). A short-term (11 min) exposure to ultraviolet radiation had no influence on the [14C]-labeled photosynthetic products. However, the [15N]-label of several amino acids and the ratio of [15N]-glutamine to [15N]-glutamic acid varied after irradiation with different ultraviolet wavebands. The results are discussed with reference to UV damage to the key enzymes of nitrogen metabolism.  相似文献   

17.
The role of methionine as a precursor in mugineic acid (MA) biosynthesis was studied by feeding 15N-ammonium sulfate, 14C-amino acids, and [1-14C, 15N]-methionine to iron-deficient barley roots ( Hordeum vulgare L. cv. Minorimugi), grown hydroponically. The incorporation of isotopes into amino acids was also examined. Methionine appears to be the most efficient precursor of the mugineic acid family (MAs) of phytosiderophores; homoserine was also incorporated into the MAs, but other amino acids such as glutamate, alanine, and γ-amino butyric acid did not act as precursors of MAs. Carbon-14 and 15N of methionine were incorporated into MAs. This specific incorporation of 14C and 15N indicated that the nitrogen atoms of MAs were derived from two molecules of methionine. It is suggested that deoxymugineic acid (DMA) is probably the first phytosiderophore to be synthesized on the biosynthetic pathway of MAs.  相似文献   

18.
As an alternative to methods currently used to study predation under field conditions, we propose to mark prey with 15N, and to subsequently trace this label in the food chain. Preliminary laboratory work to develop this method is presented. The 15N‐content of polyphagous predators that have ingested 15N‐marked aphids was analysed with respect to: time after ingestion, the number of ingested 15N‐aphids, ingestion of additional non‐marked prey, and predator size. Increased 15N‐contents were detected in solid feeders [Platynus dorsalis (Pontopiddan), Coleoptera: Carabidae], as well as in fluid feeders [Erigone atra (Blackwall), Araneae: Linyphiidae] up to 11 days after ingestion. The increased 15N‐levels were constant over time from a few days after 15N‐ingestion onwards, and correlated with the number of ingested 15N‐aphids. The ingestion of additional non‐marked prey had no statistically significant influence on the predators’15N‐contents. The 15N‐contents of carabid species with varying biomasses could be compared directly. Our results are compared with literature data of other methods (e.g., ELISA).  相似文献   

19.
Gut contents of sand goby Pomatoschistus minutus showed higher C and N isotope values than the food before consumption. This enrichment was more pronounced in the hindgut than in the foregut, probably because of preferential assimilation of 12C and 14N along the gastro-intestinal tract. The results indicated that the shift towards higher values in the alimentary canal occurs in the first 2 h after feeding.  相似文献   

20.
We investigated the effects of nitrogen (N) availability during the vegetative phase on (a) post‐anthesis N uptake and (b) its translocation into ears in barley plants grown in a greenhouse at two levels of N: low (50 mg N kg?1 sand) and optimal N supply (150 mg N kg?1 sand). Plants in the two N treatments were fertilised with the same amount of labelled 15N [50 mg 15N kg?1 sand at 10% 15Nexc (Nexcess, i.e. Nexc, is defined as the abundance of enriched stable isotope minus the natural abundance of the isotope) applied as 15NH415NO3] 10 days after anthesis (daa). In a separate experiment, the uptake and transport into ears of proteinogenic and non‐proteinogenic amino acids were studied to determine whether a relationship exists between amino acid transport into ears and their proteinogenic nature. Plants were fed with either 15N‐α‐alanine, a proteinogenic amino acid, or 15N‐α‐aminoisobutyric acid, a non‐proteinogenic amino acid. Both these amino acids were labelled at 95.6% 15Nexc. Results showed that N accumulations in stems, leaves and especially in ears were correlated with their dry matter (dm) weights. The application of 150 mg N kg?1 sand significantly increased plant dm weight and total N accumulation in plants. During their filling period, ears absorbed N from both external (growth substrate) and internal (stored N in plants) sources. Nitrogen concentration in ears was higher in optimal N‐fed plants than in low N‐fed plants until 10 daa, but from 21 to 35 daa, differences were not detected. Conversely, 15Nexc in ears, leaves and stems was higher in low N‐fed plants than in optimal N‐fed plants. Ears acted as strong sink organ for the post‐anthesis N taken up from the soil independently of pre‐anthesis N nutrition: on average, 87% of the N taken up from the soil after anthesis was translocated and accumulated in ears. Low N‐fed plants continued to take up N from the post‐anthesis N fertiliser during the later grain‐filling period. The increase of pre‐anthesis N supply rate led to a decrease in the contribution of nitrogen derived from post‐anthesis 15N‐labelled fertiliser (Ndff) to total N in all aboveground organs, especially in ears where 44% and 22% of total N originated from post‐anthesis N uptake in low N‐fed and optimal N‐fed plants, respectively. The experiment with labelled amino acids showed that there was greater transport of proteinogenic amino acid into the ear (50% of total 15N) than non‐proteinogenic amino acid (39%). However, this transport of the non‐proteinogenic amino acids into ear suggested that the transport of N compounds from source (leaves) to sink organs (ear) might not be intrinsically regulated by their ability to be incorporated into storage protein of ears.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号