首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Hama H  Hara C  Yamaguchi K  Miyawaki A 《Neuron》2004,41(3):405-415
Here we provide evidence that astrocytes affect neuronal synaptogenesis by the process of adhesion. Local contact with astrocytes via integrin receptors elicited protein kinase C (PKC) activation in individual dissociated neurons cultured in astrocyte-conditioned medium. This activation, initially focal, soon spread throughout the entire neuron. We then demonstrated pharmacologically that the arachidonic acid cascade, triggered by the integrin reception, is responsible for the global activation of PKC. Local astrocytic contact also facilitated excitatory synaptogenesis throughout the neuron, a process which could be blocked by inhibitors of both integrins and PKC. Thus, propagation of PKC signaling represents an underlying mechanism for global neuronal maturation following local astrocyte adhesion.  相似文献   

2.

Background

Acidosis impairs cognitions and behaviors presumably by acidification-induced changes in neuronal metabolism. Cortical GABAergic neurons are vulnerable to pathological factors and their injury leads to brain dysfunction. How acidosis induces GABAergic neuron injury remains elusive. As the glia cells and neurons interact each other, we intend to examine the role of the astrocytes in acidosis-induced GABAergic neuron injury.

Results

Experiments were done at GABAergic cells and astrocytes in mouse cortical slices. To identify astrocytic involvement in acidosis-induced impairment, we induced the acidification in single GABAergic neuron by infusing proton intracellularly or in both neurons and astrocytes by using proton extracellularly. Compared the effects of intracellular acidification and extracellular acidification on GABAergic neurons, we found that their active intrinsic properties and synaptic outputs appeared more severely impaired in extracellular acidosis than intracellular acidosis. Meanwhile, extracellular acidosis deteriorated glutamate transporter currents on the astrocytes and upregulated excitatory synaptic transmission on the GABAergic neurons. Moreover, the antagonists of glutamate NMDA-/AMPA-receptors partially reverse extracellular acidosis-induced injury in the GABAergic neurons.

Conclusion

Our studies suggest that acidosis leads to the dysfunction of cortical GABAergic neurons by astrocyte-mediated excitotoxicity, in addition to their metabolic changes as indicated previously.  相似文献   

3.
The present study investigated whether GABA(A) receptor alpha2 subunit and GAD(67) are involved in chronic high dose methamphetamine (METH)-induced sensitization and neurotoxicity. The METH sensitization was established in rats by 7-day pump infusion plus daily injection (25mg/kg/day) and a subsequent 28-day withdrawal period. Behavioral sensitization was assessed by behavioral ratings after challenge with METH (0.5mg/kg). The neurotoxicity was evaluated by the expression of glial fibrillary acidic protein (GFAP). Western blot assay showed that METH sensitization decreases GABA(A) alpha2 subunit and GAD(67) protein levels in the nucleus accumbens (NAc) core and shell, and conversely, these proteins were increased in the caudate. An upregulation of GFAP expression was observed in the caudate, but not in the NAc core and shell. These data suggest that inhibition of GABA transmission in the NAc is related to METH behavioral sensitization, whereas activation of GABA transmission in the caudate is associated with METH-induced neurotoxicity.  相似文献   

4.
In the central nervous system, tissue plasminogen activator (tPA) plays a role in synaptic plasticity and remodeling. Our recent study has suggested that tPA participates in the rewarding effects of morphine by regulating dopamine release. In this study, we investigated the role of tPA in methamphetamine (METH)-related reward and sensitization. Repeated METH treatment dose-dependently induced tPA mRNA expression in the frontal cortex, nucleus accumbens, striatum and hippocampus, whereas single METH treatment did not affect tPA mRNA expression in these brain areas. The METH-induced increase in tPA mRNA expression in the nucleus accumbens was completely inhibited by pre-treatment with R(+)-SCH23390 and raclopride, dopamine D1 and D2 receptor antagonists, respectively. In addition, repeated METH treatment increased tPA activity in the nucleus accumbens. There was no difference in METH-induced hyperlocomotion between wild-type and tPA-deficient (tPA-/-) mice. On the other hand, METH-induced conditioned place preference and behavioral sensitization after repeated METH treatment were significantly reduced in tPA-/- mice compared with wild-type mice. The defect of behavioral sensitization in tPA-/- mice was reversed by microinjections of exogenous tPA into the nucleus accumbens. Our findings suggest that tPA is involved in the rewarding effects as well as the sensitization of the locomotor-stimulating effect of METH.  相似文献   

5.
Astrocytes play an important role in the coupling between neuronal activity and brain blood flow via their capacity to "sense" neuronal activity and transmit that information to parenchymal arterioles. Here we show another role for astrocytes in neurovascular coupling: the ability to act as a signaling conduit for the vitally important process of upstream vasodilation (represented by pial arterioles) during both excessive (seizure) and physiological (sciatic nerve stimulation) increases in cerebral cortical neuronal activity. The predominance of an astrocytic rather than a vascular route was indicated by data showing that pial arteriolar-dilating responses to neuronal activation were completely blocked following selective disruption of the superficial glia limitans, whereas interference with interendothelial signaling was without effect. Results also revealed contributions from connexin 43, implying a role for gap junctions and/or hemichannels in the signaling process and that signaling from the glia limitans to pial arterioles may involve a diffusible mediator.  相似文献   

6.
Methamphetamine (METH), an addictive psycho-stimulant drug exerts euphoric effects on users and abusers. It is also known to cause cognitive impairment and neurotoxicity. Here, we hypothesized that METH exposure impairs the glucose uptake and metabolism in human neurons and astrocytes. Deprivation of glucose is expected to cause neurotoxicity and neuronal degeneration due to depletion of energy. We found that METH exposure inhibited the glucose uptake by neurons and astrocytes, in which neurons were more sensitive to METH than astrocytes in primary culture. Adaptability of these cells to fatty acid oxidation as an alternative source of energy during glucose limitation appeared to regulate this differential sensitivity. Decrease in neuronal glucose uptake by METH was associated with reduction of glucose transporter protein-3 (GLUT3). Surprisingly, METH exposure showed biphasic effects on astrocytic glucose uptake, in which 20 μM increased the uptake while 200 μM inhibited glucose uptake. Dual effects of METH on glucose uptake were paralleled to changes in the expression of astrocytic glucose transporter protein-1 (GLUT1). The adaptive nature of astrocyte to mitochondrial β-oxidation of fatty acid appeared to contribute the survival of astrocytes during METH-induced glucose deprivation. This differential adaptive nature of neurons and astrocytes also governed the differential sensitivity to the toxicity of METH in these brain cells. The effect of acetyl-L-carnitine for enhanced production of ATP from fatty oxidation in glucose-free culture condition validated the adaptive nature of neurons and astrocytes. These findings suggest that deprivation of glucose-derived energy may contribute to neurotoxicity of METH abusers.  相似文献   

7.
During ischemia, the operation of astrocytic/neuronal glutamate transporters is reversed and glutamate and Na+ are co-transported to the extracellular space. This study aims to investigate whether this reversed operation of glutamate transporters has any functional meanings for astrocytes themselves. Oxygen/glucose deprivation (OGD) of neuron/astrocyte co-cultures resulted in the massive death of neurons, and the cell death was significantly reduced by treatment with either AP5 or DHK. In cultured astrocytes with little GLT-1 expression, OGD produced Na+ overload, resulting in the reversal of astrocytic Na+/Ca2+-exchanger (NCX). The reversed NCX then caused Ca2+ overload leading to the damage of astrocytes. In contrast, the OGD-induced Na+ overload and astrocytic damage were significantly attenuated in PACAP-treated astrocytes with increased GLT-1 expression, and the attenuation was antagonized by treatment with DHK. These results suggested that the OGD-induced reversal of GLT-1 contributed to the survival of astrocytes themselves by releasing Na+ with glutamate via reversed GLT-1.  相似文献   

8.
It is well established that astrocytes release gliotransmitters and moderate neuronal activity in the central nervous system via intracellular Ca(2+) dynamics. Astrocytic Ca(2+) oscillations are one type of spontaneous Ca(2+) mobilization that occurs in astrocytes. However, the modulation of spontaneous astrocytic Ca(2+) oscillations, especially in pathophysiological conditions, is not yet fully understood. Here, we demonstrate that activation of adenosine receptors induces a long-lasting increase in the frequency of astrocytic Ca(2+) oscillations in rat hippocampal slice cultures. The long-term facilitation of the frequency of Ca(2+) oscillations was mediated by endogenous adenosine generated via breakdown of extracellular ATP by ecto-ATPase. We also demonstrate that local tissue injury with ultraviolet irradiation can cause this long-term facilitation of Ca(2+) oscillations via endogenous adenosine. Our data suggest that endogenous adenosine is one of the modulators of spontaneous astrocytic Ca(2+) oscillations in the rat hippocampus, and may play a significant role in altered Ca(2+) dynamics in astrocytes observed during pathophysiological conditions.  相似文献   

9.
Garcinol (camboginol) is a polyisoprenylated benzophenone derivative isolated from fruit rind of Garcinia indica. This study was to elucidate the anti-oxidative and neuroprotective properties of garcinol in rat cortical neuron cultures. First, garcinol protects DNA from Fenton reaction-induced breakage in a dose-dependent manner, with an IC(50) value of 0.32 microM. Garcinol also inhibits xanthine oxidase activity with an IC(50) value of 52 microM and exhibits competitive inhibition. To further ascertain the neuroprotective effects of garcinol in inflammatory-mediated neurotoxicity, we utilized primary neuron/astrocyte co-cultures treated with LPS or cytokine. Our data implicate that treatment with garcinol (5 microM) for 7 days promotes neuronal attachment and neurite extension. The formation of nitric oxide (NO) by LPS in rat astrocytes has been suggested to correlate with the neurodegenerative process. In identifying the effect of neuroprotection, we found that garcinol prevented NO accumulation in LPS-treated astrocytes. Garcinol significantly reduced the expression of LPS-induced inflammatory mediators, such as iNOS and COX-2. Consequently, our results suggest that the neuroprotective effects of garcinol are associated with anti-oxidation and inhibition of iNOS induction in astrocytic cells. Garcinol may exert a similar anti-inflammatory effect and may be neuroprotective against brain injury.  相似文献   

10.
1. The links between behavioural state, gross electrophysiology and the activity of neurons and astrocytes are reviewed to stimulate interest in the contributions that glia make to behaviour. 2. Behavioural arousal in which neuronal responsivity ("sensitivity") is elevated is also associated with a sustained (0.5-10 sec) potential shift (SPS). 3. There is powerful and accumulating evidence that the SPS is primarily of glial origin. 4. In epilepsy neurons are hyperactive and there is a massive SPS during seizures. In seizure free periods, epileptic animals frequently have elevated arousal responses and increased neuronal sensitivity, indicating that seizures may be due to elevation of the activity of a normally adaptive sensitizing mechanism. 5. The common finding of an astrocytic pathology in epilepsy and the links between arousal, neuronal sensitization, SPSs and seizures implicates a modulatory role for astrocytes in both health and disease. 6. Glia, especially astrocytes, may modulate neuronal responsiveness by regulation of the microenvironment. 7. At the current state of knowledge, regulation of extracellular ionic K+, Ca2+ and neurotransmitter glutamate and GABA seem to be the most important candidates for modulating neuronal sensitivity in arousal and abnormally for seizure genesis. 8. Both in phylogeny and in ontogeny, glia and neurons have intimate associations. 9. The functional astrocytic syncitium is in a prime position to control the ecology of neuronal populations and thereby their activity. 10. The physiology and biochemistry of glia-neuronal interactions offers exciting new prospects for developments in behavioural neuroscience.  相似文献   

11.
Altered glial function in the substantia nigra in Parkinson's disease may lead to the release of toxic substances that cause dopaminergic cell death or increase neuronal vulnerability to neurotoxins. To investigate this concept, we examined the effects of subjecting astrocytes to lipopolysaccharide (LPS)-induced activation alone or combined with L-buthionine-[S,R]-sulfoximine-induced glutathione depletion or inhibition of complex I activity by 1-methyl-4-phenylpyridinium (MPP+) on the viability of primary ventral mesencephalic neurones or susceptibility to MPP+ and 6-hydroxydopamine (6-OHDA) in co-cultures. LPS-activated astrocytes caused neuronal death in a time-dependent manner, but glutathione-depleted or complex I-inhibited astrocytes had no effect on neuronal viability. The neurotoxicity of LPS-activated astrocytes was inhibited by the inducible nitric oxide synthase inhibitor aminoguanidine, by the nitric oxide scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, and by reduced glutathione (GSH). MPP+-induced neuronal death was greater in ventral mesencephalic cultures previously cultured with LPS-activated, glutathione-depleted, or complex I-inhibited astrocytes compared with co-cultures containing normal astrocytes. The increased neuronal susceptibility to MPP+ caused by LPS-activated or complex I-inhibited astrocytes and glutathione-depleted astrocytes was inhibited by the NMDA/glutamate antagonist MK-801 and by GSH, respectively. Neuronal death caused by 6-OHDA was increased in ventral mesencephalic cultures previously cultured with LPS-activated and glutathione-depleted, but not complex I-inhibited astrocytes, compared with co-cultures containing normal astrocytes. Treatment of co-cultures with GSH prevented the increased neuronal susceptibility to 6-OHDA. These findings suggest that glial dysfunction may cause neuronal death or render neurones susceptible to toxic insults via a mechanism involving the release of free radicals and glutamate. Such a mechanism may play a role in the development or progression of nigrostriatal degeneration in Parkinson's disease.  相似文献   

12.
"Ca(2+) paradox" is the phenomenon whereby the intracellular concentration of Ca(2+) paradoxically increases during reperfusion with normal Ca(2+)-containing media after brief exposure to a Ca(2+)-free solution. The present study aims to characterize the Ca(2+) paradox induced cell injury in neuron/astrocyte co-cultures. Prior exposure of the co-cultures to a low Ca(2+) solution for 60 min significantly injured only neurons after reperfusion with a normal Ca(2+) medium for 24h, but astrocytes remained intact. An analysis of the Ca(2+) paradox-induced changes in the intracellular concentration of Na(+) revealed that the concentration in astrocytes increased significantly during the reperfusion episode, resulting in a reversal of the operation of the astrocytic Na(+)-dependent glutamate transporter GLT-1. These results suggested that Ca(2+) paradox-induced accumulation of Na(+) in astrocytes was crucially involved in the excitotoxic neuronal injury resulting from the reversed astrocytic GLT-1 during the reperfusion episode. Previous studies have suggested that Ca(2+) paradox-induced injury in the brain occurs first in astroglial cells and only later in neurons resulting from the prior damage of astrocytes. Here we show that if "Ca(2+) paradox" occurs in the brain, neurons would be the primary target of Ca(2+) paradox-induced cell injury in the central nervous system.  相似文献   

13.
Chen ML  Bao F  Zhang YQ  Zhao ZQ 《生理学报》2012,64(4):365-371
The previous study indicated that aquaporin 4 (AQP4) deficiency attenuated opioid physical dependence. However, the underlying mechanism remains unknown. In the present study, the effects of AQP4 deficiency on the expression of three factors, protein kinase C (PKC) α, PKCγ and c-Fos in the spinal cord, which are known to be concerned with spinal neuronal sensitization and opiate dependence, were investigated in AQP4 knockout mice using Western blotting analysis. It was observed that AQP4 deficiency reduced the score of naloxone-precipitated abstinent jumping after repeated morphine administration compared with wild-type (P < 0.001). Meanwhile, the protein levels of PKCα and c-Fos in the spinal cord of AQP4 knockout mice were significantly higher than those in the wild-type mice; while the expression of PKCγ was decreased remarkably by AQP4 knockout during the withdrawal (P < 0.01). These data suggest that AQP4 deficiency-attenuated morphine withdrawal responses may be partially attributed to the changes in the spinal expression of PKCα, PKCγ or c-Fos.  相似文献   

14.

The development of tolerance and drug dependence limit the clinical application of opioids for the treatment of severe pain. Glucocorticoid receptors (GRs) are among molecular substrates involved in these processes. Most studies focus on the role of neuronal GR, while the involvement of GR on glial cells is not fully understood. To address this issue, we used a transgenic model of conditional GR knockout mice, targeted to connexin 30-expressing astrocytes, treated with repeated doses of morphine. We observed no difference between control mice and astrocytic GR knockouts in the development of antinociceptive tolerance. Nevertheless, when animals were subjected to precipitated withdrawal, knockouts presented some attenuated symptoms, including jumping. Taken together, our data suggest that hippocampal and spinal astrocytic GRs appear to be involved in opioid withdrawal, and drugs targeting the GR may relieve some symptoms of morphine withdrawal without influencing its antinociceptive properties.

  相似文献   

15.
Cao JL  Ding HL  He JH  Zhang LC  Wang JK  Zeng YM 《生理学报》2005,57(2):161-168
在大鼠吗啡依赖和戒断模型上,采用行为学、免疫组织化学和Western blot方法观察鞘内应用蛋白激酶C(protien kinase C,PKC)抑制剂chelerythrine chloride(CHE)对吗啡依赖大鼠纳洛酮催促成断反应、脊髓Fos蛋白表达和脊髓神经元胞膜和胞浆PKCα、γ表达的影响,以探讨不同亚型PKC在吗啡依赖和戒断反应中的作用。结果表明,鞘内注射CHE能明显减轻吗啡成断症状的评分和吗啡戒断引起的痛觉异常,抑制吗啡成断期间脊髓Fos蛋白表达的增加;吗啡依赖可引起脊髓神经元PKCα和γ表达的上调和转位:吗啡戒断期间存在明显的且可被鞘内注射CHE抑制的PKCα转位,但未观察到明显的PKCγ转位。上述结果表明,脊髓PKC表达上调和转何可能参与吗啡依赖的形成和戒断反应的表达,且PKCα和γ亚型在吗啡依赖和戒断反应中的作用存在差异。  相似文献   

16.
Astrocytes can sense local synaptic release of glutamate by metabotropic glutamate receptors. Receptor activation in turn can mediate transient increases of astrocytic intracellular calcium concentration through inositol 1,4,5-trisphosphate production. Notably, the perturbation of calcium concentration can propagate to other adjacent astrocytes. Astrocytic calcium signaling can therefore be linked to synaptic information transfer between neurons. On the other hand, astrocytes can also modulate neuronal activity by feeding back onto synaptic terminals in a fashion that depends on their intracellular calcium concentration. Thus, astrocytes can also be active partners in neuronal network activity. The aim of our study is to provide a computationally simple network model of mutual neuron–astrocyte interactions, in order to investigate the possible roles of astrocytes in neuronal network dynamics. In particular, we focus on the information entropy of neuronal firing of the whole network, considering how it could be affected by neuron–glial interactions.  相似文献   

17.
Very little is known about the ability of astrocytic receptors to exhibit plasticity as a result of changes in neuronal activity. Here we provide evidence for bidirectional scaling of astrocytic group I metabotropic glutamate receptor signaling in acute mouse hippocampal slices following long-term changes in neuronal firing rates. Plasticity of astrocytic mGluRs was measured by recording spontaneous and evoked Ca2+ elevations in both astrocytic somata and processes. An exogenous astrocytic Gq G protein-coupled receptor was resistant to scaling, suggesting that the alterations in astrocyte Ca2+ signaling result from changes in activity of the surface mGluRs rather than a change in intracellular G protein signaling molecules. These findings suggest that astrocytes actively detect shifts in neuronal firing rates and adjust their receptor signaling accordingly. This type of long-term plasticity in astrocytes resembles neuronal homeostatic plasticity and might be important to ensure an optimal or expected level of input from neurons.  相似文献   

18.
The influence of astrocytes on synaptic function has been increasingly studied, owing to the discovery of both gliotransmission and morphological ensheathment of synapses. While astrocytes exhibit at best modest membrane potential fluctuations, activation of G-protein coupled receptors (GPCRs) leads to a prominent elevation of intracellular calcium which has been reported to correlate with gliotransmission. In this review, the possible role of astrocytic GPCR activation is discussed as a trigger to promote synaptic plasticity, by affecting synaptic receptors through gliotransmitters. Moreover, we suggest that volume transmission of neuromodulators could be a biological mechanism to activate astrocytic GPCRs and thereby to switch synaptic networks to the plastic mode during states of attention in cerebral cortical structures.  相似文献   

19.
The defensive withdrawal reflexes of Aplysia are important behaviors for protecting the animal from predation. Habituation and dishabituation allow for experience-dependent tuning of these reflexes and the mechanisms underlying these forms of behavioral plasticity involve changes in transmitter release from the sensory to motor neuron synapses through homosynaptic depression and the serotonin-mediated recovery from depression, respectively. Interestingly, dishabituation is reduced in older animals with no corresponding change in habituation. Here we show that the cultured sensory neurons of heavier animals (greater than 120g) that form synaptic connections with motor neurons have both reduced recovery from depression and reduced novel PKC Apl II activation with 5HT. The decrease in the recovery from depression correlated better with the size of the animal than the age of the animal. Much of this change in PKC activation and synaptic facilitation following depression can be rescued by direct activation of PKC Apl II with phorbol dibutyrate, suggesting a change in the signal transduction pathway upstream of PKC Apl II activation in the sensory neurons of larger animals.  相似文献   

20.
The involvement of brain glycogen in sustaining neuronal activity has previously been demonstrated. However, to what extent energy derived from glycogen is consumed by astrocytes themselves or is transferred to the neurons in the form of lactate for oxidative metabolism to proceed is at present unclear. The significance of glycogen in fueling glutamate uptake into astrocytes was specifically addressed in cultured astrocytes. Moreover, the objective was to elucidate whether glycogen derived energy is important for maintaining glutamatergic neurotransmission, induced by repetitive exposure to NMDA in co-cultures of cerebellar neurons and astrocytes. In the astrocytes it was shown that uptake of the glutamate analogue d -[3H]aspartate was impaired when glycogen degradation was inhibited irrespective of the presence of glucose, signifying that energy derived from glycogen degradation is important for the astrocytic compartment. By inhibiting glycogen degradation in co-cultures it was evident that glycogen provides energy to sustain glutamatergic neurotransmission, i.e. release and uptake of glutamate. The relocation of glycogen derived lactate to the neuronal compartment was investigated by employing d -lactate, a competitive substrate for the monocarboxylate transporters. Neurotransmitter release was affected by the presence of d -lactate indicating that glycogen derived energy is important not only in the astrocytic but also in the neuronal compartment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号