首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
We have investigated the interaction of three lectins, differing in their sugar specificities, with the surface of the three differentiation stages of Trypanosoma cruzi. The Scatchard constants for each lectin and parasite stage imply that differentiation of T. cruzi is accompanied by changes in the cell surface saccharides. Trypomastigotes obtained from two different sources do not differ appreciably as to the number and affinity of binding sites for the three lectins employed, suggesting a similar cell-surface saccharide composition. These conclusions are reinforced by sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis of the 131I-labeled surface glycoproteins, following isolation by affinity chromatography. The surface membrane of trypomastigotes, the infective stage to T. cruzi for mammalian cells, possesses a specific glycoprotein of apparent Mr 85 000 (Tc-85) which is absent from the other two stages and can be isolated by affinity chromatography on wheat germ agglutinin-Sepharose columns. This glycoprotein also binds to concanavalin A, but not to Lens culinaris lectin. The binding of Tc-85 to wheat germ agglutinin is unnafected by treatment of either the isolated glycoprotein or intact living trypomastigotes with neuraminidase. Since N-acetyl-d-glucosamine inhibits internalization of trypomastigotes by cultured mammalian cells, it is suggested that Tc-85 might be involved in adhesion and/or interiorization of T. cruzi into mammalian cells, possibly via recognition of an ubiquitous host-cell surface N-acetyl-d-glucosamine-specific receptor activity.  相似文献   

2.
Bloodstream trypomastigote and culture procyclic (insect midgut) forms of a cloned T. rhodesiense variant (WRATat 1) were tested for agglutination with the lectins concanavalin A (Con A), phytohemagglutinin P (PP), soybean agglutinin (SBA), fucose binding protein (FBP), wheat germ agglutinin (WGA), and castor bean lectin (RCA). Fluorescence-microscopic localization of lectin binding to both formalin-fixed trypomastigotes and red cells was determined with fluorescein isothiocyanate (FITC)-conjugated Con A, SBA, FBP, WGA, RCA, PNA (peanut agglutinin), DBA (Dolichos bifloris), and UEA (Ulex europaeus) lectins. Electron microscopic localization of lectin binding sites on bloodstream trypomastigotes was accomplished by the Con A-horseradish peroxidase-diaminobenzidine (HRP-DAB) technique, and by a Con A-biotin/avidin-ferritin method. Trypomastigotes, isolated by centrifugation or filtration through DEAE-cellulose or thawed after cryopreservation, were agglutinated by the lectins Con A and PP with agglutination strength scored as Con A < PP. No agglutination was observed in control preparations or with the lectins WGA, FBA or SBA. Red cells were agglutinated by all the lectins tested. Formalin-fixed bloodstream trypomastigotes bound FITC-Con A and FITC-RCA but not FITC-WGA, -SBA, -PNA, -UEA or -DBA lectins. All FITC-labeled lectins bound to red cells. Con A receptors, visualized by Con A-HRP-DAB and Con A-biotin/avidin-ferritin techniques, were distributed uniformly on T. rhodesiense bloodstream forms. No lectin receptors were visualized on control preparations. Culture procyclics lacked a cell surface coat and were agglutinated by Con A and WGA but not RCA, SBA, PP and FBP. Procyclics were not agglutinated by lectins in the presence of competing sugar at 0.25 M. The expression of lectin binding cell surface saccharides of T. rhodesiense WRATat 1 is related to the parasite stage. Sugars resembling α-D-mannose are on the surface of bloodstream trypomastigotes and culture procyclics; n-acetyl-D-galactosamine and D-galactose residues are on bloodstream forms; and n-acetyl-D-glucosamine-like sugars are on procyclic stages.  相似文献   

3.
Highly purified lectins with specificities for receptor molecules containing sialic acid, N-acetylglucosamine (D-GlcNAc), N-acetylgalactosamine (D-GalNAc), galactose (D-Gal), mannose-like residues (D-Man) or L-fucose (L-Fuc), were used to determine changes in cell-surface carbohydrates of the protozoal parasite Trypanosoma cruzi during metacyclogenesis under chemically defined conditions. Of the D-GalNAc-binding lectins, BS-I selectively agglutinated metacyclic trypomastigotes, MPL was selective for replicating epimastigotes, whereas SBA strongly agglutinated all developmental stages of T. cruzi. WGA (sialic acid and/or D-GlcNAc specific) was also reactive with differentiating epimastigotes and metacyclic trypomastigotes but displayed a higher reactivity with replicating epimastigote forms. A progressive decrease in agglutinating activity was observed for jacaline (specific for D-Gal) during the metacyclogenesis process; conversely, a progressive increase in affinity was observed for RCA-I (D-Gal-specific), although the reactivity of other D-Gal-specific lectins (PNA and AxP) was strong at all developmental stages. All developmental stages of T. cruzi were agglutinated by Con A and Lens culinaris lectins (specific for D-Man-like residues); however, they were unreactive with the L-fucose-binding lectins from Lotus tetragonolobos and Ulex europaeus. These agglutination assays were further confirmed by binding studies using 125I-labelled lectins. Neuraminidase activity was detected in supernatants of cell-free differentiation medium using the PNA hemagglutination test with human A erythrocytes. The most pronounced differences in lectin agglutination activity were observed between replicating and differentiating epimastigotes, suggesting that changes in the composition of accessible cell-surface carbohydrates precede the morphological transformation of epimastigotes into metacyclic trypomastigotes.  相似文献   

4.
Several aspects of the interaction of various lectins with the surface of Ehrlich ascites carcinoma cells are described. The order of agglutinating activity for various lectins is Ricinus communis greater than wheat germ greater than or equal to concanavalin A greater than or equal to soybean greater than Limulus polyphemus. No agglutination was noted for Ulex europaeus. Using 125I-labeled lectins it was determined that there are 1.6 and 7 times as many Ricinus communis lectin binding sites for concanavalin A and soybean lectins. Sodium deoxycholate-solubilized plasma membrane material was subjected to lectin affinity chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The lectin receptors of the plasma membrane appeared to be heterogeneous and some qualitative differences could be discerned among the electrophoretically analyzed material, which bound to and was specifically eluted from the various lectin affinity columns. The characteristics of elution of bound material from individual lectin columns indicated secondary hydrophobic interactions between concanavalin A or wheat germ agglutinin and their respective lectin receptor molecules.  相似文献   

5.
Bloodstream trypomastigote and culture procyclic (insect midgut) forms of a cloned T. rhodesiense variant (WRAT at 1) were tested for agglutination with the lectins concanavalin A (Con A), phytohemagglutinin P (PP), soybean agglutinin (SBA), fucose binding protein (FBP), wheat germ agglutinin (WGA), and castor bean lectin (RCA). Fluorescence-microscopic localization of lectin binding to both formalin-fixed trypomastigotes and red cells was determined with fluorescein isothiocyanate (FITC)-conjugated Con A, SBA, FBP, WGA, RCA, PNA (peanut agglutinin), DBA (Dolichos bifloris), and UEA (Ulex europaeus) lectins. Electron microscopic localization of lectin binding sites on bloodstream trypomastigotes was accomplished by the Con A-horseradish peroxidase-diamino-benzidine (HRP-DAB) technique, and by a Con A-biotin/avidin-ferritin method. Trypomastigotes, isolated by centrifugation or filtration through DEAE-cellulose or thawed after cryopreservation, were agglutinated by the lectins Con A and PP with agglutination strength scored as Con A greater than PP. No agglutination was observed in control preparations or with the lectins WGA, FBA or SBA. Red cells were agglutinated by all the lectins tested. Formalin-fixed bloodstream trypomastigotes bound FITC-Con A and FITC-RCA but not FITC-WAG, -SBA, -PNA, -UEA or -DBA lectins. All FITC-labeled lectins bound to red cells. Con A receptors, visualized by Con A-HRP-DAB and Con A-biotin/avidin-ferritin techniques, were distributed uniformly on T. rhodesiense bloodstream forms. No lectin receptors were visualized on control preparations. Culture procyclics lacked a cell surface coat and were agglutinated by Con A and WGA but not RCA, SBA, PP and FBP. Procyclics were not agglutinated by lectins in the presence of competing sugar at 0.25 M.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
A high-resolution technique has been used to study differentiation-related and leukemia-associated glycoproteins. Cells are labeled with the membrane-impermeable probe sulfo-N-hydroxysuccinimidyl-biotin. Nonionic detergent extracts are subjected to affinity chromatography on a number of immobilized lectins and after polyacrylamide gel electrophoresis in sodium dodecyl sulfate (SDS-PAGE) and western transfer, the biotin-labeled glycoproteins are visualized by using avidin-horseradish peroxidase and 4-chloronaphthol. With the aid of the lectins concanavalin A, Dolichos biflouros agglutinin, Lens culinaris hemagglutinin, peanut agglutinin, pokeweed mitogen, Ricinus communus agglutinin I, soybean agglutinin, Ulex europeus agglutinin I (UEA), and wheat germ agglutinin, each purifies different glycoprotein subsets from the same cell type. Mature cells of distinct hematopoietic lineages differ considerably in their cell surface glycoprotein patterns. This technique was used to analyze the glycoproteins of human leukemia cells before and after the induction of differentiation. K562 cells differentiated along different lineages after treatment with phorbol 12-myristate 13-acetate, sodium butyrate, dimethyl sulfoxide, or hemin. Limited specific alterations were observed with a number of lectins when K562 erythroleukemia cells were induced to differentiate. Among these, a number of bands were identified that were either lost or appeared after induction of differentiation with all four agents. In contrast, the glycoproteins bound by UEA were drastically diminished after induction of differentiation, and the remaining UEA-bound glycoproteins bore little resemblance to those of the cells before treatment. This high-resolution technique may be useful as a general method for the examination of cell surface glycoprotein differences. Once specific glycoprotein alterations are detected, lectin affinity chromatography and SDS-PAGE allow purification of antigens for the production of monoclonal antibodies.  相似文献   

7.
8.
Among the known life cycle stages of Trypanosoma cruzi only the amastigote form bound lactoferrin (LF), a glycoprotein produced by neutrophils. This capacity was readily demonstrable by indirect immunofluorescence in amastigotes derived from mice, a mammalian cell culture, or grown in an axenic medium. No LF binding was detectable on trypomastigotes from blood or mammalian cells, insect-derived metacyclics or epimastigotes, or on epimastigotes grown in Warren's medium. Serum levels of LF were increased in mice acutely infected with T. cruzi, and amastigotes from the spleens of these animals were found to have the glycoprotein on their surface. The amastigote LF receptor may have biological significance in parasite-host interaction since mononuclear phagocytes also express a LF receptor, and treatment of these cells with LF has been shown to increase their capacities to take up and kill T. cruzi amastigotes in vitro. The LF receptor is the first marker for T. cruzi amastigotes for which a naturally occurring ligand has been described.  相似文献   

9.
Specific binding of fluoresceinated succinyl-concanavalin A, wheat germ agglutinin, and ricin to untreated and trypsinized bloodstream forms of Trypanosoma brucei rhodesiense was quantitated by flow cytofluorimetry, and sites of lectin binding were identified by fluorescence microscopy. All three lectins only bound to the flagellar pocket of untreated parasites. When parasites were trypsinized to remove the variant surface glycoprotein coat, new lectin binding sites were exposed, and specific binding of all three lectins increased significantly. New specific binding sites for succinyl-concanavalin A and wheat germ agglutinin were present along both the free flagellum and flagellar adhesion zone and were uniformly distributed on the parasite surface. However, ricin did not bind uniformly on the surface and did not stain the free flagellum of trypsinized cells. Ricin only bound to the flagellar adhesion zone of trypsinized cells and of cells that had been treated with formaldehyde prior to staining. Electron microscopy of cells exposed to ricin-colloidal gold complexes revealed that that ricin binding was restricted to the anterior membrane of the flagellar pocket of untrypsinized cells and to this portion of the flagellar pocket and the cell body membrane in the flagellar adhesion zone of trypsinized cells. Evidence that these membranes constitute a functionally important membrane microdomain is reviewed.  相似文献   

10.
Specific binding of fluoresceinated succinyl-concanavalin A, wheat germ agglutinin, and ricin to untreated and trypsinized bloodstream forms of Trypanosoma brucei rhodesiense was quantitated by flow cytofluorimetry, and sites of lectin binding were identified by fluorescence microscopy. All three lectins only bound to the flagellar pocket of untreated parasites. When parasites were trypsinized to remove the variant surface glycoprotein coat, new lectin binding sites were exposed, and specific binding of all three lectins increased significantly. New specific binding sites for succinyl-concanavalin A and wheat germ agglutinin were present along both the free flagellum and flagellar adhesion zone and were uniformly distributed on the parasite surface. However, ricin did not bind uniformly on the surface and did not stain the free flagellum of trypsinized cells. Ricin only bound to the flagellar adhesion zone of trypsinized cells and of cells that had been treated with formaldehyde prior to staining. Electron microscopy of cells exposed to ricin-colloidal gold complexes revealed that that ricin binding was restricted to the anterior membrane of the flagellar pocket of untrypsinized cells and to this portion of the flagellar pocket and the cell body membrane in the flagellar adhesion zone of trypsinized cells. Evidence that these membranes constitute a functionally important membrane microdomain is reviewed.  相似文献   

11.
Several aspects of the interaction of various lectins with the surface of Ehrlich ascites carcinoma cells are described. The order of agglutinating activity for various various lectins is Ricinuscommunis > wheat germ concanavalin A soybean >Limuluspolyphemus. No agglutination was noted for Ulex europaeus. Using 125I-labeled lectins it was determined that there are 1.6 and 7 times as many Ricinus communis lectin binding sites as sites for concanavalin A and soybean lectins. Sodium deoxy-cholate-solubilized plasma membrane material was subjected to lectin affinity chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The lectin receptors of the plasma membrane appeared to be heterogeneous and some qualitative differences could be discerned among the electrophoretically analyzed material, which bound to and was specifically eluted from the various lectin affinity colums. The characteristics of elution of bound material from individual lectin columns indicated secondary hydrophobic interactions between concanavalin A or wheat germ agglutinin and their respective lectin receptor molecules.  相似文献   

12.
The major platelet membrane glycoproteins have been solubilized in 1.0% sodium deoxycholate and subjected to affinity chromatography on the lectins from Lens culinaris, wheat germ and Abrus precatorius. Polyacrylamide gel electrophoresis in the presence and absence of a reducing agent together with the differential binding of the lectins to the glycoproteins permitted the distinction of at least seven separate glycoprotein entities. A new nomenclature for the glycoproteins is proposed to accomodate the additional data.Using combinations of lectin columns, glycoproteins Ia and Ib could be prepared in a pure state and IIb and IIIa could be greatly purified. The binding of lectins to glycoprotein Ib has been strongly implicated as a necessary step in the aggregation response of platelets to lectins.  相似文献   

13.
Flow cytometry was used to quantify the binding of fluorescein isothiocyanate (FITC)-labeled lectins to testis cells from ICR and T/t6 mice before and after trypsin treatment. Soybean agglutinin, wheat germ agglutinin, and concanavalin A bound well to testis cells of both mouse strains. Limax flavus agglutinin (LFA) bound very slightly and Ulex europeas agglutinin (UEA) did not bind at all. Trypsinization increased binding of soybean agglutinin and decreased binding of wheat germ agglutinin in both mouse strains, providing evidence for masked carbohydrate-binding sites on the surface of germ cells. It did not affect binding of the other lectins. Trypsin treatment was an attempt to increase lectin binding, particularly the binding of LFA and UEA to the reported T/t-specific carbohydrates, sialic acid, and L-fucose, respectively. These studies indicate that the T/t6 locus alleles do not alter the surface carbohydrate content of testis cells sufficiently to be detected by lectin-binding differences.  相似文献   

14.
Chagas' disease is a chronic, debilitating and incapacitating illness, caused by the protozoan parasite Trypanosoma cruzi when infective trypomastigotes invade host cells. Although the mechanism of trypomastigotes interaction with mammalian cells has been intensively studied, a final and integrated picture of the signal transduction mechanisms involved still remains to be elucidated. Our group has previously shown that the conserved FLY domain (VTVXNVFLYNR), present in all members of the gp85/trans-sialidase glycoprotein family coating the surface of trypomastigotes, binds to cytokeratin 18 (CK18) on the surface of LLC-MK(2) epithelial cells, and significantly increases parasite entry into mammalian cells. Now it is reported that FLY, present on the surface of trypomastigotes or on latex beads binds to CK18, promotes dephosphorylation and reorganization of CK18 and activation of the ERK1/2 signaling cascade culminating in an increase of approximately 9-fold in the number of parasites/cell. Inhibition of ERK1/2 phosphorylation completely blocks the adhesion of FLY to cells and blocks by 57% the host cell infection by T. cruzi. Taken together our results indicate that the conserved FLY domain is an important tool that trypomastigotes have evolved to specific exploit the host cell machinery and guarantee a successful infection.  相似文献   

15.
The physicochemical and binding properties of succinylated wheat germ agglutinin are described in comparison with these of unmodified wheat germ agglutinin. Succinylated wheat germ agglutinin is an acidic protein with a pI of 4.0 +/- 0.2 while the native lectin is basic, pI of 8.5. The solubility of succinylated wheat germ agglutinin is about 100 times higher than that of the unmodified lectin at neutral pH. Both lectins are dimeric at pH down to 5, and the dissociation occurs at pH lower than 4.5. The binding of oligosaccharides of N-acetylglucosamine to both lectins is very similar on the basis of fluorescence and phosphorescence studies. The minimal concentration required to agglutinate rabbit red blood cells is about 2 microgram/ml with both lectins and the concentrations of N-acetylglucosamine and di-N-acetylchitobiose which inhibit agglutination are similar with both lectins. The number of succinylated wheat germ agglutinin molecules bound to the surface of mouse thymocytes was ten times lower than that of the unmodified lectin although the apparent binding constant was only slightly different between the two lectins. The dramatic decrease of the apparent number of cell surface receptors upon succinylation of the lectin is discussed on the basis of the decrease of the isoelectric point and of the acidic properties of the cell surface.  相似文献   

16.
Affinity chromatography on Sepharose-fetuin columns was used in a single step procedure to isolate the lectins concanavalin A, Favin, phytohemagglutinin, wheat germ agglutinin, and Limulus hemagglutinin. New lectins with unknown binding specificities were also purified by the same procedure from extracts of small California white beans, Idaho red beans, and white pea beans. The purified lectins exhibited different cell surface mapping properties on erythrocytes, lymphocytes, and sperm cells. It was particularly striking that neither 131I-labeled concanavalin nor 125I-labeled wheat germ agglutinin had any effect on the binding of the other to mouse spleen cells. In accord with this observation, gel electrophoretic analysis of radiolabeled lymphocyte receptors for these two lecithins yielded different patterns. These results indicate that highly purified lectins prepared by affinity chromatography on the same adsorbent can possess strikingly different binding specificities for cell surface receptors.  相似文献   

17.
Distribution of lectin-binding sites in rat submandibular and sublingual salivary glands during postnatal development has been investigated. Lectin preparations include con A, lentin lectin, castor beans agglutinin, peanut, soybean and Sophora japonica agglutinins, wheat germ agglutinin and lectin from the bark of Laburnum anagyroides. The direct and indirect peroxidase techniques are used. According to the similarities of histochemical patterns, all lectins are divided into four groups. Besides the general patterns of lectin binding sites, some details are noted. Lectins of peanut and Sophora japonica possess an extremely high affinity to mast cells, con A, lens lectin, castor beans and wheat germ agglutinins--to serous demilunes cells. Laburnum lectin--to salivary ducts epithelia in adult rat salivary glands. Lentin lectin, con A and Laburnum lectin preferentially stain cells with specific granularity in granular ducts at early stages of postnatal development. Considering the character of staining, we propose for further histochemical investigations of the salivary glands lentin lectin, peanut agglutinin, wheat germ agglutinin and Laburum anagyroides lectin.  相似文献   

18.
The effect of incubation with lectins of the macrophages or two evolutive stages of Trypanosoma cruzi (noninfective epimastigotes and infective trypomastigotes) on the ingestion of the parasites by mouse peritoneal macrophages was studied. Lectins which bind to residues of mannose (Lens culinaris, LCA), N-acetyl-D-glucosamine or N-acetylneuraminic acid (Triticum vulgaris, WGA), beta-D-galactose (Ricinus communis, RCA), N-acetyl-D-galactosamine (Phaseolus vulgaris, PHA; Dolichos biflorus, DBA; and Wistaria floribunda, WFA), fucose (Lotus tetragonolobus, LTA), and N-acetylneuraminic acid (Limulus polyphemus, LPA) were used. By lectin blockage we concluded that, alpha-D-mannose-like, beta-D-galactose and N-acetyl-D-galactosamine (PHA, reagent) residues, located on the macrophage's surface are required for both epi- and trypomastigote uptake, while N-acetylneuraminic acid and fucose residues, impede trypomastigote ingestion but do not interfere with epimastigote interiorization. Macrophages' N-acetyl-D-glucosamine residues are required for epimastigote uptake. On the other hand, from the T. cruzi surface, mannose residues prevent ingestion of epi- and trypomastigotes. Galactose residues participate in endocytosis of trypomastigotes, but hinder epimastigote interiorization. Exposed N-acetyl-D-glucosamine residues are required for uptake of the two evolutive forms. N-acetylneuraminic acid residues on the trypomastigote membrane prevent their endocytosis by macrophages. These results together with those reported previously showing the effect of monosaccharides on the T. cruzi-macrophage interaction, indicate that (a) sugar residues located on the parasite and on macrophage surface play some role in the process of recognition of T. cruzi, (b) different macrophage carbohydrate-containing receptors are involved in the recognition of epimastigotes and trypomastigotes forms of T. cruzi, (c) N-acetylneuraminic acid residues located on the surface of trypomastigotes or macrophages impede the interaction of the parasite with these host cells, and suggest that (d) sugar-binding proteins located on the macrophage surface participate in the recognition of beta-D-galactose and N-acetyl-D-galactosamine residues located on the surface of trypomastigotes and exposed after blockage or splitting off of N-acetylneuraminic acid residues. Some lectins which bind to macrophages and block the ingestion of parasites did not interfere with their adhesion.  相似文献   

19.
The high resistance of Trypanosoma cruzi trypomastigotes, the causal agent of Chagas' disease, to complement involves several parasite strategies. In these in vitro studies, we show that T. cruzi calreticulin (TcCRT) and two subfragments thereof (TcCRT S and TcCRT R domains) bind specifically to recognition subcomponents of the classical and lectin activation pathways (i.e., to collagenous tails of C1q and to mannan-binding lectin) of the human complement system. As a consequence of this binding, specific functional inhibition of the classical pathway and impaired mannan-binding lectin to mannose were observed. By flow cytometry, TcCRT was detected on the surface of viable trypomastigotes and, by confocal microscopy, colocalization of human C1q with surface TcCRT of infective trypomastigotes was visualized. Taken together, these findings imply that TcCRT may be a critical factor contributing to the ability of trypomastigotes to interfere at the earliest stages of complement activation.  相似文献   

20.
Freeze-etch electron microscopy has been utilized to localize the binding sites for the Ricinus communis, Agaricus bisporus and wheat germ lectins on human erythrocyte membranes and to determine the relation of these different glycoprotein receptors to the intramembranous particles. A. bisporus lectin, which could be visualized directly on the surface of erythrocyte membranes, and ferritin conjugates of wheat germ agglutinin showed a distribution that correlates exactly with the intramembranous particles at all lectin concentrations tested. The binding sites for both of these lectins are located on the major sialoglycoprotein of the membrane. The R. communis agglutinin-ferritin conjugate which binds to receptors on membrane glycoproteins that are distinct from the major sialoglycoprotein showed a close correlation with the intramembranous particles at low lectin concentrations and a poor correlation at high lectin concentrations. High concentrations resulted in virtually complete coating of the surface of trypsinized ghosts which displayed marked aggregation of the intramembranous particles. We conclude that the intramembranous particles of erythrocyte membranes contain at least two glycoproteins and that some membrane lectin receptors are not associated with the intramembranous particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号