首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rubella virus is an enveloped positive-strand RNA virus of the family TOGAVIRIDAE: Virions are composed of three structural proteins: a capsid and two membrane-spanning glycoproteins, E2 and E1. During virus assembly, the capsid interacts with genomic RNA to form nucleocapsids. In the present study, we have investigated the role of capsid phosphorylation in virus replication. We have identified a single serine residue within the RNA binding region that is required for normal phosphorylation of this protein. The importance of capsid phosphorylation in virus replication was demonstrated by the fact that recombinant viruses encoding hypophosphorylated capsids replicated at much lower titers and were less cytopathic than wild-type virus. Nonphosphorylated mutant capsid proteins exhibited higher affinities for viral RNA than wild-type phosphorylated capsids. Capsid protein isolated from wild-type strain virions bound viral RNA more efficiently than cell-associated capsid. However, the RNA-binding activity of cell-associated capsids increased dramatically after treatment with phosphatase, suggesting that the capsid is dephosphorylated during virus assembly. In vitro assays indicate that the capsid may be a substrate for protein phosphatase 1A. As capsid is heavily phosphorylated under conditions where virus assembly does not occur, we propose that phosphorylation serves to negatively regulate binding of viral genomic RNA. This may delay the initiation of nucleocapsid assembly until sufficient amounts of virus glycoproteins accumulate at the budding site and/or prevent nonspecific binding to cellular RNA when levels of genomic RNA are low. It follows that at a late stage in replication, the capsid may undergo dephosphorylation before nucleocapsid assembly occurs.  相似文献   

2.
Pleconaril is a broad-spectrum antirhinovirus and antienterovirus compound that binds into a hydrophobic pocket within viral protein 1, stabilizing the capsid and resulting in the inhibition of cell attachment and RNA uncoating. When crystals of human rhinovirus 16 (HRV16) and HRV14 are incubated with pleconaril, drug occupancy in the binding pocket is lower than when pleconaril is introduced during assembly prior to crystallization. This effect is far more marked in HRV16 than in HRV14 and is more marked with pleconaril than with other compounds. These observations are consistent with virus yield inhibition studies and radiolabeled drug binding studies showing that the antiviral effect of pleconaril against HRV16 is greater on the infectivity of progeny virions than the parent input viruses. These data suggest that drug integration into the binding pocket during assembly, or at some other late stage in virus replication, may contribute to the antiviral activity of capsid binding compounds.  相似文献   

3.
4.
Prototype temperature-sensitive (ts) mutants of a coxsackievirus B3 parent virus capable of replication to similar levels at 34 or 39.5 degrees C were examined for the nature of the temperature-sensitive event restricting replication in HeLa cells at 39.5 degrees C. The ts mutant prototypes represented three different non-overlapping complementation groups. The ts1 mutant (complementation group III) synthesized less than 1% of the infectious genomic RNA synthesized by the coxsackievirus B3 parent virus at 39.5 degrees C and was designated an RNA- mutant. Agarose gel analysis of glyoxal-treated RNA from cells inoculated with ts1 virus revealed that cell RNA synthesis continued in the presence of synthesis of the small amount of viral RNA. This mutant was comparatively ineffective in inducing cell cytopathology and in directing synthesis of viral polypeptides, likely due to the paucity of nascent genomes for translation. The ts5 mutant (complementation group II) directed synthesis of appreciable quantities of both viral genomes (RNA+) and capsid polypeptides; however, assembly of these products into virions occurred at a low frequency, and virions assembled at 39.5 degrees C were highly unstable at that temperature. Shift-down experiments with ts5-inoculated cells showed that capsid precursor materials synthesized at 39.5 degrees C can, after shift to 34 degrees C, be incorporated into ts5 virions. We suggest that the temperature-sensitive defect in this prototype is in the synthesis of one of the capsid polypeptides that cannot renature into the correct configuration required for stability in the capsid at 39.5 degrees C. The ts11 mutant (complementation group I) also synthesized appreciable amounts of viral genomes (RNA+) and viral polypeptides at 39.5 degrees C. Assembly of ts11 virions at 39.5 degrees C occurred at a low frequency, and the stability of these virions at 39.5 degrees C was similar to that of the parent coxsackievirus B3 virions. The temperature-sensitive defect in the ts11 prototype is apparently in assembly. The differences in biochemical properties of the three prototype ts mutants at temperatures above 34 degrees C may ultimately offer insight into the differences in pathogenicity observed in neonatal mice for the three prototype ts mutants.  相似文献   

5.
There are two important problems in the assembly of small, icosahedral RNA viruses. First, how does the capsid protein select the viral RNA for packaging, when there are so many other candidate RNA molecules available? Second, what is the mechanism of assembly? With regard to the first question, there are a number of cases where a particular RNA sequence or structure—often one or more stem-loops—either promotes assembly or is required for assembly, but there are others where specific packaging signals are apparently not required. With regard to the assembly pathway, in those cases where stem-loops are involved, the first step is generally believed to be binding of the capsid proteins to these “fingers” of the RNA secondary structure. In the mature virus, the core of the RNA would then occupy the center of the viral particle, and the stem-loops would reach outward, towards the capsid, like stalagmites reaching up from the floor of a grotto towards the ceiling. Those viruses whose assembly does not depend on protein binding to stem-loops could have a different structure, with the core of the RNA lying just under the capsid, and the fingers reaching down into the interior of the virus, like stalactites. We review the literature on these alternative structures, focusing on RNA selectivity and the assembly mechanism, and we propose experiments aimed at determining, in a given virus, which of the two structures actually occurs.  相似文献   

6.
The UL17 protein of herpes simplex virus type 1 is essential for packaging the viral genome into the procapsid, a spherical assembly intermediate, and is present in the mature virus particle. We have examined the distribution of UL17 in various assembly products and virions to determine which component of the virus particle UL17 is associated with and at what stage in capsid assembly UL17 is required. UL17 was present in the procapsid, in the DNA-containing angularized C capsid, and in two other angularized capsid forms, A and B, that lack DNA and are thought to be dead-end products. The results suggest that UL17 is a minor capsid protein which is incorporated into the procapsid during assembly of the particle. UL17 was also found in virions and in noninfectious structures known as light (L) particles, which possess a tegument and envelope but lack a capsid. The level of UL17 in these particles was much greater than the amount that could be attributed to capsid contamination of the purified L-particle preparation, suggesting that UL17 is also a tegument protein. The finding that virions contain approximately twofold more UL17 than do C capsids provided further support for the idea that UL17 is present in two different structural components within the mature virion. The UL25 packaging protein, which is also present in virions, was not found in significant amounts in L particles, indicating that it is associated only with the capsid. UL6, the third virion-associated packaging protein, was present in slightly increased levels in L particles.  相似文献   

7.
HIV-1 Gag drives a number of events during the genesis of virions and is the only viral protein required for the assembly of virus-like particles in vitro and in cells. Although a reasonable understanding of the processes that accompany the later stages of HIV-1 assembly has accrued, events that occur at the initiation of assembly are less well defined. In this regard, important uncertainties include where in the cell Gag first multimerizes and interacts with the viral RNA, and whether Gag-RNA interaction requires or induces Gag multimerization in a living cell. To address these questions, we developed assays in which protein crosslinking and RNA/protein co-immunoprecipitation were coupled with membrane flotation analyses in transfected or infected cells. We found that interaction between Gag and viral RNA occurred in the cytoplasm and was independent of the ability of Gag to localize to the plasma membrane. However, Gag:RNA binding was stabilized by the C-terminal domain (CTD) of capsid (CA), which participates in Gag-Gag interactions. We also found that Gag was present as monomers and low-order multimers (e.g. dimers) but did not form higher-order multimers in the cytoplasm. Rather, high-order multimers formed only at the plasma membrane and required the presence of a membrane-binding signal, but not a Gag domain (the CA-CTD) that is essential for complete particle assembly. Finally, sequential RNA-immunoprecipitation assays indicated that at least a fraction of Gag molecules can form multimers on viral genomes in the cytoplasm. Taken together, our results suggest that HIV-1 particle assembly is initiated by the interaction between Gag and viral RNA in the cytoplasm and that this initial Gag-RNA encounter involves Gag monomers or low order multimers. These interactions per se do not induce or require high-order Gag multimerization in the cytoplasm. Instead, membrane interactions are necessary for higher order Gag multimerization and subsequent particle assembly in cells.  相似文献   

8.
In Sindbis virus, initiation of nucleocapsid core assembly begins with recognition of the encapsidation signal of the viral RNA genome by capsid protein. This nucleation event drives the recruitment of additional capsid proteins to fully encapsidate the genome, generating an icosahedral nucleocapsid core. The encapsidation signal of the Sindbis virus genomic RNA has previously been localized to a 132-nucleotide region of the genome within the coding region of the nsP1 protein, and the RNA-binding activity of the capsid was previously mapped to a central region of the capsid protein. It is unknown how capsid protein binding to encapsidation signal leads to ordered oligomerization of capsid protein and nucleocapsid core assembly. To address this question, we have developed a mobility shift assay to study this interaction. We have characterized a 32 amino acid peptide capable of recognizing the Sindbis virus encapsidation signal RNA. Using this peptide, we were able to observe a conformational change in the RNA induced by capsid protein binding. Binding is tight (K(d)(app) = 12 nM), and results in dimerization of the capsid peptide. Mutational analysis reveals that although almost every predicted secondary structure within the encapsidation signal is required for efficient protein binding, the identities of the bases within the helices and hairpin turns of the RNA do not need to be maintained. In contrast, two purine-rich loops are essential for binding. From these data, we have developed a model in which the encapsidation signal RNA adopts a highly folded structure and this folding process directs early events in nucleocapsid assembly.  相似文献   

9.
The molecular mechanisms responsible for long-distance, directional spread of alphaherpesvirus infections via axons of infected neurons are poorly understood. We describe the use of red and green fluorescent protein (GFP) fusions to capsid and tegument components, respectively, to visualize purified, single extracellular virions and axonal assemblies after pseudorabies virus (PRV) infection of cultured neurons. We observed heterogeneity in GFP fluorescence when GFP was fused to the tegument component VP22 in both single extracellular virions and discrete puncta in infected axons. This heterogeneity was observed in the presence or absence of a capsid structure detected by a fusion of monomeric red fluorescent protein to VP26. The similarity of the heterogeneous distribution of these fluorescent protein fusions in both purified virions and in axons suggested that tegument-capsid assembly and axonal targeting of viral components are linked. One possibility was that the assembly of extracellular and axonal particles containing the dually fluorescent fusion proteins occurred by the same process in the cell body. We tested this hypothesis by treating infected cultured neurons with brefeldin A, a potent inhibitor of herpesvirus maturation and secretion. Brefeldin A treatment disrupted the neuronal secretory pathway, affected fluorescent capsid and tegument transport in the cell body, and blocked subsequent entry into axons of capsid and tegument proteins. Electron microscopy demonstrated that in the absence of brefeldin A treatment, enveloped capsids entered axons, but in the presence of the inhibitor, unenveloped capsids accumulated in the cell body. These results support an assembly process in which PRV capsids acquire a membrane in the cell body prior to axonal entry and subsequent transport.  相似文献   

10.
West Nile virus (WNV) capsid (C) protein is one of the three viral structural proteins and it encapsidates the viral RNA to form the nucleocapsid. It is known to be a multifunctional protein involved in assembly and apoptosis. WNV C protein was previously found to be phosphorylated in infected cells and bioinformatic analysis revealed 5 putative phosphorylation sites at serine 26, 36, 83, 99 and threonine 100. Phosphorylation was abolished through mutagenesis of these putative phosphorylation sites to investigate how phosphorylation could affect the processes of nucleocapsid assembly like RNA binding, oligomerization and cellular localization. It was found that phosphorylation attenuated its RNA binding activity. Although oligomerization was not inhibited by mutagenesis of the putative phosphorylation sites, the rate of dimerization and oligomerization was affected. Hypophosphorylation of C protein reduced its nuclear localization efficiency and hence enhanced cytoplasmic localization. This study also revealed that although WNV C is phosphorylated in infected cells, the relative level of phosphorylation is reduced over the course of an infection to promote RNA binding and nucleocapsid formation in the cytoplasm. This is the first report to describe how dynamic phosphorylation of WNV C protein modulates the processes involved in nucleocapsid assembly.  相似文献   

11.
12.
13.
14.
Ott DE  Coren LV  Gagliardi TD 《Journal of virology》2005,79(22):13839-13847
RNA appears to be required for the assembly of retroviruses. This is likely due to binding of RNA by multiple Gags, which in turn organizes and stabilizes the Gag-Gag interactions that form the virion. While the nucleocapsid (NC) domain is the most conspicuous RNA-binding region of the human immunodeficiency virus type 1 (HIV-1) Gag polyprotein, we have previously shown that NC is not strictly required for efficient particle production. To determine if an RNA requirement for HIV-1 assembly exists, we analyzed virions produced by an NC deletion mutant for the presence of RNA. The results revealed that virions without NC still contained significant amounts of RNA. Since these packaged RNAs are probably incorporated by other RNA-binding sequences in Gag, an RNA-binding site in the matrix protein (MA) of Gag was mutated. While this mutation did not interfere with HIV-1 replication, a construct with both MA and NC mutations (MX/NX) failed to produce particles. The MX/NX mutant was rescued in trans by coassembly with several forms of Gag: wild-type Gag, either of the single-mutant Gags, or Gag truncations that contain MA or NC sequences. Addition of basic sequences to the MX/NX mutant partially restored particle production, consistent with a requirement for Gag-RNA binding in addition to Gag-Gag interactions. Together, these results support an RNA-binding requirement for Gag assembly, which relies on binding of RNA by MA or NC sequences to condense, organize, and stabilize the HIV-1 Gag-Gag interactions that form the virion.  相似文献   

15.
A large number of single-stranded RNA viruses, which form a major class of all viruses, co-assemble their protein container and their genomic material. The multiple roles of the viral genome in this process are presently only partly understood. Recent experimental results indicate that RNA, in addition to its function as a repository for genetic information, could play important functional roles during the assembly of the viral protein containers. An investigation of the impact of genomic RNA on the association of the protein subunits may therefore provide further insights into the mechanism of virus assembly. We study here the impact of viral RNA on the association rates of the capsid proteins during virus assembly. As a case study, we consider the viral capsid of bacteriophage MS2, which is formed from 60 asymmetric (AB) and 30 symmetric (CC) protein dimers. Using Brownian dynamics simulations, we investigate the effect of the binding of an RNA stem-loop (the translational repressor) on the association rates of the capsid protein dimers. Our analysis shows that translational repressor binding results in self-association of AB dimers being inhibited, whilst association of AB with CC dimers is greatly enhanced. This provides an explanation for experimental results in which an alternating assembly pattern of AB and CC dimer addition to the growing assembly intermediate has been observed to be the dominant mode of assembly. The presence of the RNA hence dramatically decreases the number of dominant assembly pathways and thereby reduces the complexity of the self-assembly process of these viruses.  相似文献   

16.
Flock House virus (FHV; Nodaviridae) is a positive-strand RNA virus that encapsidates a bipartite genome consisting of RNA1 and RNA2. We recently showed that specific recognition of these RNAs for packaging into progeny particles requires coat protein translated from replicating viral RNA. In the present study, we investigated whether the entire assembly pathway, i.e., the formation of the initial nucleating complex and the subsequent completion of the capsid, is restricted to the same pool of coat protein subunits. To test this, coat proteins carrying either FLAG or hemagglutinin epitopes were synthesized from replicating or nonreplicating RNA in the same cell, and the resulting particle population and its RNA packaging phenotype were analyzed. Results from immunoprecipitation analysis and ion-exchange chromatography showed that the differentially tagged proteins segregated into two distinct populations of virus particles with distinct RNA packaging phenotypes. Particles assembled from coat protein that was translated from replicating RNA contained the FHV genome, whereas particles assembled from coat protein that was translated from nonreplicating mRNA contained random cellular RNA. These data demonstrate that only coat proteins synthesized from replicating RNA partake in the assembly of virions that package the viral genome and that RNA replication, coat protein translation, and virion assembly are processes that are tightly coupled during the life cycle of FHV.  相似文献   

17.
We have examined the absorption and circular dichroism spectra of intact Penicillium chrysogenum virus, empty capsid particles, and isolated double-stranded RNA. The absorbance at 260 nm of intact virus was less than 4% hypochromic relative to the absorbances of the free double-stranded RNA and free viral protein, indicating very little change in the base stacking interactions of the RNA. Circular dichroism studies of intact virus indicate that the capsid protein consists of 45% alpha-helix. Empty capsids, containing a protein of the same molecular weight as intact virus protein, were found to have 30% alpha-helix, suggesting a conformational change in the capsid upon assembly with RNA. The conformation of double-stranded RNA in the virus was slightly altered from the solution structure of the RNA in 0.01 M Na+ and resembled the conformation of double-stranded RNA partially bound with spermidine. However, the virus does not appear to contain polyamines. Electrophoretic experiments indicate a pH- and salt-titratable RNA binding site on the capsid protein in virus disrupted by urea or non-ionic detergents. The results are consistent with significant ionic interactions between the RNA and the capsid protein in the virus.  相似文献   

18.
The HBV (hepatitis B virus) core is a phosphoprotein whose assembly, replication, encapsidation and localization are regulated by phosphorylation. It is known that PKC (protein kinase C) regulates pgRNA (pregenomic RNA) encapsidation by phosphorylation of the C-terminus of core, which is a component packaged into capsid. Neither the N-terminal residue phosphorylated by PKC nor the role of the C-terminal phosphorylation have been cleary defined. In the present study we found that HBV Cp149 (core protein C-terminally truncated at amino acid 149) expressed in Escherichia coli was phosphorylated by PKC at Ser(106). PKC-mediated phosphorylation increased core affinity, as well as assembly and capsid stability. In vitro phosphorylation with core mutants (S26A, T70A, S106A and T114A) revealed that the Ser(106) mutation inhibited phosphorylation of core by PKC. CD analysis also revealed that PKC-mediated phosphorylation stabilized the secondary structure of capsid. When either pCMV/FLAG-Cp149[WT (wild-type)] or pCMV/FLAG-S106A Cp149 was transfected into Huh7 human hepatoma cells, mutant capsid level was decreased by 2.06-fold with the S106A mutant when compared with WT, although the same level of total protein was expressed in both cases. In addition, when pUC1.2x and pUC1.2x/S106A were transfected, mutant virus titre was decreased 2.31-fold compared with WT virus titre. In conclusion, PKC-mediated phosphorylation increased capsid assembly, stability and structural stability.  相似文献   

19.
Pestiviruses, including bovine viral diarrhea virus (BVDV), are important animal pathogens and close relatives of hepatitis C virus. Pestivirus particles are composed of an RNA genome, a host-derived lipid envelope, and four virion-encoded structural proteins, core (C), Erns, E1, and E2. Core is a small, highly basic polypeptide that is processed by three enzymatic cleavages before its incorporation into virions. Little is known about its biological properties or its role in virion assembly and structure. We have purified BVDV core protein and characterized it biochemically. We have determined that the processed form of core lacks significant secondary structure and is instead intrinsically disordered. Consistent with its highly basic sequence, we observed that core binds to RNA, although with low affinity and little discernible specificity. We found that BVDV core protein was able to functionally replace the nonspecific RNA binding and condensing region of an unrelated viral capsid protein. Together these results suggest that the in vitro properties of core may reflect its mechanism of action in RNA packaging and virion morphogenesis.  相似文献   

20.
While analyzing human cytomegalovirus (HCMV) gene expression in infected cells by RNA-specific nucleic acid sequence-based amplification (NASBA), positive results were observed for HCMV RNA encoded by several viral genes immediately after the addition of the virus. UV-inactivated virus also gave a positive NASBA result without establishing active infection, suggesting that RNA was associated with the inoculum. Highly purified virions devoid of cellular contamination proved to be positive for viral RNA encoding both immediate-early (UL123) and late (UL65) gene products. Virion-associated RNA might be incorporated specifically or without selection during the virion assembly. In the latter case, cellular RNA would also be present in the virion. A high-abundant cellular RNA encoded by GAPDH and even U1A RNA, which is expressed at low levels, were detected in the virion fraction, whereas cellular DNA was absent. Virion fractionation revealed that cellular RNA was absent in purified de-enveloped capsids. In conclusion, cellular and viral RNA was present between the capsid and envelope of the virion, whereas in the capsid only viral RNA could be detected. The results suggest that virion-associated viral and cellular RNA is incorporated nonspecifically during virion assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号