首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microbial communities from riparian sediments contaminated with high levels of Ni and U were examined for metal-tolerant microorganisms. Isolation of four aerobic Ni-tolerant, Gram-positive heterotrophic bacteria indicated selection pressure from Ni. These isolates were identified as Arthrobacter oxydans NR-1, Streptomyces galbus NR-2, Streptomyces aureofaciens NR-3, and Kitasatospora cystarginea NR-4 based on partial 16S rDNA sequences. A functional gene microarray containing gene probes for functions associated with biogeochemical cycling, metal homeostasis, and organic contaminant degradation showed little overlap among the four isolates. Fifteen of the genes were detected in all four isolates with only two of these related to metal resistance, specifically to tellurium. Each of the four isolates also displayed resistance to at least one of six antibiotics tested, with resistance to kanamycin, gentamycin, and ciprofloxacin observed in at least two of the isolates. Further characterization of S. aureofaciens NR-3 and K. cystarginea NR-4 demonstrated that both isolates expressed Ni tolerance constitutively. In addition, both were able to grow in higher concentrations of Ni at pH 6 as compared with pH 7 (42.6 and 8.5 mM Ni at pH 6 and 7, respectively). Tolerance to Cd, Co, and Zn was also examined in these two isolates; a similar pH-dependent metal tolerance was observed when grown with Co and Zn. Neither isolate was tolerant to Cd. These findings suggest that Ni is exerting a selection pressure at this site for metal-resistant actinomycetes.  相似文献   

2.
Beauveria bassiana is an insect pathogenic fungus used as a biopesticide in crop pest management. It exists saprophytically in the soil. The pH of the soil and the insect cuticle and its haemocoel may influence fungal survival and infection potential. Therefore the tolerance and optimum pH ranges were studied in 29 isolates of B. bassiana. Germination and growth bioassays in liquid culture medium adjusted to pH values in the range 3–14 at unit intervals were studied. A pH of 3 was found to be toxic to all isolates – conidia germinated at this pH but growth was totally inhibited. All isolates tolerated a pH of 5–13. Some isolates showed tolerance to a pH of 4 and/or 14 as well. Sixteen isolates showed a wide range of pH optimum of 5–13 while others had a narrower optimal range. The relation of the pH tolerance and optimum range of an isolate to its phenotypic characters (colonial morphology and growth-rate) was studied. All isolates with a chalky type colonial morphology had an intermediate growth rate and showed a wide optimum range of pH 5–13 or 5–14. All isolates with dusty type colonial morphology were found to have a high growth rate and a wide pH tolerance range of 4–14. Both chalky and dusty colonial morphology are due to a growth pattern characterized by iterated conidiation with a very brief hyphal stage. The correlation observed between these traits based on external phenotype would facilitate prediction of the pH tolerance characters of an isolate of B. bassiana.  相似文献   

3.
The antagonistic potential of salinity tolerant (ST) Trichoderma (Th) isolates against Fusarium oxysporum f.sp. ciceri (foc) was tested, along with their capability to induce relative salt stress tolerance in chickpea with the aim to exploit their use as biological agents in reducing deleterious effects of salinity and controlling Fusarium wilt of chickpea under saline soil conditions. Under laboratory conditions, salt stress was created by supplementing nutrient medium with different concentrations of NaCl viz. 0, 70, 150 and 240?mM NaCl and a pot experiment was conducted using natural saline soil (EC – 6.6 dS?m?1). Out of 45 Th isolates studied, only five isolates viz. Th-13, Th-14, Th-19, Th-33 and Th-50 were selected to be ST as these were able to grow and sporulate in growth medium containing up to 240?mM NaCl. In saline medium, ST isolates greatly surpassed salinity sensitive (SS) isolate with respect to growth rate, mycelial dry weight, sporulation and biological proficiency against foc. Out of five ST isolates that retained their tolerance to different salt stress levels, Th-14 and Th-19 showed maximum antagonism against foc. Under greenhouse conditions, chickpea plants obtained from seeds bioprimed with Th-14 and Th-19 performed well both at germination and seedling stage in comparison to control in saline soil. As compared to untreated plants, characterisation of Th treated plants confirmed that they had reinforced contents of proline along with relatively higher levels of total phenols, membrane stability index and superoxide dismutase activity while lower accumulation of hydrogen peroxide and malondealdehyde contents. ST isolates, Th-14 and Th-19 significantly reduced foc-induced wilt disease incidence in chickpea plants. The population density of both the Th isolates in rhizosphere far exceeded that of foc under both saline and non-saline soils. However, Th-14 was found more efficient in increasing relative salt stress tolerance in chickpea and reducing the foc growth in rhizosphere under present materials and conditions. These findings provide a novel paradigm for developing alternative, environmentally safe strategy to alleviate salt stress and manage fungal diseases such as foc that aggravates under saline soils.  相似文献   

4.
Aspergillus fumigatus was the most frequently isolated thermophilous fungus from green leaf surfaces. The application of fungicides significantly reduced the frequency of its occurrence there. A. fumigatus was relatively tolerant to fungicides. On Captan-, Thiram-, and Verdasan-treated leaves, A. fumigatus constituted 66%–80% of the total number of isolates obtained at 45°C from each treatment while Dicloran did not depress the percentages. At 45°C, A. fumigatus was found to be strongly cellulolytic with a slow rate of radial extension on YpSs agar and rapid rate of mycelial growth in Czapek Dox liquid medium. Increasing concentrations of all four fungicides reduced or prevented growth, sporulation, starch depletion and cellulose clearing of A. fumigatus. The fungus could tolerate higher concentrations of HgCl2 than of Verdasan. 0.5 g/ml of the four fungicides altered the rates of mycelial growth but not the maximum amount of mycelial dry weight attained.  相似文献   

5.
The fungus Sclerotium rolfsii is presently under development as a bioherbicide for broadleaf weed species using fungus-infested substrates as application material in this laboratory. The effect of environmental factors and three precursors (citric acid, ascorbic acid, and sodium succinate) on mycelial growth, oxalic acid production, and virulence by SC64 in liquid culture were investigated. The results showed that for mycelia growth the optimum liquid medium was Modified Richard's solution (MRS) among the five tested media, but potato dextrose broth (PDB) produced the maximum oxalic acid production and virulence on detached Solidago canadensis leaves. When PDB was used as the basic medium, the oxalic acid/mycelial dry weight (mg g–1) ratio reached the peak 4 days after inoculation. The optimum temperature for oxalic acid production was at 27°C, but increased mycelial dry weight and virulence were observed at 30°C. The optimum range of initial pH value for oxalic acid accumulation was 4.0–6.0, with the optimal pH 5.0; highest mycelial growth was with an initial pH 3.5–6.0 (optimum pH 5.0) and subsequently pH 3.5–5.5 (maximum at pH 3.5). Both mycelial dry weight and oxalic acid production showed a decreasing trend as a result of the precursor of oxalic acid being added to PDB. Among the three precursors, the greatest decrease in mycelial dry weight, and oxalic acid production was caused by sodium succinate. This clarification of optimal conditions for production of mycelial biomass while insuring high concentrations of oxalic acid and high virulence should be useful for further development of this fungus as biocontrol agent.  相似文献   

6.
The development of metal tolerance in soil bacterial communities exposed to different heavy metals was examined under laboratory conditions. An agricultural soil amended with different Zn concentrations was studied most intensively, and measurements were made over a 28-month incubation period by means of the thymidine incorporation technique. Tolerance levels were not affected by metal concentrations lower than 2 mmol of Zn kg (dry weight) of soil(sup-1), but above this value, the level of Zn tolerance increased exponentially with the logarithm of the soil Zn concentration. An increased metal tolerance was detected after only 2 days of Zn exposure. Thereafter, stable tolerance values were observed at different sampling times for bacterial communities exposed to up to 8 mmol of Zn kg (dry weight)(sup-1), indicating no changes in tolerance with time. The tolerance of bacterial communities exposed to 32 mmol of Zn kg (dry weight)(sup-1) increased rapidly within the second week of incubation, but then the values remained unchanged until the end of the experiment. Bacterial communities from soil contaminated with 16 mmol of Zn kg (dry weight)(sup-1) showed an increase of the same magnitude, but the increase started later, after 4 months of incubation, and took place for a much longer period (more than 1 year). Cd, Cu, and Ni addition also resulted in metal-tolerant communities, and the level of tolerance increased with prolonged incubations of the soils. The bacterial community at the end of the incubation period also exhibited a lower pH optimum and an increased tolerance to low osmotic potential. The results suggest that the increase in metal tolerance of the community after adding metals can be attributed to an immediate effect due to the death of sensitive species and a later effect due to different competitive abilities and adaptation of surviving bacteria.  相似文献   

7.
Six strains of ectomycorrhizal fungi were compared for their ability to increase zinc tolerance in Pinus sylvestris L. seedlings. Pioneer and late-stage fungi as well as one strain collected from a Zn-polluted site were included in the study. The accumulation of zinc in the host plants was determined at two different sublethal substrate Zn concentrations. The mycobionts varied considerably in their protection of the autobionts against zinc toxicity. Several fungal species reduced zinc accumulation in the pine seedlings. A Thelephora terrestris (Ehrh.) Fr. Strain, however, increased the Zn concentration in its host plants. Specific zinc-retaining capacity of the mycelium and density of the extramatrical mycelium were important features determining the effectiveness of the zinc retention in the fungal symbiont.The experiments were carried out in a growth chamber where plants were cultivated in root observation chambers. The determination of the extent of substrate colonization showed that an elevated zinc concentration in a substrate might be an important stress factor for the growth of an ectomycorrhizal fungus. The growth of the extramatrical mycelium of some species was inhibited at the highest zinc concentration supplied. A determination of the in vitro zinc tolerance of the fungi could not always predict their tolerance as symbionts, where the latter characteristic did not determine the Zn retention capacity of their mycelium.In this paper we also discuss the possibility that on Zn-polluted soils ectomycorrhizal species and strains are selected that are Zn-tolerant and, in addition, are able to protect their own energy source, the autobiont, from toxicity. These mycorrhizal fungi act as a safety net, that can immobilize large amounts of zinc, thus preventing transport to the host plant.  相似文献   

8.
Growth of unselected tobacco (Nicotiana tabacum W38) cell suspension cultures was reduced by 50–200 M cadmium (Cd) in the culture medium and cells were killed by 400 M Cd. Tolerance to Cd was increased either by using rapidly growing cells or by culturing cells at higher densities. Cell lines tolerant to 2 mM Cd were established by progressively elevating levels of Cd in the culture medium. The Cd tolerance was not due to differences in uptake between unselected and Cd-tolerant cell lines, and the tolerance to Cd was not lost during long term culture in the absence of Cd. Cd-tolerant cells also showed higher tolerance to heat shock (37.5°C, 2–8 hours) and cold treatments (4°C, 1–7 days) than the unselected cells.  相似文献   

9.
We studied the tolerance of ectomycorrhizal (ECM) fungi to sodium chloride (NaCl) to find the best fungus to aid growth of Pinus thunbergii. Four ECM fungi, Cenococcum geophilum, Pisolithus tinctorius, Rhizopogon rubescens, and Suillus luteus, were grown in liquid MMN media with five different concentrations of NaCl for 30 days, and their mycelial weights were determined. Mycelial weights of P. tinctorius and R. rubescens were not significantly different between 0 mM and 200 mM, whereas those of C. geophilum and S. luteus decreased with increasing NaCl concentration, indicating that the former two species were more tolerant to higher NaCl concentrations than the latter species. We further studied the intraspecific differences in NaCl tolerance of nine P. tinctorius isolates. They were grown on MMN agar media with six different concentrations of NaCl for 21 days, and their radial growth was measured. In total, the hyphal growth at 25 mM NaCl was significantly higher than those at the other NaCl concentrations, and EC50 values were confirmed at between 50 mM and 200 mM. Among the isolates, Pt03 and Pt21 showed measurable growth at 200 mM; the growth of Pt03 was not significantly different between 0 mM and 200 mM. The results indicate that there are intraspecific variations in NaCl tolerance of Pisolithus species.  相似文献   

10.
Zn pollution has triggered evolution for adaptive Zn tolerance in populations of Suilloid ectomycorrhizal fungi. The objectives of this study were to determine differential physiological responses that are linked to the Zn tolerance trait and to obtain more insight in the general mechanism responsible for the differential growth in Zn-enriched medium. Therefore, we identified intrinsic growth rates and element profiles in Zn-sensitive and Zn-tolerant genotypes. Isolates from Zn-polluted and unpolluted sites were exposed in vitro to increasing Zn2+ stress. The Zn concentration which inhibits growth by 50% (EC50) was determined, and element (Zn, Fe, Mn, Cu, Mg, Ca and P) profiles in the mycelia were analysed. The intraspecific variation in growth rate and nutrient content of the in vitro grown mycelia is great and was not reduced in Zn-tolerant populations. The Zn resistance was not correlated to the intrinsic mycelial growth rate of the isolates or to the concentrations of the elements analysed, except for Zn. At low external Zn, Zn-resistant genotypes had lower Zn concentrations than sensitive isolates. At high external Zn, the differential Zn accumulation pattern between resistant and sensitive isolates became very prominent. Zn-exclusion mechanisms are most likely involved in the naturally selected adaptive Zn resistance. Other mechanisms of Zn detoxification such as sequestration of Zn on cell wall compounds or intracellular chelation and/or compartmentation are probably active but cannot explain the differential Zn sensitivity of the isolates.  相似文献   

11.
Three clones, selected for their variation in salt tolerance, were examined regarding their growth and physiological responses on exposure to salt (NaCl) and abscisic acid (ABA) in vitro. The shoot proline levels significantly increased in two salt tolerant clones when exposed to 100 mM NaCl in the shoot multiplication medium. In contrast, proline in a salt sensitive clone did not change in comparison to the control treatment. When 10 M ABA was included in the medium all clones had an increase in proline regardless of whether they were salt tolerant or salt sensitive, linking proline production to the stress hormone ABA. Callus production was so variable that it was not possible to produce callus of consistent texture, colour and growth for all three clones. For the two clones where consistent growth was achievable, both the salt tolerant and salt sensitive clones increased proline production when exposed to salt. This response, however, was greater in the salt tolerant clone. Other parameters examined were growth (dry weight) and shoot chlorophyll content. These characteristics did not correlate with the salt tolerance of the clones, with similar weights being produced on non salt and salt media and similar chlorophyll in both salt sensitive and salt tolerant clones regardless of the medium in which they were grown. The production of proline is considered with regard to selection for differences in salt tolerance in vitro.  相似文献   

12.
Mycelia ofTricholoma bakamatsutake isolate No. 4 grew at temperatures ranging from 10 to 30°C, and the optimum was around 25°C. In well-buffered media of initial pH 5.0 and 6.0, No. 4 mycelia secreted gluconic acid and lowered medium pH. Mycelial growth then accelerated slightly; and with the exhaustion of glucose, growth and secretion of gluconic acid stopped. In 10 different media of initial pH 4.0–7.0, No. 4 mycelia showed higher gluconic acid secretion with higher initial pH. No. 4 mycelial grew best in pH 5.0 media, in which gluconic acid secretion was low. Mycelia of 29 isolates including No. 4 grew better in the media in which less glucose, total carbon and total nitrogen remained, and almost all isolates secreted gluconic acid. Most of the 29 isolates showed irregular colony shapes with rough mycelial fronts, brown pigmentation and aerial hypha on colony surfaces, and brown pigmentation of media under colonies. Dissimilarities were calculated with coded morphological characters on colonies, and similarity between isolates was found not to correlate with proximity of origin. Chlamydospores were observed on every colony of the 29 isolates. Chlamydospores were present on colonies of No. 4, reaching to 2 mm from the mycelial front, where brown pigmentation had not yet developed, and the numbers of chlamydospores incresed with mycelial aging.  相似文献   

13.
Superoxide dismutase (SOD) is an anti-oxidant enzyme which also plays a role in fungal virulence. The present study was conducted to elucidate its role in fungal infection and stress tolerance of entomopathogenic fungi, Isaria fumosorosea. SOD activity of I. fumosorosea conidia differed significantly on the growth medium supplemented with different metal compounds. The use of Cu + Zn proved to be the most active inducer of SOD activity. Cu + Zn treatment enhanced the fungal tolerance to oxidative stress generated by menadione in the medium (0–3 mM) as evaluated by colony growth. The conidial tolerance to UV-B radiation and heat was evaluated by assays of spore germination. Conidia produced on cultures with Cu + Zn were more tolerant to UV-B and thermal stress as well as exhibiting a higher rate of virulence against P. xylostella larvae. Our study highlights that SOD contributes significantly to the virulence and stress tolerance of I. fumosorosea and reveals possible means to improving field persistence and efficacy of a fungal formulation by manipulating the antioxidant enzymes of fungal pathogens.  相似文献   

14.
One hundred and eighteen algal isolates comprising seven classes were obtained from a range of sites from polluted rivers running through Cu or Zn mining regions, and from unpolluted rivers. All the isolates were tested for photosynthetic activity when exposed to Cu, Cd or Zn. The tolerance levels of Bacillariophyceae, Charophyceae, Cyanophyceae and Chlorophyceae to Cu showed significant positive correlations with Cu concentrations in the field. However the distribution of metal sensitivities of the algae from the sites with the same metal concentration was broad. Both Bacillariophyceae and Charophyceae had a number of strains whose sensitivity to Cu differed more widely in relation to Cu levels in the environment than Cyanophyceae and Chlorophyceae. Cyanophyceae were sensitive to all three metals, whether or not isolates were obtained from polluted sites, whereas Chlorophyceae tended to have high tolerance even in isolates from unpolluted sites. For Cd and Zn the correlation between tolerance levels and concentrations in the field was not so clear as for Cu. The occurrence of Cu tolerance was shown in 4 diatom species and one Charophyceae, whereas metal resistance occurred in some Chlorophyceae. Cu-tolerant isolates tended also to be Zn-tolerant in Bacillariophyceae, and Cd-resistant isolates tended also to be Zn-resistant in Chlorophyceae.  相似文献   

15.
Many metal hyperaccumulating plants have to tolerate abiotic stresses in their native soils such as high metal concentrations, low nutrient status and drought. This paper tests the ability of the Ni-hyperaccumulator Alyssum murale and two races of the Zn-hyperaccumulator Thlaspi caerulescens (Prayon and Close House) to tolerate salinity. The plants were exposed to salt (NaCl) solutions ranging between 0 mM and 100 mM in conjunction with either high or low concentrations of Ni or Zn. Alyssum murale was most resistant to salt in terms of seedling emergence and survival of emerged seedlings. The two races of T. caerulescensand T. arvense were salt sensitive. High Ni or Zn concentrations did not have a clear effect on the salt tolerance of any of the plants tested. The implications of the findings are discussed for the development of metal phytoremediation/phytomining technologies on saline soils or where brackish water (e.g., mining wastewater) could be used to irrigate phytoremediation crops.  相似文献   

16.
Klebsiella aerogenes forms electron-dense partieles on the cell surface in response to the presence of cadmium ions in the growth medium. These particles ranged from 20 to 200 nm in size, and quantitative energy dispersive X-ray analysis established that they comprise cadmium and sulfur in a 1:1 ratio. This observation leads to the conclusion that the particles are cadmium sulfide crystallites. A combination of atomic absorption spectroscopy, inductively coupled plasma mass spectrometry, and acid-labile sulfide analysis revealed that the total intracellular and bound extracellular cadmium:sulfur ratio is also 1:1, which suggests that the bulk of the cadmium is fixed as extracellular cadmium sulfide. The tolerance of K. acrogenes to cadmium ions and the formation of the cadmium sulfide crystallites were dependent on the buffer composition of the growth medium. The addition of cadmium ions to phosphate-buffered media resulted in cadmium phosphate precipitates that remove the potentially toxic cadmium ions from the growth medium. Electrondense particles formed on the surfaces of bacteria grown under these conditions were a combination of cadmium sulfide and cadmium phosphates. The specific bacterial growth rate in the exponential phase of batch cultures was not affected by up to 2mM cadmium in Tricine-buffered medium, but formation of cadmium sulfide crystallites was maximal during the stationary phase of batch culture. Cadmium tolerance was much lower (10 to 150 M) in growth media buffered with Tris, Bistris propane, Bes, Tes, or Hepes. These results illustrate the importance of considering medium composition when comparing levels of bacterial cadmium tolerance.Abbreviations EDXA Energy dispersive X-ray analysis - AAS Atomic absorption spectroscopy - TEM Transmission electron microscopy - SEM Scanning electron microscopy - ICP-MS Inductively coupled plasma mass spectrometry - ALSA Acid-labile sulfide analysis  相似文献   

17.
The interaction of the pathogen Fusarium moniliforme and two antagonistic Trichoderma harzianum isolates was studied especially with respect to their secondary metabolites fusaric acid (FA) and 6‐pentyl‐alpha‐pyrone (6PAP). Among 10 isolates of F. moniliforme screened for FA production on maize kernels, the isolate 8 accumulated the highest amount of FA (678 μg/g). Mycelial growth and production of FA by isolate 8, determined in different liquid media revealed that the highest biomass and FA were produced in Czapek Dox Broth (CDB) followed by Richard’s solution. The amount of FA per gram mycelial dry weight reached its maximum in CDB and Richard’s solution after 14 days of incubation. Mycelial growth and conidia production of both Trichoderma isolates (T16 and T23) were retarded by increasing concentrations of FA in agar medium. At FA concentration of 300 mg/ml the radial mycelial growth of the isolates T16 and T23 were retarded by 32.5% and 45%, respectively. Conidia production was diminished in a similar extent as mycelial growth. Both T. harzianum isolates were capable to degrade FA in potato dextrose broth medium, particularly when lower doses of FA were present. In the presence of 50 mg/ml FA in the culture medium, the isolates T23 and T16 reduced FA by 51.4% and 88.4%, respectively, 9 days post‐inoculation. The antifungal metabolite 6PAP, isolated from T. harzianum T23 cultures, was introduced at different concentrations into 2‐day‐old cultures of F. moniliforme. After further 5 days of incubation of F. moniliforme in the presence of 6PAP, the FA contents per gram mycelial dry weight were significantly decreased compared to control cultures where 6PAP was absent. Dosages of 300 and 400 mg/l of 6PAP in the cultures retarded FA accumulations by 62.5% and 77.2%, respectively. The current results, however, provided the first evidence for activity of 6PAP, as a Trichoderma secondary metabolite, on degrading/synthesis suppression of the Fusarium toxin FA.  相似文献   

18.
An enrichment culture which converted acetate to methane at 60°C was obtained from a thermophilic anaerobic bioreactor. The predominant morphotype in the enrichment was a sheathed gas-vacuolated rod with marked resemblence to the mesophile Methanothrix soehngenii. This organism was isolated using vancomycin treatments and serial dilutions and was named Methanothrix sp. strain CALS-1. Strain CALS-1 grew as filaments typically 2–5 cells long, and cultures showed opalescent turbidity rather than macroscopic clumps. The cells were enclosed in a striated subunit-type sheath and there were distinct cross-walls between the cells, similar to M. soehngenii. The gas vesicles in cells were typically 70 nm in diameter and up to 0.5 m long, and were collapsed by pressures over 3 atm (ca. 300 kPa). Stationary-phase cells tended to have a higher vesicle content than did growing cells, and occasionally bands of cells were seen floating at the top of the liquid in stationary-phase cultures. Acetate was the only substrate of those tested which was used for methanogenesis by strain CALS-1, and acetate was decarboxylated by the aceticlastic reaction. The optimum temperature for growth of strain CALS-1 was near 60°C (doubling time=24–26 h), with no growth occurring at 70°C and 37°C. The optimum pH value for growth was near 6.5 in bicarbonate/CO2 buffered medium and no growth occurred at pH 5.5 or pH 8.4. No growth was obtained below pH 7 when the medium was buffered with 20 mM phosphate. Strain CALS-1 grew in a chemically defined medium and required biotin. Sulfide concentrations over 1 mM were inhibitory to the culture, and growth was more rapid with 1 mM 2-mercaptoethane sulfonate (coenzyme M) or 1 mM titanium citrate as an accessory reductant than with 1 mM cysteine. It is likely that strain CALS-1 represents a new species in the genus Methanothrix.  相似文献   

19.
Yeoh  H. H.  Tan  T. K.  Tian  K. E. 《Mycopathologia》1984,87(1-2):51-55
Species of Cunninghamella, Gliocladium deliquescens, Trichoderma harzianum and T. koningii were isolated from rotten wood chips. When grown on medium containing cellulose, all except Cunninghamella produced the three primary enzymes (exoglucanase, endoglucanase and -glucosidase) of the cellulase complex. The patterns for enzyme production, changes in mycelial mass and pH of the induction medium for T. harzianum and T. koningii were closely similar, and were distinguishable from those of G. deliquescens.  相似文献   

20.
Uptake of Cd, Zn, Pb and Mn by the hyperaccumulator Thlaspi caerulescens was studied by pot trials in plant growth units and in populations of wild plants growing over Pb/Zn base-metal mine wastes at Les Malines in the south of France. The pot trials utilised metal-contaminated soils from Auby in the Lille area. Zinc and Cd concentrations in wild plants averaged 1.16% and 0.16% (dry weight) respectively. The unfertilised biomass of the plants was 2.6 t/ha. A single fertilised crop with the above metal content could remove 60 kg of Zn and 8.4 kg Cd per hectare. Experiments with pot-grown and wild plants showed that metal concentrations (dry weight basis) were up to 1% Zn (4% Zn in the soil) and just over 0.1% Cd (0.02% Cd in the soil). The metal content of the plants was correlated strongly with the plant-available fraction in the soils as measured by extraction with ammonium acetate and was inversely correlated with pH. Bioaccumulation coefficients (plant/soil metal concentration quotients) were in general higher for Cd than for Zn except at low metal concentrations in the soil. There was a tendency for these coefficients to increase with decreasing metal concentrations in the soil. It is proposed that phytoremediation using Thlaspi caerulescens would be entirely feasible for low levels of Cd where only a single crop would be needed to halve a Cd content of 10 g/g in the soil. It will never be possible to remediate elevated Zn concentrations within an economic time frame (<10 yr) because of the lower bioaccumulation coefficient for this element coupled with the much higher Zn content of the soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号