首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Type X collagen was prepared from medium of long-term cultures of embryonic chick tibiotarsal chondrocytes. Antibodies to type X collagen were raised and used in immunoperoxidase localization studies with embryonic and growing chick tibiotarsus. Strong anti-type X collagen reactivity was detected mainly in the region of hypertrophic chondrocytes, and to a lesser extent in the zone of calcified cartilage. No reactivity was detected in the proliferative zone nor the superficial layer of the cartilage growth plate. These results suggest that type X collagen may play a key role in matrix calcification during growth and development of the skeletal system.  相似文献   

2.
We have performed a quantitative analysis of the various collagens biosynthesized by organ cultures of whole embryonic-chick sternum and its separate anatomical regions corresponding to the zones of permanent hyaline and presumptive-calcification cartilages. Our studies demonstrated that embryonic-chick sternum devotes a large portion of its biosynthetic commitment towards production of Type X collagen, which represented approx. 18% of the total newly synthesized collagen. Comparison of the collagens biosynthesized by the permanent hyaline cartilage and by the cartilage from the presumptive-calcification zone demonstrated that Type X-collagen production was strictly confined to the presumptive-calcification region. Sequential extraction of the newly synthesized Type X collagen demonstrated the existence of two separate populations. One population (approx. 20%) was composed of easily extractable molecules that were solubilized with 1.0 m-NaCl/50 mM-Tris/HCI buffer, pH 7.4. The second population was composed of molecules that were not extractable even after repeated pepsin digestion, but became completely solubilized after treatment with 20 mM-dithiothreitol/0.15 M-NaCl buffer at neutral pH. These results suggest that most of the Type X collagen normally exists in the tissue as part of a pepsin-resistant molecular aggregate that may be stabilized by disulphide bonds. Quantitative analysis of the proportion of Type X collagen relative to the other collagens synthesized in the cultures indicated that this collagen was a major biosynthetic product of the presumptive-calcification cartilage, since it represented about 35% of the total collagen synthesized by this tissue. In contrast, the permanent hyaline cartilage did not display any detectable synthesis of Type X collagen. When compared on a per-cell basis, the chondrocytes from the presumptive-calcification zone synthesized approx. 33% more Type X collagen than the amount of Type II collagen synthesized by the chondrocytes from the permanent-hyaline-cartilage zone. Subsequently, it was demonstrated that Type X collagen is a structural component of chick sternum matrix, since quantitative amounts could be extracted from the region of presumptive calcification of 17-day-old chick-embryo sterna and from the calcified portion of adult-chick sterna. The strict topographic distribution in the expression of Type X collagen biosynthesis to the zone of presumptive calcification suggests that this collagen may play an important role in initiation or progression of tissue calcification.  相似文献   

3.
Embryonic chick sternum cartilage exhibits profound spatial and temporal changes in Type X collagen biosynthesis during development. Production of this collagen is confined to the presumptive calcification region and its expression is not acquired until stage 43. To examine the mechanisms responsible for regulation of developmental changes in biosynthetic expression of Type X collagen, we determined the levels of translatable Type X procollagen mRNA employing a cell-free translation system. We found that mRNA capable of directing Type X collagen synthesis was present exclusively in cartilage destined to undergo calcification and that its levels were nearly equivalent at all stages of development. These findings suggest that expression of Type X collagen in embryonic chick sternum is determined at the translational level.  相似文献   

4.
5.
Type X collagen is a short chain, non-fibrilforming collagen synthesized primarily by hypertrophic chondrocytes in the growth plate of fetal cartilage. Previously, we have also identified type X collagen in the extracellular matrix of fibrillated, osteoarthritic but not in normal articular cartilage using biochemical and immunohistochemical techniques (von der Mark et al. 1992 a). Here we compare the expression of type X with types I and II collagen in normal and degenerate human articular cartilage by in situ hybridization. Signals for cytoplasmic α1(X) collagen mRNA were not detectable in sections of healthy adult articular cartilage, but few specimens of osteoarthritic articular cartilage showed moderate expression of type X collagen in deep zones, but not in the upper fibrillated zone where type X collagen was detected by immunofluorescence. This apparent discrepancy may be explained by the relatively short phases of type X collagen gene activity in osteoarthritis and the short mRNA half-life compared with the longer half-life of the type X collagen protein. At sites of newly formed osteophytic and repair cartilage, α1(X) mRNA was strongly expressed in hypertrophic cells, marking the areas of endochondral bone formation. As in hypertrophic chondrocytes in the proliferative zone of fetal cartilage, type X collagen expression was also associated with strong type II collagen expression.  相似文献   

6.
Chick embryo tibial chondrocytes release into their extracellular matrix several species of proteochondroitin sulfate and collagen as well as matrix vesicles that are rich in Ca2+ and alkaline phosphatase and that appear to play a role in the calcification of cartilage. To determine whether there was any parallel regulation of the production of these products, the rates of collagen synthesis by cultured chick embryo tibial chondrocytes were altered, and the resulting changes in proteochondroitin sulfate synthesis and alkaline phosphatase levels in the cells were measured. As the rate of collagen synthesis was increased by adding increasing amounts of ascorbic acid to the culture medium, there was a parallel increase in the level of alkaline phosphatase. Similarly, when the rate of collagen synthesis was inhibited by adding 3,4-dehydroproline to the culture medium, the levels of alkaline phosphatase fell. The alkaline phosphatase in the culture medium was associated with vesicles which appeared to be matrix vesicles. It was recovered quantitatively by filtration through membranes with a pore size of 0.1 mu and measured by solubilizing the alkaline phosphatase from the membrane with detergent and assaying with 4-methylumbelliferyl phosphate as the substrate. When the matrix vesicles from the culture medium were analyzed for collagen types, it was found that only Type X collagen was recovered in this fraction. The implications of the association of Type X collagen and the matrix vesicles, both of which are found primarily in growth plate cartilage in the zone of hypertrophied chondrocytes which is in the process of mineralization, are discussed.  相似文献   

7.
To examine the regulation of collagen types IX and X during the hypertrophic phase of endochondral cartilage development, we have employed in situ hybridization and immunofluorescence histochemistry on selected stages of embryonic chick tibiotarsi. The data show that mRNA for type X collagen appears at or about the time that we detect the first appearance of the protein. This result is incompatible with translational regulation, which would require accumulation of the mRNA to occur at an appreciably earlier time. Data on later-stage embryos demonstrate that once hypertrophic chondrocytes initiate synthesis of type X collagen, they sustain high levels of its mRNA during the remainder of the hypertrophic program. This suggests that these cells maintain their integrity until close to the time that they are removed at the advancing marrow cavity. Type X collagen protein in the hypertrophic matrix also extends to the marrow cavity. Type IX collagen is found throughout the hypertrophic matrix, as well as throughout the younger cartilaginous matrices. But the mRNA for this molecule is largely or completely absent from the oldest hypertrophic cells. These data are consistent with a model that we have previously proposed in which newly synthesized type X collagen within the hypertrophic zone can become associated with type II/IX collagen fibrils synthesized and deposited earlier in development (Schmid and Linsenmayer, 1990; Chen et al. 1990).  相似文献   

8.
Chondrocytes from the presumptive calcification region of 20 day old embryonic chick sternum were found to synthesize a 70 Kd Type X procollagen precursor in addition to the previously described 59 Kd Type X collagen molecules. The 70 Kd molecules exhibited an additional cyanogen bromide peptide, contained a disulfide-bonded domain, and were converted into the 59 Kd moieties during pulse-chase experiments. The conversion of the 70 Kd to the 59 Kd Type X collagen was prevented upon microtubular transport inhibition with colchicine and resulted in tissue accumulation of the 70 Kd Type X procollagen.  相似文献   

9.
In this study the distribution of type X collagen in thyroid cartilages of various ages is described. Fetal and juvenile thyroid cartilage was negative for type X collagen, but showed a strong staining reaction for type II collagen. Type X collagen and calcium deposition were first detected in thyroid cartilage of 18-to 21-year-old adults. Type X collagen was restricted to large chondrocytes near or in mineralized cartilage, confirming the notion that type X collagen precedes mineralization. From these observations it was concluded that chondrocytes in thyroid cartilage undergo differentiation steps that are similar, but much slower, compared to cells in growth plate and sternal cartilage. Some type X collagen-positive areas also showed staining for type I collagen, suggesting that there is a further differentiation of chondrocytes to cells which are characterized by the simultaneous synthesis of type X and I collagen. However, a dedifferentiation process during aging of thyroid cartilage where cells switch from synthesis of type II to type I collagen cannot be excluded.  相似文献   

10.
A E Canfield  A M Schor 《FEBS letters》1991,286(1-2):171-175
Bovine retinal pericytes (BRP) in culture synthesise a low Mr collagenous polypeptide which appears similar, but not identical, to bovine type X collagen and which we have called 'BRP collagen'. This polypeptide displays the following characteristics: (i) it is sensitive to digestion by bacterial collagenase and is resistant to pepsin digestion; (ii) it has an apparent Mr of 45 kDa (pepsinised form); (iii) it is recognised by specific antibodies to type X collagen using immunoblotting; (iv) it is present in the cell layer/matrix but not in the medium of pericyte cultures; and (v) it is not disulphide-bonded into higher Mr multimers. The latter two properties distinguish BRP collagen from bovine type X collagen. We have recently shown that pericytes calcify in vitro. We now report that this calcification is associated with an increased synthesis of BRP collagen.  相似文献   

11.
 Type X collagen has so far not been reported to occur in human intervertebral discs. The objective of this study was therefore to investigate the occurrence of type X collagen in human lumbar intervertebral discs during ageing and degeneration. Ninety intervertebral discs with adjacent endplates were excised in toto from individuals (0–86 years) without known spinal disease and were processed for routine decalcified histology. Appropriate slices of each disc were processed for immunohistochemistry using a type-spec ific, monoclonal antibody raised against human type X collagen. Each intervertebral disc was examined for macroscopic and histomorphological features of disc degeneration. Immunohistochemically, a positive specific type X staining was observed in the hypertrophic zone of the growth plate and only in the interstitial matrix of juvenile (<2 years) nucleus pulposus. In adult discs, type X collagen could be localized in conjunction with advanced disc degeneration and first occurred in the disc matrix (i.e., pericellular region) of a 47-year-old specimen. Positive type X staining of the disc matrix was more frequently found in senile (>70 years) discs with end stages of disc degeneration. This study provides the first evidence for the occurrence of type X collagen in human lumbar intervertebral discs and it appears that type X collagen is re-expressed in late stages of disc degeneration. Accepted: 24 April 1997  相似文献   

12.
The objective of this study was to determine whether a peptide of type II collagen which can induce collagenase activity can also induce chondrocyte terminal differentiation (hypertrophy) in articulate cartilage. Full depth explants of normal adult bovine articular cartilage were cultured with or without a 24 mer synthetic peptide of type II collagen (residues 195-218) (CB12-II). Peptide CB12-II lacks any RGD sequence and is derived from the CB12 fragment of type II collagen. Type II collagen cleavage by collagenase was measured by ELISA in cartilage and medium. Real-time RT-PCR was used to analyze gene expression of the chondrocyte hypertrophy markers COL10A1 and MMP-13. Immunostaining for anti-Ki67, anti-PCNA, (proliferation markers), type X collagen, cleavage of type II collagen by collagenases (hypertrophy markers) and TUNEL staining (hypertrophy and apoptosis markers) were used to detect progressive maturational stages of chondrocyte hypertrophy. At high but naturally occurring concentrations (10 microM and up) the collagen peptide CB12-II induced an increase in the expression of MMP-13 (24 h) and cleavage of type II collagen by collagenase in the mid zone (day 4) and also in the superficial zone (day 6). Furthermore the peptide induced an increase in proliferation on day 1 in the mid and deep zones extending to the superficial zone by day 4. There was also upregulation of COL10A1 expression at day 4 and of type X staining in the mid zone extending to the superficial zone by day 6. Apoptotic cell death was increased by day 4 in the lower deep zone and also in the superficial zone at day 7. The increase in apoptosis in the deep zone was also seen in controls. Our results show that the induction of collagenase activity by a cryptic peptide sequence of type II collagen, is accompanied by chondrocyte hypertrophy and associated with cellular and matrix changes. This induction occurs in the mid and superficial zones of previously healthy articular cartilage. This response of the chondrocyte to a cryptic sequence of denatured type II collagen may play a role in naturally occurring hypertrophy in endochondral ossification and in the development of cartilage pathology in osteoarthritis.  相似文献   

13.
Type X collagen was extracted with 1 M NaCl and 10 mM dithiothreitol at neutral pH from fetal human growth plate cartilage and purified to homogeneity by gel filtration and anion-exchange chromatography. The purified protein migrates in SDS/polyacrylamide gels with an apparent Mr of 66,000 under reducing conditions, and as a high-Mr oligomer under non-reducing conditions. Purified collagenase digests most of the molecule; pepsin digestion at 4 degrees C decreases the Mr of the monomer to 53,000. A rabbit antiserum was raised against purified human type X collagen; the IgG fraction was specific for this collagen by criteria of ELISA and immunoblotting after absorption with collagen types I, II, VI, IX and XI. Immunohistological studies localized type X collagen exclusively in the zone of hypertrophic and calcifying cartilage.  相似文献   

14.
The tissue localization was analysed of collagen X during human fetal and juvenile articular cartilage-bone metamorphosis. This unique collagen type was found in the hypertrophic cartilage zone peri- and extracellularly and in cartilage residues within bone trabeculae. In addition, occasionally a slight intracellular staining reaction was found in prehypertrophic proliferating chondrocytes and in chondrocytes surrounding vascular channels. A slight staining was also seen in the zone of periosteal ossification and occasionally at the transition zone of the perichondrium to resting cartilage. Our data provide evidence that the appearance of collagen X is mainly associated with cartilage hypertrophy, analogous to the reported tissue distribution of this collagen type in animals. In addition, we observed an increased and often "spotty" distribution of collagen X with increasing cartilage "degeneration" associated with the closure of the growth plate. In basal hypertrophic cartilage areas, a co-distribution of collagens II and X was found with very little and "spotty" collagen III. In juvenile cartilage areas around single hypertrophic chondrocytes, co-localization of collagens X and I was also detected.  相似文献   

15.
Chondrocytes at different stages of cellular differentiation were isolated from the tarsal element (immature chondrocytes) and zones 2 and 3 (mature chondrocytes) of 12-d chick embryo tibiotarsus. The chondrocytes from the two sources differed in their cell morphologies, growth rate and production of type X collagen. In 24 h, zone 2 and 3 chondrocytes synthesized 800 times more type X collagen than tarsal chondrocytes. The effect of exogenous CaCl2 (5 and 10 mM) on the synthesis of type X collagen by both mature and immature chondrocytes was tested. After a 72-h incubation of zone 2 and 3 chondrocytes with CaCl2 type X collagen increased 8-fold with 5 mM and 10-fold with 10 mM Ca2+. [3H]Proline incorporation into culture medium and matrix macromolecules increased 11 and 32% with 5 and 10 mM CaCl2, respectively. Type II collagen synthesis was not affected by elevated extracellular Ca2+ during this 72-h period. Similar studies with tarsal chondrocytes demonstrated a time- and dose-dependent response to CaCl2 with type X collagen levels reaching a 4-fold and 15-fold increase over controls with 5 and 10 mM Ca2+, respectively, at 48 h. Elevated extracellular Ca2+ had no effect on cell proliferation. These observations offer the first direct evidence of the induction of type X collagen synthesis with elevated extracellular Ca2+.  相似文献   

16.
Our morphological studies have demonstrated that the appearance of localized, paired zones of primary calcification on either side of the midline of the 19-d embryonic chick sternum is heralded by the development of paired, translucent zones 2 d previously. Histological studies demonstrated that the majority of chondrocytes within these translucent zones are hypertrophic, and that the zones are surrounded by a margin of flattened nonhypertrophic cells. The discrete localization of these paired areas of hypertrophic chondrocytes and subsequent endochondral bone development allows for the direct correlation of the histological and biochemical characteristics of the zones sequentially during development and makes it possible to precisely match the synthetic activity to the cellular morphology, thereby eliminating possible minor but critical variations in developmental staging that could otherwise arise. Our studies have demonstrated that there is a direct spatial and temporal correlation between the degree of cellular maturation and the synthesis of type X collagen, and that the sudden and profound initiation of type X collagen synthesis on days 16-17 of development occurs concurrently with the attainment of hypertrophic characteristics by the majority of cells within the translucent zone. Before acquisition of these hypertrophic characteristics, the cells of this precalcification zone synthesize only type II and the minor cartilage collagens. Chondrocytes isolated from these regions in more immature sternae (i.e., 11+ d embryos) were found to synthesize high levels of type X collagen within 4 d of culture within collagen gels even though hypertrophic development and type X collagen synthesis by cells within this region would not normally have been apparent in ovo for several more days. These data indicate that there is a direct correlation between the development of hypertrophic characteristics and the synthesis of type X collagen, and that the maturation of chondrocytes in precalcification zones may be regulated by matrix components and/or stimulated by culture within collagen gels.  相似文献   

17.
In this study we describe the collagen pattern synthesized by differentiating fetal human chondrocytes in vitro and correlate type X collagen synthesis with an intracellular increase of calcium and with matrix calcification. We show that type II collagen producing fetal human epiphyseal chondrocytes differentiate in suspension culture over agarose into hypertrophic cells in the absence of ascorbate, in contrast to chicken chondrocytes which have been shown to require ascorbate for hypertrophic differentiation. Analysis of the collagen synthesis by metabolic labeling and immunoprecipitation as well as by immunofluorescence double staining with anti type I, II or X collagen antibodies revealed that type X collagen synthesis was initiated during the third week. After 4 weeks culture over agarose we identified cells staining for both type I and X collagen, indicating further differentiation of chondrocytes to a new type of 'post-hypertrophic' cell. This cell type, descending from a type X collagen producing chondrocyte, is different from the previously described 'dedifferentiated' or 'modulated' types I and III collagen producing cell derived from a type II collagen producing chondrocyte. The appearance of type I collagen synthesis in agarose cultures was confirmed by metabolic labeling and immunoprecipitation and challenges the current view that the chondrocyte phenotype is stable in suspension cultures. An increase in the intracellular calcium concentration from 100 to 250 nM was measured about one week after onset of type X collagen synthesis. First calcium deposits were detected by alizarine red S staining in type X collagen positive cell nodules after 4 weeks, again in the absence of ascorbate. From these observations we conclude a sequence of events ultimately leading to matrix calcification in chondrocyte nodules in vitro that begins with chondrocyte hypertrophy and the initiation of type X collagen synthesis, followed by the increase of intracellular calcium, the deposition of calcium mineral, and finally by the onset of type I collagen synthesis.  相似文献   

18.
Type X collagen synthesis during endochondral ossification in fracture repair   总被引:13,自引:0,他引:13  
Collagen synthesis in normal connective tissue development and repair is integral to tissue stability. The appearance of a short chain collagen, designated Type X, was studied in experimental fractures created in the chicken humerus. Biosynthetic studies using [14C]proline incorporation coupled with histologic examination of the cartilaginous callus demonstrated that Type X collagen synthesis occurs during endochondral ossification in the fracture callus. Type X synthesis occurred in the areas of cartilaginous callus composed of hypertrophic and degenerative chondrocytes that were associated with increased vascularity and matrix mineralization. Synthesis of short chain collagen was not detected in either skeletal muscle or bone. Two-dimensional peptide mapping of cyanogen bromide and proteolytic fragments derived from fracture callus short chain collagen confirmed the identity of this collagen as Type X. The synthesis of Type X collagen by fracture callus is further evidence supporting its close association with the process of endochondral ossification.  相似文献   

19.
20.
Summary We have previously reported that pericytes derived from retinal and brain microvessels aggregate into nodules soon after reaching confluence. Nodule formation involves a reorganization of the cells resulting in the presence of sparse cells, confluent monolayers, multilayers, sprouts, and nodules within the same culture dish. Extracellular calcification occurs only within the nodules, demonstrating that pericytes are capable of undergoing osteogenic differentiation in culture and that this differentiation is related to nodule formation. Using immunofluorescence we have now studied the distribution of laminin, type IV collagen, type X collagen, and tenascin in pericyte cultures during nodule formation. These matrix macromolecules were also identified by a combination of biochemical techniques, including Northern blot hybridization, immunoblotting and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A molecule that seems to be related to type X collagen was demonstrated by the presence of a pepsin-resistant, collagenase-sensitive polypeptide of molecular weight approximately 45 kDa. The production of laminin, type X-related collagen, and tenascin by pericytes has not been previously reported. Our results suggest that the synthesis or distribution or both of these molecules is dependent on the state of pericyte differentiation. The expression of laminin, type IV collagen, and type X-related collagen was maximal in multilayer areas, sprouts, and nodules. Tenascin appeared homogeneously distributed in monolayer and multilayer areas; when calcified nodules were present, the anti-tenascin serum preferentially decorated a discrete area circumscribing the nodules. Tenascin and type X collagen have been found transiently in vivo preceding calcification; their possible role in this process is not known. Our results also suggest an association between laminin, type IV collagen, and calcification. The in vitro experimental system described here may help to clarify the role of matrix macromolecules in the calcification process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号