首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Of the isoforms of plant phospholipase D (PLD) that have been cloned and characterized, PLDalpha requires millimolar levels of Ca(2+) for optimal activity, whereas PLDbeta is most active at micromolar concentrations of Ca(2+). Multiple amino acid sequence alignments suggest that PLDalpha and PLDbeta both contain a Ca(2+)-dependent phospholipid-binding C2 domain near their N termini. In the present study, we expressed and characterized the putative C2 domains of PLDalpha and PLDbeta, designated PLDalpha C2 and PLDbeta C2, by CD spectroscopy, isothermal titration calorimetry, and phospholipid binding assay. Both PLD C2 domains displayed CD spectra consistent with anticipated major beta-sheet structures but underwent spectral changes upon binding Ca(2+); the magnitude was larger for PLDbeta C2. These conformational changes, not shown by any of the previously characterized C2 domains of animal origin, occurred at micromolar Ca(2+) concentrations for PLDbeta C2 but at millimolar levels of the cation for PLDalpha C2. PLDbeta C2 exhibited three Ca(2+)-binding sites: one with a dissociation constant (K(d)) of 0.8 microm and the other two with a K(d) of 24 micrometer. In contrast, isothermal titration calorimetry data of PLDalpha C2 were consistent with 1-3 low affinity Ca(2+)-binding sites with K(d) in the range of 590-470 micrometer. The thermodynamics of Ca(2+) binding markedly differed for the two C2 domains. Likewise, PLDbeta C2 bound phosphatidylcholine (PC), the substrate of PLD, in the presence of submillimolar Ca(2+) concentrations, whereas PLDalpha C2 did so only in the presence of millimolar levels of the metal ion. Both C2 domains bound phosphatidylinoistol 4,5-bisphosphate, a regulator of PC hydrolysis by PLD. However, added Ca(2+) displaced the bound phosphatidylinoistol 4,5-bisphosphate. Ca(2+) and PC binding properties of PLDalpha C2 and PLDbeta C2 follow a trend similar to the Ca(2+) requirements of the whole enzymes, PLDalpha and PLDbeta, for PC hydrolysis. Taken together, the results suggest that the C2 domains of PLDalpha and PLDbeta have novel structural features and serve as handles by which Ca(2+) differentially regulates the activities of the isoforms.  相似文献   

2.
Zheng L  Shan J  Krishnamoorthi R  Wang X 《Biochemistry》2002,41(14):4546-4553
Hydrolysis of phospholipids by plant phospholipase Dbeta (PLDbeta) requires phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Here we show that PLDbeta is stimulated by different polyphosphoinositides, among which PI(4,5)P2 is most effective. On the basis of amino acid sequence analysis, PI(4,5)P2 binding assay, and protein engineering studies, we have identified in the catalytic region of PLDbeta a new PI(4,5)P2 binding region (PBR1), which is conserved in eukaryotic PLDs. PBR1 is a second domain besides the previously characterized N-terminal C2 domain of PLDbeta which also binds PI(4,5)P2. Submillimolar levels of calcium ions, while inhibiting PI(4,5)P2 binding by the C2 domain, enhanced the affinity of PBR1 for that phosphoinositide. Substrate binding by PLDbeta was promoted by PI(4,5)P2-bound PBR1. Isolated, recombinant PBR1 bound PI(4,5)P2 specifically and in a saturable manner. Deletion of PBR1 from PLDbeta or mutation of the conserved basic amino acid residues in PBR1 (K437G/K440G) abolished the enzymatic activity. Circular dichroism spectroscopy revealed a conformational change caused by PI(4,5)P2 binding to the catalytic region of PLD. The conformational change apparently helps in the recruitment of the substrate to the active site of the enzyme. The results taken together allow us to describe an anchorage-scooting model for the synergistic activation of PLDbeta by PI(4,5)P2 and Ca2+.  相似文献   

3.
The conventional plant phospholipase D (PLD) requires Ca(2+) for activity; however, the most distinct and puzzling feature of this PLD is its in vitro need for 20 to 100 mM Ca(2+). This noncytoplasmic Ca(2+) requirement has raised doubt about the role of Ca(2+) in regulating its function in vivo. Using the cloned conventional castor bean PLD, PLDalpha, expressed in Escherichia coli, this study demonstrates that this PLD is active at micromolar, near-physiological concentrations of Ca(2+), and this activity at low Ca(2+) requires an acidic pH (4.5-5.5). By comparison, the newly cloned PLDbeta and -gamma were active only at neutral pH under the same Ca(2+) concentrations. This study also shows that PLDalpha activity at low Ca(2+) needs substrates presented as a mixture of membrane lipids. Phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 4-phosphate are equally effective in stimulating the acidic PLDalpha activity, whereas phophatidylinositol is inactive. These results suggest that the conventional plant PLD in vivo is an acidic phospholipase that is active at near-physiological Ca(2+) concentrations. The possible physiological significance of these findings will be discussed.  相似文献   

4.
Qin C  Wang X 《Plant physiology》2002,128(3):1057-1068
Four types of phospholipase D (PLD), PLD alpha, beta, gamma, and delta, have been characterized in Arabidopsis, and they display different requirements for Ca(2+), phosphatidylinositol 4,5-bisphosphate (PIP(2)), substrate vesicle composition, and/or free fatty acids. However, all previously cloned plant PLDs contain a Ca(2+)-dependent phospholipid-binding C2 domain and require Ca(2+) for activity. This study documents a new type of PLD, PLD zeta 1, which is distinctively different from previously characterized PLDs. It contains at the N terminus a Phox homology domain and a pleckstrin homology domain, but not the C2 domain. A full-length cDNA for Arabidopsis PLD zeta 1 has been identified and used to express catalytically active PLD in Escherichia coli. PLD zeta 1 does not require Ca(2+) or any other divalent cation for activity. In addition, it selectively hydrolyzes phosphatidylcholine, whereas the other Arabidopsis PLDs use several phospholipids as substrates. PLD zeta 1 requires PIP(2) for activity, but unlike the PIP(2)-requiring PLD beta or gamma, phosphatidylethanolamine is not needed in substrate vesicles. These differences are described, together with a genomic analysis of 12 putative Arabidopsis PLD genes that are grouped into alpha, beta, delta, gamma, and zeta based on their gene architectures, sequence similarities, domain structures, and biochemical properties.  相似文献   

5.
Phospholipase D (PLD) is a major plant phospholipase family involved in many cellular processes such as signal transduction, membrane remodeling, and lipid degradation. Five classes of PLDs have been identified in Arabidopsis thaliana, and Ca(2+) and polyphosphoinositides have been suggested as key regulators for these enzymes. To investigate the catalysis and regulation mechanism of individual PLDs, surface-dilution kinetics studies were carried out on the newly identified PLDdelta from Arabidopsis. PLDdelta activity was dependent on both bulk concentration and surface concentration of substrate phospholipids in the Triton X-100/phospholipid mixed micelles. V(max), K(s)(A), and K(m)(B) values for PLDdelta toward phosphatidylcholine or phosphatidylethanolamine were determined; phosphatidylethanolamine was the preferred substrate. PLDdelta activity was stimulated greatly by phosphatidylinositol 4,5-bisphosphate (PIP(2)). Maximal activation was observed at a PIP(2) molar ratio around 0.01. Kinetic analysis indicates that PIP(2) activates PLD by promoting substrate binding to the enzyme, without altering the bulk binding of the enzyme to the micelle surface. Ca(2+) is required for PLDdelta activity, and it significantly decreased the interfacial Michaelis constant K(m)(B). This indicates that Ca(2+) activates PLD by promoting the binding of phospholipid substrate to the catalytic site of the enzyme.  相似文献   

6.
The concentration of free Ca(2+) and the composition of nonsubstrate phospholipids profoundly affect the activity of phospholipase C delta1 (PLCdelta1). The rate of PLCdelta1 hydrolysis of phosphatidylinositol 4,5-bisphosphate was stimulated 20-fold by phosphatidylserine (PS), 4-fold by phosphatidic acid (PA), and not at all by phosphatidylethanolamine or phosphatidylcholine (PC). PS reduced the Ca(2+) concentration required for half-maximal activation of PLCdelta1 from 5.4 to 0.5 microM. In the presence of Ca(2+), PLCdelta1 specifically bound to PS/PC but not to PA/PC vesicles in a dose-dependent and saturable manner. Ca(2+) also bound to PLCdelta1 and required the presence of PS/PC vesicles but not PA/PC vesicles. The free Ca(2+) concentration required for half-maximal Ca(2+) binding was estimated to be 8 microM. Surface dilution kinetic analysis revealed that the K(m) was reduced 20-fold by the presence of 25 mol % PS, whereas V(max) and K(d) were unaffected. Deletion of amino acid residues 646-654 from the C2 domain of PLCdelta1 impaired Ca(2+) binding and reduced its stimulation and binding by PS. Taken together, the results suggest that the formation of an enzyme-Ca(2+)-PS ternary complex through the C2 domain increases the affinity for substrate and consequently leads to enzyme activation.  相似文献   

7.
8.
The cytosolic Group IVA phospholipase A2 (GIVAPLA2) translocates to intracellular membranes to catalyze the release of lysophospholipids and arachidonic acid. GIVAPLA2 translocation and subsequent activity is regulated by its Ca2+-dependent phospholipid binding C2 domain. Phosphatidylinositol 4,5-bisphosphate (PI-4,5-P2) also binds with high affinity and specificity to GIVAPLA2, facilitating membrane binding and activity. Herein, we demonstrate that GIVAPLA2 possessed full activity in the absence of Ca2+ when PI-4,5-P2 or phosphatidylinositol 3,4,5-trisphosphate were present. A point mutant, D43N, that is unable to bind Ca2+ also had full activity in the presence of PI-4,5-P2. However, when GIVAPLA2 was expressed without its Ca2+-binding C2 domain (DeltaC2), there was no interfacial activity. GIVAPLA2 and DeltaC2 both had activity on monomeric lysophospholipids. DeltaC2, but not the C2 domain alone, binds to phosphoinositides (PIPns) in the same manner as the full-length GIVAPLA2, confirming the location of the PIPn binding site as the GIVAPLA2 catalytic domain. Moreover, proposed PIPn-binding residues in the catalytic domain (Lys488, Lys541, Lys543, and Lys544) were confirmed to be essential for PI-4,5-P2-dependent activity increases. Exploiting the effects of PI-4,5-P2, we have discovered that the C2 domain plays a critical role in the interfacial activity of GIVAPLA2 above and beyond its Ca2+-dependent phospholipid binding.  相似文献   

9.
The signalling pathway leading, for example, to actin cytoskeletal reorganisation, secretion or superoxide generation involves phospholipase D (PLD)-catalysed hydrolysis of phosphatidylcholine to generate phosphatidic acid, which appears to mediate the messenger functions of this pathway. Two PLD genes (PLD1 and PLD2) with similar domain structures have been doned and progress has been made in identifying the protein regulators of PLD1 activation, for example Arf and Rho family members. The activities of both PLD isoforms are dependent on phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and our sequence analysis suggested the presence of a pleckstrin homology (PH) domain in PLD1, although its absence has also been daimed. Investigation of the inositide dependence showed that a bis-phosphorylated lipid with a vicinal pair of phosphates was required for PLD1 activity. Furthermore, PLD1 bound specifically and with high affinity to lipid surfaces containing PI(4,5)P2 independently of the substrate phosphatidylcholine, suggesting a key role for the PH domain in PLD function. Importantly, a glutathione-S-transferase (GST) fusion protein comprising GST and the PH domain of PLD1 (GST-PLD1-PH) also bound specifically to supported lipid monolayers containing PI(4,5)P2. Point mutations within the PLD1 PH domain inhibited enzyme activity, whereas deletion of the domain both inhibited enzyme activity and disrupted normal PLD1 localisation. Thus, the functional PH domain regulates PLD by mediating its interaction with polyphosphoinositide-containing membranes; this might also induce a conformational change, thereby regulating catalytic activity.  相似文献   

10.
Phospholipase D     
Phospholipase D catalyses the hydrolysis of phosphatidylcholine to generate phosphatidate. The regulation of PLD activity is complex involving a number of small GTP binding proteins, but in particular Arf and Rho, phosphatidylinositol 4,5-bisphosphate and protein kinase C. The cDNA for PLD1 has recently been cloned and shows homology to the yeast and plant genes but only within four domains. Domains I and IV each contain a putative catalytic triad. PLD activity has been detected in plasma membranes, Golgi membranes and in nuclear membranes; it is unclear if different isoenzymes are responsible for this variation, or if the PLDs are differently regulated. The product of PLD activity, PA, appears to be a messenger molecule regulating the actin cytoskeleton and maybe playing a role in the control of membrane traffic and secretion.  相似文献   

11.
The Streptomyces chromofuscus phospholipase D (PLD) cleavage of phosphatidylcholine in bilayers can be enhanced by the addition of the product phosphatidic acid (PA). Other anionic lipids such as phosphatidylinositol, oleic acid, or phosphatidylmethanol do not activate this PLD. This allosteric activation by PA could involve a conformational change in the enzyme that alters PLD binding to phospholipid surfaces. To test this, the binding of intact PLD and proteolytically cleaved isoforms to styrene divinylbenzene beads coated with a phospholipid monolayer and to unilamellar vesicles was examined. The results indicate that intact PLD has a very high affinity for PA bilayers at pH >/= 7 in the presence of EGTA that is weakened as Ca(2+) or Ba(2+) are added to the system. Proteolytically clipped PLD also binds tightly to PA in the absence of metal ions. However, the isolated catalytic fragment has a considerably weaker affinity for PA surfaces. In contrast to PA surfaces, all PLD forms exhibited very low affinity for PC interfaces with an increased binding when Ba(2+) was added. All PLD forms also bound tightly to other anionic phospholipid surfaces (e.g. phosphatidylserine, phosphatidylinositol, and phosphatidylmethanol). However, this binding was not modulated in the same way by divalent cations. Chemical cross-linking studies suggested that a major effect of PLD binding to PA.Ca(2+) surfaces is aggregation of the enzyme. These results indicate that PLD partitioning to phospholipid surfaces and kinetic activation are two separate events and suggest that the Ca(2+) modulation of PA.PLD binding involves protein aggregation that may be the critical interaction for activation.  相似文献   

12.
The genes of two phospholipase D (PLD) isoenzymes, PLD1 and PLD2, from poppy seedlings (2829 and 2828 bp) were completely sequenced. The two genes have 96.9% identity in the encoding region and can be assigned to the alpha-type of plant PLDs. The corresponding amino acid sequences do not contain any signal sequences. One Asn-glycosylation site, six and two phosphorylation sites for protein kinase C and tyrosine kinase, respectively, and two phosphatidylinositol-4,5-bisphosphate binding motifs could be identified. Like in most plant PLDs, two HKD motifs and one C2 domain are present. PLD1 and PLD2 have ten and nine cysteine residues. The two enzymes were expressed in E. coli and purified to homogeneity by Ca2+ ion-mediated hydrophobic interaction chromatography. The Ca2+ ion concentration needed for carrier binding of the two enzymes in chromatography as well as for optimum activity was found to be considerably higher (>100 mM) than with other alpha-type plant PLDs. Although PLD1 and PLD2 differ in eleven amino acids only, they showed remarkable differences in their transphosphatidylation activity. Two amino acid exchanges within and near the first HKD motif contribute to this difference as shown by the A349E/E352Q-variant of PLD2.  相似文献   

13.
Phosphatidylinositol-4,5-bisphosphate (PIP2) is a key player in the neurotransmitter release process. Rabphilin-3A is a neuronal C2 domain tandem containing protein that is involved in this process. Both its C2 domains (C2A and C2B) are able to bind PIP2. The investigation of the interactions of the two C2 domains with the PIP2 headgroup IP3 (inositol-1,4,5-trisphosphate) by NMR showed that a well-defined binding site can be described on the concave surface of each domain. The binding modes of the two domains are different. The binding of IP3 to the C2A domain is strongly enhanced by Ca(2+) and is characterized by a K(D) of 55 microM in the presence of a saturating concentration of Ca(2+) (5 mM). Reciprocally, the binding of IP3 increases the apparent Ca(2+)-binding affinity of the C2A domain in agreement with a Target-Activated Messenger Affinity (TAMA) mechanism. The C2B domain binds IP3 in a Ca(2+)-independent fashion with low affinity. These different PIP2 headgroup recognition modes suggest that PIP2 is a target of the C2A domain of rabphilin-3A while this phospholipid is an effector of the C2B domain.  相似文献   

14.
Plant phospholipases D (PLDs) occur in a large variety of isoenzymes, which differ in Ca(2+) ion requirement, phosphatidylinositol-4,5-bisphosphate (PIP(2)) activation and substrate selectivity. In the present study a membrane-bound PLD has been identified in the microsomal fractions of poppy seedlings (Papaver somniferum). The maximum PLD activity is found after 2 days of germination in endosperms and after 3 days in developing seedlings. In contrast to the four poppy PLD isoenzymes described hitherto, the membrane-bound form is active at lower Ca(2+) ion concentrations (in the micromolar instead of millimolar range) and needs PIP(2) for hydrolytic activity. Remarkable differences are also observed in head group exchange reactions. The reaction rates of the transphosphatidylation of phosphatidylcholine by various acceptor alcohols follow the sequence glycerol>serine>myo-inositol>ethanolamine, whereas ethanolamine is preferred by most other PLDs. Despite the biocatalytic differences, the membrane-bound PLD interacts with polyclonal antibodies raised against α-type PLD, which reveals some structural similarities between these two enzymes.  相似文献   

15.
C2 domains are conserved protein modules in many eukaryotic signaling proteins, including the protein kinase (PKCs). The C2 domains of classical PKCs bind to membranes in a Ca(2+)-dependent manner and thereby act as cellular Ca(2+) effectors. Recent findings suggest that the C2 domain of PKCalpha interacts specifically with phosphatidylinositols 4,5-bisphosphate (PtdIns(4,5)P(2)) through its lysine rich cluster, for which it shows higher affinity than for POPS. In this work, we compared the three C2 domains of classical PKCs. Isothermal titration calorimetry revealed that the C2 domains of PKCalpha and beta display a greater capacity to bind to PtdIns(4,5)P(2)-containing vesicles than the C2 domain of PKCgamma. Comparative studies using lipid vesicles containing both POPS and PtdIns(4,5)P(2) as ligands revealed that the domains behave as PtdIns(4,5)P(2)-binding modules rather than as POPS-binding modules, suggesting that the presence of the phosphoinositide in membranes increases the affinity of each domain. When the magnitude of PtdIns(4,5)P(2) binding was compared with that of other polyphosphate phosphatidylinositols, it was seen to be greater in both PKCbeta- and PKCgamma-C2 domains. The concentration of Ca(2+) required to bind to membranes was seen to be lower in the presence of PtdIns(4,5)P(2) for all C2 domains, especially PKCalpha. In vivo experiments using differentiated PC12 cells transfected with each C2 domain fused to ECFP and stimulated with ATP demonstrated that, at limiting intracellular concentration of Ca(2+), the three C2 domains translocate to the plasma membrane at very similar rates. However, the plasma membrane dissociation event differed in each case, PKCalpha persisting for the longest time in the plasma membrane, followed by PKCgamma and, finally, PKCbeta, which probably reflects the different levels of Ca(2+) needed by each domain and their different affinities for PtdIns(4,5)P(2).  相似文献   

16.
Site-directed spin labeling is used to determine the orientation and depth of insertion of the second C2 domain from synaptotagmin I (C2B) into membrane vesicles composed of phosphatidylcholine (PC) and phosphatidylserine (PS). EPR line shapes of spin-labeled mutants located with the Ca(2+)-binding loops of C2B broaden in the presence of Ca(2+) and PC/PS vesicles, indicating that these loops undergo a Ca(2+)-dependent insertion into the membrane interface. Power saturation of the EPR spectra provides a position for each spin-labeled site along the bilayer normal, and these EPR-derived distance constraints, along with a high-resolution structure of the C2B domain, are used to generate a model for the domain orientation and position at the membrane interface. Our data show that the isolated C2B domain from synaptotagmin I penetrates PC/PS membranes, and that the backbone of Ca(2+)-binding loops 1 and 3 is inserted below the level of a plane defined by the lipid phosphates. The side chains of several loop residues are within the bilayer interior, and both Ca(2+)-binding sites are positioned near a plane defined by the lipid phosphates. A Tb(3+)-based fluorescence assay is used to compare the membrane affinity of the C2B domain to that of the first synaptotagmin C2 domain (C2A). Both C2A and C2B bind PC/PS (75:25) membrane vesicles with a micromolar lipid affinity in the presence of metal ion. These results indicate that C2A and C2B have a similar membrane affinity and position when bound to PC/PS (75:25) membrane vesicles. EPR spectroscopy indicates that the C2B domain has different interactions with PC/PS membranes containing 1 mol % phosphatidylinositol 4,5-bisphosphate.  相似文献   

17.
Rabphilin-3A is a neuronal C2 domain tandem containing protein involved in vesicle trafficking. Both its C2 domains (C2A and C2B) are able to bind phosphatidylinositol 4,5-bisphosphate, a key player in the neurotransmitter release process. The rabphilin-3A C2A domain has previously been shown to bind inositol-1,4,5-trisphosphate (IP3; phosphatidylinositol 4,5-bisphosphate headgroup) in a Ca2+-dependent manner with a relatively high affinity (50 microm) in the presence of saturating concentrations of Ca2+. Moreover, IP3 and Ca2+ binding to the C2A domain mutually enhance each other. Here we present the Ca2+-bound solution structure of the C2A domain. Structural comparison with the previously published Ca2+-free crystal structure revealed that Ca2+ binding induces a conformational change of Ca2+ binding loop 3 (CBL3). Our IP3 binding studies as well as our IP3-C2A docking model show the active involvement of CBL3 in IP3 binding, suggesting that the conformational change on CBL3 upon Ca2+ binding enables the interaction with IP3 and vice versa, in line with a target-activated messenger affinity mechanism. Our data provide detailed structural insight into the functional properties of the rabphilin-3A C2A domain and reveal for the first time the structural determinants of a target-activated messenger affinity mechanism.  相似文献   

18.
Many cytosolic proteins are recruited to the plasma membrane (PM) during cell signaling and other cellular processes. Recent reports have indicated that phosphatidylserine (PS), phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)), and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) that are present in the PM play important roles for their specific PM recruitment. To systematically analyze how these lipids mediate PM targeting of cellular proteins, we performed biophysical, computational, and cell studies of the Ca(2+)-dependent C2 domain of protein kinase Calpha (PKCalpha) that is known to bind PS and phosphoinositides. In vitro membrane binding measurements by surface plasmon resonance analysis show that PKCalpha-C2 nonspecifically binds phosphoinositides, including PtdIns(4,5)P(2) and PtdIns(3,4,5)P(3), but that PS and Ca(2+) binding is prerequisite for productive phosphoinositide binding. PtdIns(4,5)P(2) or PtdIns(3,4,5)P(3) augments the Ca(2+)- and PS-dependent membrane binding of PKCalpha-C2 by slowing its membrane dissociation. Molecular dynamics simulations also support that Ca(2+)-dependent PS binding is essential for membrane interactions of PKCalpha-C2. PtdIns(4,5)P(2) alone cannot drive the membrane attachment of the domain but further stabilizes the Ca(2+)- and PS-dependent membrane binding. When the fluorescence protein-tagged PKCalpha-C2 was expressed in NIH-3T3 cells, mutations of phosphoinositide-binding residues or depletion of PtdIns(4,5)P(2) and/or PtdIns(3,4,5)P(3) from PM did not significantly affect the PM association of the domain but accelerated its dissociation from PM. Also, local synthesis of PtdIns(4,5)P(2) or PtdIns(3,4,5)P(3) at the PM slowed membrane dissociation of PKCalpha-C2. Collectively, these studies show that PtdIns(4,5)P(2) and PtdIns(3,4,5)P(3) augment the Ca(2+)- and PS-dependent membrane binding of PKCalpha-C2 by elongating the membrane residence of the domain but cannot drive the PM recruitment of PKCalpha-C2. These studies also suggest that effective PM recruitment of many cellular proteins may require synergistic actions of PS and phosphoinositides.  相似文献   

19.
Lomasney JW  Cheng HF  Kobayashi M  King K 《Biochemistry》2012,51(11):2246-2257
Many membrane-associated enzymes, including those of the phospholipase C (PLC) superfamily, are regulated by specific interactions with lipids. Previously, we have shown that the C2 domain of PLC δ1 is required for phosphatidylserine (PS)-dependent enzyme activation and that activation requires the presence of Ca(2+). To identify the site of interaction and the role of Ca(2+) in the activation mechanism, we mutagenized three highly conserved Ca(2+) binding residues (Asp-653, Asp-706, and Asp-708) to Gly in the C2 domain of PLC δ1. The PS-dependent Ca(2+) binding affinities of the mutant enzymes D653G, D706G, and D708G were reduced by 1 order of magnitude, and the maximal level of Ca(2+) binding was reduced to half of that of the native enzyme. The level of Ca(2+)-dependent PS binding was also reduced in the mutant enzymes. Under basal conditions, the Ca(2+) dependence and the maximal level of hydrolysis of phosphatidylinositol 4,5-bisphosphate were not altered in the mutants. However, the Ca(2+)-dependent PS stimulation was severely defective. PS reduces the K(m) of the native enzyme almost 20-fold, but far less for the mutants. Replacing Asp-653, Asp-706, and Asp-708 simultaneously with glycine in the C2 domain of PLC δ1 leads to a complete and selective loss of the stimulation and binding by PS. These results show that D653, D706, and D708 are required for Ca(2+) binding in the C2 domain and demonstrate a mechanism by which C2 domains can mediate regulation of enzyme activity by specific lipid ligands.  相似文献   

20.
Macia E  Paris S  Chabre M 《Biochemistry》2000,39(19):5893-5901
The activity on ARF of the guanine nucleotide exchange factor ARNO depends on its membrane recruitment, induced by binding of its PH domain to phosphoinositides. A polycationic C-terminal extension to the PH domain might also contribute to its specific binding to phosphatidylinositol 4,5-bisphosphate [(4,5)PIP2] and to phosphatidylinositol 3,4,5-trisphosphate [(3,4,5)PIP3], and to ionic binding to other acidic lipids. We have analyzed in vitro the relative contributions to phospholipid binding of the PH domain and C-terminal extension by cosedimentation of "PH+C domain" and "nominal PH domain" protein constructs including or not including the polycationic C-terminus, with sucrose-loaded unilamellar vesicles made of equal proportions of the neutral lipids phosphatidylcholine and phosphatidylethanolamine, and supplemented or not with 30% acidic phosphatidylserine (PS) and 2% of various phosphoinositides. Binding was measured as a function of the vesicle concentration and of the medium ionic strength. Both proteins bound with higher affinity to (3,4,5)PIP3 than to (4,5)PIP2, the selectivity for (3,4,5)PIP3 being highest for the nominal PH domain. We observed also a clear selectivity of (3,4,5)PIP3 over (4,5)PIP2 for stimulating the activity of ARNO on ARF with vesicles containing 10% PS and 1% PIP2 or PIP3. Our data suggest that the PH domain provides the specific phosphoinositide binding site and some unspecific ionic interaction with acidic PS, whereas the polybasic C domain contributes to binding mainly by unspecific ionic interactions vith PS. Phosphorylation by protein kinase C of a serine in the C domain reduces the ionic affinity of the PH+C domain for PS, but does not affect the phosphoinositide specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号