首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Proteins with Src homology 2 (SH2) domains play major roles in tyrosine kinase signaling. Structures of many SH2 domains have been studied, and the regions involved in their interactions with ligands have been elucidated. However, these analyses have been performed using short peptides consisting of phosphotyrosine followed by a few amino acids, which are described as the canonical recognition sites. Here, we report the solution structure of the SH2 domain of C-terminal Src kinase (Csk) in complex with a longer phosphopeptide from the Csk-binding protein (Cbp). This structure, together with biochemical experiments, revealed the existence of a novel binding region in addition to the canonical phosphotyrosine 314-binding site of Cbp. Mutational analysis of this second region in cells showed that both canonical and novel binding sites are required for tumor suppression through the Cbp-Csk interaction. Furthermore, the data indicate an allosteric connection between Cbp binding and Csk activation that arises from residues in the βB/βC loop of the SH2 domain.  相似文献   

2.
While the Src family of protein tyrosine kinases (SFK), and the main ancillary molecules involved in their regulation, have been studied for many years, the details of their interplay are not fully understood and thus remain under active investigation. Additionally, new players that coordinate their regulation and direct their signalling cascades are also being uncovered, shedding new light on the complexity of these signalling networks. Through the utilization of novel interaction assays, several new interconnecting mediators that are helping to show the elegance of Src family kinase regulation have been discovered. This review outlines SFK regulation, the discovery of the Csk binding protein (Phosphoprotein Associated with Glycosphingolipid-enriched microdomains, Cbp/PAG), and its role in regulating SFK kinase activity status, as well as protein levels. Further, details of the methods used to identify this dual mode of regulation can be applied to delineate the full gamut of SH2/SH3-directed SFK pathways and, indeed, those of any tyrosine kinase. Using Lyn as a model SFK, we and others have shown that Cbp recruits negative regulators of COOH-terminal Src kinase (Csk)/Csk-like protein-tyrosine kinase (Ctk) after Lyn is activated and bound to Cbp. Lyn phosphorylates Cbp on multiple tyrosine residues, including two that can bind Lyn's SH2 domain with high affinity. Lyn also phosphorylates Y314, which recruits Csk/Ctk to phosphorylate Lyn at its Y508 negative site, allowing an inactive conformation to form. However, the pY508 site has a low affinity for Lyn's SH2 domain, while the Cbp sites have high affinity. Thus, until these Cbp sites are dephosphorylated, Lyn can remain active. Intriguingly, phosphorylated Y314 also binds the suppressor of cytokine signalling 1 (SOCS1), resulting in elevated ubiquitination and degradation of Lyn. Thus, a single phosphotyrosine residue within Cbp co-ordinates a two-phase process involving distinct negative regulatory pathways that allow inactivation, followed by degradation, of SFKs.  相似文献   

3.
The non-receptor tyrosine kinase Csk serves as an indispensable negative regulator of the Src family tyrosine kinases (SFKs) by specifically phosphorylating the negative regulatory site of SFKs, thereby suppressing their oncogenic potential. Csk is primarily regulated through its SH2 domain, which is required for membrane translocation of Csk via binding to scaffold proteins such as Cbp/PAG1. The binding of scaffolds to the SH2 domain can also upregulate Csk kinase activity. These regulatory features have been elucidated by analyses of Csk structure at the atomic levels. Although Csk itself may not be mutated in human cancers, perturbation of the regulatory system consisting of Csk, Cbp/PAG1, or other scaffolds, and certain tyrosine phosphatases may explain the upregulation of SFKs frequently observed in human cancers. This review focuses on the molecular bases for the function, structure, and regulation of Csk as a unique regulatory tyrosine kinase for SFKs.  相似文献   

4.
Csk (C-terminal Src kinase), a protein tyrosine kinase, consisting of the Src homology 2 and 3 (SH2 and SH3) domains and a catalytic domain, phosphorylates the C-terminal tail of Src-family members, resulting in downregulation of the Src family kinase activity. The Src family kinases share 37 % homology with Csk but, unlike Src-family kinases, the catalytic domain of Csk alone is weakly active and can be stimulated in trans by interacting with the Csk-SH3 domain, suggesting a mode of intradomain regulation different from that of Src family kinases. The structural determinants of this intermolecular interaction were studied by nuclear magnetic resonance (NMR) and site-directed mutagenesis techniques. Chemical shift perturbation of backbone nuclei (H' and (15)N) has been used to map the Csk catalytic domain binding site on the Csk-SH3. The experimentally determined interaction surface includes three structural elements: the N-terminal tail, a small part of the RT-loop, and the C-terminal SH3-SH2 linker. Site-directed mutagenesis revealed that mutations in the SH3-SH2 linker of the wild-type Csk decrease Csk kinase activity up to fivefold, whereas mutations in the RT-loop left Csk kinase activity largely unaffected. We conclude that the SH3-SH2 linker plays a major role in the activation of the Csk catalytic domain.  相似文献   

5.
To elucidate the regulatory mechanism of cell transformation induced by c-Src tyrosine kinase, we performed a proteomic analysis of tyrosine phosphorylated proteins that interact with c-Src and/or its negative regulator Csk. The c-Src interacting proteins were affinity-purified from Src transformed cells using the Src SH2 domain as a ligand. LC-MS/MS analysis of the purified proteins identified general Src substrates, such as focal adhesion kinase and paxillin, and ZO-1/2 as a transformation-dependent Src target. The Csk binding proteins were analyzed by a tandem affinity purification method. In addition to the previously identified Csk binding proteins, including Cbp/PAG, paxillin, and caveolin-1, we found that ZO-1/2 could also serve as a major Csk binding protein. ZO-2 was phosphorylated concurrently with Src transformation and specifically bound to Csk in a Csk SH2 dependent manner. These results suggest novel roles for ZO proteins as Src/Csk scaffolds potentially involved in the regulation of Src transformation.  相似文献   

6.
The Src family kinase Lyn is involved in differentiation signals emanating from activated erythropoietin (Epo) receptors, it interacts with COOH-terminal Src kinase-binding protein (Cbp), an adaptor protein that recruits negative regulators COOH-terminal Src kinase (Csk) and suppressor of cytokine signaling-1 (SOCS1). Lyn phosphorylates Cbp on several tyrosine residues, including Tyr314, which recruits Csk/SOCS1, as well as Tyr381 and Tyr409 that bind Lyns own SH2 domain. We show that Cbp alters not only the ability of erythroid cells to differentiate but also their colony morphology. Consequently, we detailed the ability of Cbp to interact with and influence Lyns ability to initiate changes in cellular architecture, which affect cell–cell and cell–substratum interactions. Over-expression of active Lyn promotes filopodia formation while inactive Lyn promotes lamellipodia formation. Conversely, Cbp over-expression, which inhibits Lyn activity, promotes lamellipodia formation, while Cbp mutants preventing its interaction/signaling consequently allow Lyn to promote filopodia formation. Thus, the Lyn–Cbp pathway and subsequent regulation of Lyn signaling and cell morphology involves a dynamic and complex series of interactions.  相似文献   

7.
Csk-binding protein/phosphoprotein associated with glycosphingolipid-enriched domains is a transmembrane adaptor protein primarily involved in negative regulation of T-cell activation by recruitment of C-terminal Src kinase (Csk), a protein tyrosine kinase which represses Src kinase activity through C-terminal phosphorylation. Recruitment of Csk occurs via SH2-domain binding to PAG pTyr317, thus, the interaction is highly dependent on phosphorylation performed by the Src family kinase Fyn, which docks onto PAG using a dual-domain binding mode involving both SH3- and SH2-domains of Fyn. In this study, we investigated Fyn SH3-domain binding to 14-mer peptide ligands derived from Cbp/PAG-enriched microdomains sequence using biochemical, biophysical and computational techniques. Interaction kinetics and dissociation constants for the various ligands were determined by SPR. The local structural impact of ligand association has been evaluated using CD, and molecular modelling has been employed to investigate details of the interactions. We show that data from these investigations correlate with functional effects of ligand binding, assessed experimentally by kinase assays using full-length PAG proteins as substrates. The presented data demonstrate a potential method for modulation of Src family kinase tyrosine phosphorylation through minor changes of the substrate SH3-interacting motif.  相似文献   

8.
Csk phosphorylates Src family members at a key regulatory tyrosine in the C-terminal tail and suppresses their activities. It is not known whether Csk activity is regulated. To examine the features of Csk required for Src suppression, we expressed Csk mutants in a cell line with a disrupted csk gene. Expression of wild-type Csk suppressed Src, but Csk with mutations in the SH2, SH3, and catalytic domains did not suppress Src. An SH3 deletion mutant of Csk was fully active against in vitro substrates, but two SH2 domain mutants were essentially inactive. Whereas Src repressed by Csk was predominantly perinuclear, the activated Src in cells lacking Csk was localized to structures resembling podosomes. Activated mutant Src was also in podosomes, even in the presence of Csk. When Src was not active, Csk was diffusely located in the cytosol, but when Src was active, Csk colocalized with activated Src to podosomes. Csk also localizes to podosomes of cells transformed by an activated Src that lacks the major tyrosine autophosphorylation site, suggesting that the relocalization of Csk is not a consequence of the binding of the Csk SH2 domain to phosphorylated Src. A catalytically inactive Csk mutant also localized with Src to podosomes, but SH3 and SH2 domain mutants did not, suggesting that the SH3 and SH2 domains are both necessary to target Csk to places where Src is active. The failure of the catalytically active SH3 mutant of Csk to regulate Src may be due to its inability to colocalize with active Src.  相似文献   

9.
D Sondhi  P A Cole 《Biochemistry》1999,38(34):11147-11155
Csk (C-terminal Src kinase) is a protein tyrosine kinase that phosphorylates Src family member C-terminal tails, resulting in downregulation of Src family members. It is composed of three principal domains: an SH3 (Src homology 3) domain, an SH2 (Src homology 2) domain, and a catalytic domain. The impact of the noncatalytic domains on kinase catalysis was investigated. The Csk catalytic domain was expressed in Escherichia coli as a recombinant glutathione S-transferase-fusion protein and demonstrated to have 100-fold reduced catalytic efficiency. Production of the catalytic domain by proteolysis of full-length Csk afforded a similar rate reduction. This suggested that the reduction in catalytic efficiency of the recombinant catalytic domain was intrinsic to the sequence and not an artifact related to faulty expression. This rate reduction was similar for peptide and protein substrates and was due almost entirely to a reduced k(cat) rather than to effects on substrate K(m)s. Viscosity experiments on the catalytic fragment kinase reaction demonstrated that the chemical (phosphoryl transfer) step had a reduced rate. While the Csk SH2 domain had no intermolecular effect on the kinase activity of the Csk catalytic domain, the SH3 domain and SH3-SH2 fragment led to a partial rescue (4-5-fold) of the lost kinase activity. This rescue was not achieved with two other SH3 domains (lymphoid cell kinase, Abelson kinase). The extrapolated K(d) of interaction for the Csk catalytic domain with the Csk SH3 domain was 2.2 microM and that of the Csk catalytic domain with the Csk SH3-SH2 fragment was 8.8 microM. Taken together, these findings suggest that there is likely an intramolecular interaction between the catalytic and SH3 domains in full-length Csk that is important for efficient catalysis. By employing a Csk SH3 specific type II polyproline helix peptide and carrying out site-directed mutagenesis, it was established that the SH3 surface that interacts with the catalytic domain was distinct from the surface that binds type II polyproline helix peptides. This finding suggests a novel mode of protein-protein interaction for an SH3 domain. The implications for Csk substrate selectivity, regulation, and function are discussed.  相似文献   

10.
The tyrosine kinase Lyn is involved in oncogenic signalling in several leukaemias and solid tumours, and we have previously identified a pathway centred on Cbp [Csk (C-terminal Src kinase)-binding protein] that mediates both enzymatic inactivation, as well as proteasomal degradation of Lyn via phosphorylation-dependent recruitment of Csk (responsible for phosphorylating the inhibitory C-terminal tyrosine of Lyn) and SOCS1 (suppressor of cytokine signalling 1; an E3 ubiquitin ligase). In the present study we show that fusing specific functional motifs of Cbp and domains of SOCS1 together generates a novel molecule capable of directing the proteasomal degradation of Lyn. We have characterized the binding of pY (phospho-tyrosine) motifs of Cbp to SFK (Src-family kinase) SH2 (Src homology 2) domains, identifying those with high affinity and specificity for the SH2 domain of Lyn and that are preferred substrates of active Lyn. We then fused them to the SB (SOCS box) of SOCS1 to facilitate interaction with the ubiquitination-promoting elongin B/C complex. As an eGFP (enhanced green fluorescent protein) fusion, these proteins can direct the polyubiquitination and proteasomal degradation of active Lyn. Expressing this fusion protein in DU145 cancer cells (but not LNCaP or MCF-7 cells), that require Lyn signalling for survival, promotes loss of Lyn, loss of caspase 3, appearance of an apoptotic morphology and failure to survive/expand. These findings show how functional domains of Cbp and SOCS1 can be fused together to generate molecules capable of inhibiting the growth of cancer cells that express high levels of active Lyn.  相似文献   

11.
The carboxyl-terminal Src kinase (Csk) is an indispensable negative regulator for the Src family tyrosine kinases (SFKs) that play pivotal roles in various cell signalings. To understand the molecular basis of the Csk-mediated regulation of SFKs, we elucidated the crystal structure of full-length Csk. The Csk crystal consists of six molecules classified as active or inactive states according to the coordinations of catalytic residues. Csk assembles the SH2 and SH3 domains differently from inactive SFKs, and their binding pockets are oriented outward enabling the intermolecular interaction. In active molecules, the SH2-kinase and SH2-SH3 linkers are tightly stuck to the N-lobe of the kinase domain to stabilize the active conformation, and there is a direct linkage between the SH2 and the kinase domains. In inactive molecules, the SH2 domains are rotated destroying the linkage to the kinase domain. Cross-correlation matrices for the active molecules reveal that the SH2 domain and the N-lobe of the kinase domain move as a unit. These observations suggest that Csk can be regulated through coupling of the SH2 and kinase domains and that Csk provides a novel built-in activation mechanism for cytoplasmic tyrosine kinases.  相似文献   

12.
C‐terminal Src kinase (Csk) that functions as an essential negative regulator of Src family tyrosine kinases (SFKs) interacts with tyrosine‐phosphorylated molecules through its Src homology 2 (SH2) domain, allowing it targeting to the sites of SFKs and concomitantly enhancing its kinase activity. Identification of additional Csk‐interacting proteins is expected to reveal potential signaling targets and previously undescribed functions of Csk. In this study, using a direct proteomic approach, we identified 151 novel potential Csk‐binding partners, which are associated with a wide range of biological functions. Bioinformatics analysis showed that the majority of identified proteins contain one or several Csk‐SH2 domain‐binding motifs, indicating a potentially direct interaction with Csk. The interactions of Csk with four proteins (partitioning defective 3 (Par3), DDR1, SYK and protein kinase C iota) were confirmed using biochemical approaches and phosphotyrosine 1127 of Par3 C‐terminus was proved to directly bind to Csk‐SH2 domain, which was consistent with predictions from in silico analysis. Finally, immunofluorescence experiments revealed co‐localization of Csk with Par3 in tight junction (TJ) in a tyrosine phosphorylation‐dependent manner and overexpression of Csk, but not its SH2‐domain mutant lacking binding to phosphotyrosine, promoted the TJ assembly in Madin‐Darby canine kidney cells, implying the involvement of Csk‐SH2 domain in regulating cellular TJs. In conclusion, the newly identified potential interacting partners of Csk provided new insights into its functional diversity in regulation of numerous cellular events, in addition to controlling the SFK activity.  相似文献   

13.
Lin X  Ayrapetov MK  Lee S  Parang K  Sun G 《Biochemistry》2005,44(5):1561-1567
Protein tyrosine kinases (PTKs) are important regulators of mammalian cell function and their own activities are tightly regulated. Underlying their tight regulation, all PTKs contain multiple regulatory domains in addition to a catalytic domain. C-terminal Src kinase (Csk) contains a catalytic domain and a regulatory region, consisting of an SH3 and an SH2 domain. In this study, we probed the communication between the regulatory and catalytic domains of Csk. First, kinetic characterization of SH3 and SH2 domain deletion mutants demonstrated that the SH3 and SH2 domains were crucial in maintaining the full activity of Csk, but were not directly involved in Csk recognition of its physiological substrate, Src. Second, highly conserved Trp188, corresponding to a key residue in domain-domain communication in other PTKs, was found to be important for maintaining the active structure of Csk by the presence of the regulatory region, but not required for Csk activation triggered by a phosphopeptide binding to the SH2 domain. Third, structural alignment indicated that the presence of the regulatory domains modulated the conformation of multiple substructures in the catalytic domain, some directly and others remotely. Mutagenic and kinetic studies supported this assignment. This report extended previous studies of Csk domain-domain communication, and provided a foundation for further detailed investigation of this communication.  相似文献   

14.
The C-terminal Src kinase (Csk) family of protein tyrosine kinases contains two members: Csk and Csk homologous kinase (Chk). Both phosphorylate and inactivate Src family kinases. Recent reports suggest that the Src homology (SH) 2 domains of Csk and Chk may bind to different phosphoproteins, which provides a basis for different cellular functions for Csk and Chk. To verify and characterize such a functional divergence, we compared the binding properties of the Csk, Chk, and Src SH2 domains and investigated the structural basis for the functional divergence. First, the study demonstrated striking functional differences between the Csk and Chk SH2 domains and revealed functional similarities between the Chk and Src SH2 domains. Second, structural analysis and mutagenic studies revealed that the functional differences among the three SH2 domains were largely controlled by one residue, Glu127 in Csk, Ile167 in Chk, and Lys200 in Src. Mutating these residues in the Csk or Chk SH2 domain to the Src counterpart resulted in dramatic gain of function similar to Src SH2 domain, whereas mutating Lys200 in Src SH2 domain to Glu (the Csk counterpart) resulted in loss of Src SH2 function. Third, a single point mutation of E127K rendered Csk responsive to activation by a Src SH2 domain ligand. Finally, the optimal phosphopeptide sequence for the Chk SH2 domain was determined. These results provide a compelling explanation for the functional differences between two homologous protein tyrosine kinases and reveal a new structure-function relationship for the SH2 domains.  相似文献   

15.
C-terminal Src kinase (Csk) takes part in a highly specific, high affinity interaction via its Src homology 3 (SH3) domain with the proline-enriched tyrosine phosphatase PEP in hematopoietic cells. The solution structure of the Csk-SH3 domain in complex with a 25-residue peptide from the Pro/Glu/Ser/Thr-rich (PEST) domain of PEP reveals the basis for this specific peptide recognition motif involving an SH3 domain. Three residues, Ala 40, Thr 42 and Lys 43, in the SH3 domain of Csk specifically recognize two hydrophobic residues, Ile 625 and Val 626, in the proline-rich sequence of the PEST domain of PEP. These two residues are C-terminal to the conventional proline-rich SH3 domain recognition sequence of PEP. This interaction is required in addition to the classic polyproline helix (PPII) recognition by the Csk-SH3 domain for the association between Csk and PEP in vivo. NMR relaxation analysis suggests that Csk-SH3 has different dynamic properties in the various subsites important for peptide recognition.  相似文献   

16.
The Src family kinases possess two sites of tyrosine phosphorylation that are critical to the regulation of kinase activity. Autophosphorylation on an activation loop tyrosine residue (Tyr 416 in commonly used chicken c-Src numbering) increases catalytic activity, while phosphorylation of a C-terminal tyrosine (Tyr 527 in c-Src) inhibits activity. The latter modification is achieved by the tyrosine kinase Csk (C-terminal Src Kinase), but the complete inactivation of the Src family kinases also requires the dephosphorylation of the activation loop tyrosine. The SH3 domain of Csk recruits the tyrosine phosphatase PEP, allowing for the coordinated inhibition of Src family kinase activity. We have discovered that Csk forms homodimers through interactions mediated by the SH3 domain in a manner that buries the recognition surface for SH3 ligands. The formation of this dimer would therefore block the recruitment of tyrosine phosphatases and may have important implications for the regulation of Src kinase activity.  相似文献   

17.
The protein tyrosine kinase C-terminal Src kinase (Csk) is activated by the engagement of its Src homology (SH) 2 domain. However, the molecular mechanism required for this is not completely understood. The crystal structure of the active Csk indicates that Csk could be activated by contact between the SH2 domain and the β3-αC loop in the N-terminal lobe of the kinase domain. To study the importance of this interaction for the SH2-domain-mediated activation of Csk, we mutated the amino acid residues forming the contacts between the SH2 domain and the β3-αC loop. The mutation of the β3-αC loop Ala228 to glycine and of the SH2 domain Tyr116, Tyr133, Leu138, and Leu149 to alanine resulted in the inability of the SH2 domain ligand to activate Csk. Furthermore, the overexpressed Csk mutants A228G, Y133A/Y116A, L138A, and L149A were unable to efficiently inactivate endogenous Src in human embryonic kidney 293 cells. The results suggest that the SH2-domain-mediated activation of Csk is dependent on the binding of the β3-αC loop Ala228 to the hydrophobic pocket formed by the side chains of Tyr116, Tyr133, Leu138, and Leu149 on the surface of the SH2 domain.  相似文献   

18.
The Src family of tyrosine kinases (SFKs) regulate numerous aspects of cell growth and differentiation and are under the principal control of the C-terminal Src Kinase (Csk). Csk and SFKs share a modular design with the kinase domain downstream of the N-terminal SH2 and SH3 domains that regulate catalytic function and membrane localization. While the function of interfacial segments in these multidomain kinases are well-investigated, little is known about how surface sites and long-range, allosteric coupling control protein dynamics and catalytic function. The SH2 domain of Csk is an essential component for the down-regulation of all SFKs. A unique feature of the SH2 domain of Csk is the tight turn in place of the canonical CD loop in a surface site far removed from kinase domain interactions. In this study, we used a combination of experimental and computational methods to probe the importance of this difference by constructing a Csk variant with a longer SH2 CD loop to mimic the flexibility found in homologous kinase SH2 domains. Our results indicate that while the fold and function of the isolated domain and the full-length kinase are not affected by loop elongation, native protein dynamics that are essential for efficient catalysis are perturbed. We also identify key motifs and routes through which the distal SH2 site might influence catalysis at the active site. This study underscores the sensitivity of intramolecular signaling and catalysis to native protein dynamics that arise from modest changes in allosteric regions while providing a potential strategy to alter intrinsic activity and signaling modulation.  相似文献   

19.
The SH2 domain is required for high catalytic activity in the COOH-terminal Src kinase (Csk). Previous solution studies suggest that a short peptide sequence, the SH2-kinase linker, provides a functional connection between the active site and the distal SH2 domain that could underlie this catalytic phenomenon. Substitutions in Phe183 (tyrosine, alanine, and glycine), a critical hydrophobic residue in the linker, result in large decreases in substrate turnover and large increases in the K(m) for ATP. Indeed, F183G possesses kinetic parameters that are similar to that for a truncated form of Csk lacking the SH2 domain, suggesting that a single mutation disrupts communication between this domain and the active site. Based on equilibrium and stopped-flow fluorescence experiments, the elevated K(m) values for the mutants are due to changes in the rates of phosphoryl transfer and not to reduced ATP-binding affinities. Based on hydrogen-deuterium exchange experiments, glycine substitution reduces flexibility in several polypeptide regions in Csk, tyrosine substitution increases flexibility, and alanine substitution leads to mixed effects compared to wild-type. Normal mode analysis indicates that Phe183 and its environment are under strain, a theoretical finding that supports the results of mutations. Overall, the data indicate that domain-domain interactions, controlled through the SH2-kinase linker, provide a dynamic balance within the Csk framework that is ideal for efficient phosphoryl transfer in the active site.  相似文献   

20.
Csk (carboxyl-terminal Src kinase) is a cytoplasmic tyrosine kinase that phosphorylates a critical tyrosine residue in each of the Src family kinases (SFKs) to inhibit their activities. Recently, we identified a transmembrane protein, Cbp (Csk-binding protein), that, when phosphorylated, can recruit Csk to the membrane where the SFKs are located. The Cbp-mediated relocation of Csk to the membrane may play a role in turning off the signaling events initiated by SFKs. To further characterize the Csk-Cbp interaction, we have generated a reconstituted system using soluble, highly purified proteins. Csk and phosphorylated Cbp were co-purified as a large protein complex consisting of at least four Csk.Cbp units. The addition of the phosphorylated, but not nonphosphorylated, Cbp to an in vitro assay stimulated Csk activity toward Src. Csk was also activated by a phosphopeptide containing the tyrosine in Cbp that binds to Csk (Tyr-314). Kinetic analysis revealed that Cbp or the phosphopeptide induced up to a 6-fold reduction in the K(m) for Src, indicating that the Csk.Cbp complex has a greater affinity for Src than free Csk. These findings suggest that Cbp is involved in the regulation of SFKs not only by relocating Csk to the membrane but also by directly activating Csk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号