首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Iron is an important nutrient required by bacteria for optimal growth. Acquisition of iron from the host where iron is restricted is an important mediator of bacterial pathogenesis. In iron deplete chemically defined medium (CDM-Fe) growth of Acinetobacter baumannii was restricted as compared to iron replete medium (CDM + Fe). Bacteria developed four high molecular weight outer membrane proteins (OMPs) of 88, 84, 80 and 77 kDa in CDM-Fe medium which were absent in CDM + Fe medium, and are known iron regulated outer membrane proteins (IROMPs). A. baumannii secreted siderophores extracellularly into the medium which act as iron chelators which had been demonstrated in the supernatants of CDM-Fe media. The siderophore was of catechol type. This shows that A. baumannii under iron restricted conditions express IROMPs along with production of catechol type siderophore in order to acquire iron from the external milieu.  相似文献   

2.
Excretion of alpha-keto acids by clinical isolates and laboratory strains of Salmonella typhimurium was determined by high-performance liquid chromatography analysis of culture supernatants. The levels of excretion increased markedly with increasing iron stress imposed by the presence of alpha,alpha'-dipyridyl or conalbumin in the medium. The major product was pyruvic acid, but significant concentrations of alpha-ketoglutaric acid, alpha-ketoisovaleric acid, and alpha-ketoisocaproic acid were also observed. Maximal excretion occurred at iron stress levels that initially inhibited bacterial growth; the concentration of alpha,alpha'-dipyridyl at which this was observed differed between strains depending on their ability to secrete and utilize siderophores, suggesting that the intracellular iron status was important in determining alpha-keto acid excretion. However, prolonged incubation of the siderophore-deficient S. typhimurium strain enb-7 under conditions of high iron stress resulted in significant delayed bacterial growth, promoted by tonB-dependent uptake of iron complexed with the high accumulated levels of pyruvic acid and other alpha-keto acids. Strain RB181, a fur derivative of enb-7, excreted massive amounts of alpha-keto acids into the culture medium even in the absence of any iron chelators (the concentration of pyruvic acid, for example, was >25 mM). Moreover, RB181 was able to grow and excrete alpha-keto acids in the presence of alpha,alpha'-dipyridyl at concentrations threefold greater than that which inhibited the growth of enb-7.  相似文献   

3.
4.
It has been demonstrated that under iron-restricted conditions Bordetella pertussis can take up iron from human transferrin within 30 min of exposure. B. pertussis utilizes two mechanisms for acquiring iron from human transferrin, a direct contact method and a siderophore mediated system. Both systems are shown to result in bacterial internalization of iron from transferrin. However, direct contact between B. pertussis and transferrin provides far more effective iron uptake than siderophore activity alone.  相似文献   

5.
Summary Low concentrations of nalidixic acid and oxolinic acid that were just inhibitory toAzotobacter vinelandii growth promoted the production of the catechol siderophores azotochelin and aminochelin, in the presence of normally repressive concentrations of Fe3+. There was a limited effect on the pyoverdin siderophore, azotobactin, where low concentrations of Fe3+ were rendered less repressive, but the repression by higher concentrations of Fe3+ was normal. These drugs did not induce high-molecular-mass iron-repressible outer-membrane proteins and similar effects on the regulation of catechol siderophore synthesis were not produced by novobiocin, coumermycin, or ethidium bromide. The timing of nalidixic acid and Fe3+ addition to iron-limited cells was critical. Nalidixic acid had to be added before iron-repression of catechol siderophore synthesis and before the onset of iron-sufficient growth. Continued production of the catechol siderophores, however, was not due to interference with normal iron uptake. These data indicated that nalidixic acid prevented normal iron-repression of catechol siderophore synthesis but could not reverse iron repression once it had ocurred. The possible roles of DNA gyrase activity in the regulation of catechol siderophore synthesis is discussed.  相似文献   

6.
We investigated the incidence of plasmid-mediated and chromosome-mediated iron uptake systems in strains of Vibrio anguillarum that belong to serotypes O1 and O2 and were isolated from different fish species and in different geographic areas. All of the strains gave positive reactions in CAS agar medium and in the Arnow test, which indicated that catechol types of siderophores were produced. The majority of V. anguillarum serotype O1 strains harbored a 65-kb plasmid similar to plasmid pJM1 from strain 775, which encodes the siderophore anguibactin and its outer membrane receptor, protein OM2. All of the isolates harboring this plasmid promoted the growth of an anguibactin-deficient receptor-proficient mutant derived from strain 775, but none of these isolates promoted the growth of mutants lacking receptor OM2. Furthermore, under iron-limiting conditions all of these strains induced outer membrane proteins that were identical in size to protein OM2 of strain 775. In contrast, none of the serotype O2 strains contained a high-molecular-weight plasmid, but all of them induced the growth of mutants defective in the anguibactin-mediated system regardless of the presence or absence of receptor OM2. The serotype O2 strains, but not the plasmid-bearing serotype O1 strains, also induced the growth of Salmonella typhimurium enb-1 which utilizes only enterobactin as a siderophore.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
A total of 156 strains of Vibrio cholerae non-O1 from aquatic origins were examined for the presence of iron uptake mechanisms and compared with O1 strains and other Vibrio species. All non-O1 strains were able to grow in iron-limiting conditions, with MICs of ethylenediaminedi (O-hydroxyphenylacetic acid) ranging from 20 microM to 2 mM. The production of siderophores was demonstrated by growth in chrome azurol S agar and cross-feeding assays. All strains produced phenolate-type compounds, as assessed by the chemical tests and by bioassays with Salmonella typhimurium enb-7. Some of the strains also promoted the growth of S. typhimurium enb-1 (which can use only enterobactin as a siderophore) as well as some strains of Vibrio anguillarum deficient in the anguibactin-mediated system. The chromatographic analyses and absorption spectra of siderophores extracted from culture supernatants suggest that vibriobactin may be produced by the strains examined. Interestingly, some strains also produced hydroxamate-type compounds, as determined by chemical tests, and were able to promote the growth of an aerobactin-deficient strain of Escherichia coli. These results were confirmed by the absorption spectra and chromatographic analyses of the culture extracts. The synthesis of iron-regulated outer membrane proteins in representative strains was also examined. The molecular sizes of the main induced proteins ranged from 70 to 78 kilodaltons. These results indicate that several iron uptake mechanisms which could be involved in environmental survival and pathogenicity are present in environmental V. cholerae non-O1 strains.  相似文献   

8.
We investigated the incidence of plasmid-mediated and chromosome-mediated iron uptake systems in strains of Vibrio anguillarum that belong to serotypes O1 and O2 and were isolated from different fish species and in different geographic areas. All of the strains gave positive reactions in CAS agar medium and in the Arnow test, which indicated that catechol types of siderophores were produced. The majority of V. anguillarum serotype O1 strains harbored a 65-kb plasmid similar to plasmid pJM1 from strain 775, which encodes the siderophore anguibactin and its outer membrane receptor, protein OM2. All of the isolates harboring this plasmid promoted the growth of an anguibactin-deficient receptor-proficient mutant derived from strain 775, but none of these isolates promoted the growth of mutants lacking receptor OM2. Furthermore, under iron-limiting conditions all of these strains induced outer membrane proteins that were identical in size to protein OM2 of strain 775. In contrast, none of the serotype O2 strains contained a high-molecular-weight plasmid, but all of them induced the growth of mutants defective in the anguibactin-mediated system regardless of the presence or absence of receptor OM2. The serotype O2 strains, but not the plasmid-bearing serotype O1 strains, also induced the growth of Salmonella typhimurium enb-1 which utilizes only enterobactin as a siderophore.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
C Amaro  R Aznar  E Alcaide    M L Lemos 《Applied microbiology》1990,56(8):2410-2416
A total of 156 strains of Vibrio cholerae non-O1 from aquatic origins were examined for the presence of iron uptake mechanisms and compared with O1 strains and other Vibrio species. All non-O1 strains were able to grow in iron-limiting conditions, with MICs of ethylenediaminedi (O-hydroxyphenylacetic acid) ranging from 20 microM to 2 mM. The production of siderophores was demonstrated by growth in chrome azurol S agar and cross-feeding assays. All strains produced phenolate-type compounds, as assessed by the chemical tests and by bioassays with Salmonella typhimurium enb-7. Some of the strains also promoted the growth of S. typhimurium enb-1 (which can use only enterobactin as a siderophore) as well as some strains of Vibrio anguillarum deficient in the anguibactin-mediated system. The chromatographic analyses and absorption spectra of siderophores extracted from culture supernatants suggest that vibriobactin may be produced by the strains examined. Interestingly, some strains also produced hydroxamate-type compounds, as determined by chemical tests, and were able to promote the growth of an aerobactin-deficient strain of Escherichia coli. These results were confirmed by the absorption spectra and chromatographic analyses of the culture extracts. The synthesis of iron-regulated outer membrane proteins in representative strains was also examined. The molecular sizes of the main induced proteins ranged from 70 to 78 kilodaltons. These results indicate that several iron uptake mechanisms which could be involved in environmental survival and pathogenicity are present in environmental V. cholerae non-O1 strains.  相似文献   

10.
Under iron-starvation conditions of growth, Pseudomonas fluorescens CHA0, a soil isolate involved in phytopathogenic fungi antagonisms, produced, together with pyoverdine, a second iron-chelating compound which was purified and identified by spectroscopy, HPLC and 1H-NMR to be salicylic acid. Mutants unable to synthesize pyoverdine overproduced this compound by a factor of 9-14. The biosynthesis of salicylic acid was under iron control; it was fully inhibited by 5 microM added iron in the growth medium. In contrast, salicylic acid of either bacterial or commercial origin facilitated labeled iron incorporation in iron-starved cells. Based on these two relationships observed with bacterial iron metabolism it is concluded that salicylic acid has a siderophore function for this strain.  相似文献   

11.
Cyanobacteria vary in their ability to grow in media contaning low amounts of biologically available iron. Some strains, such as Oscillatoria tenuis, are well adapted to thrive in low-iron environments. We investigated the mechanism of iron scavenging in O. tenuis and found that this cyanobacterium has a siderophore-mediated iron transport system that differs significantly from the traditional hydroxamate-siderophore transport system reported from other cyanobacteria. Unlike other cyanobacteria, this strain produces two types of siderophores, a hydroxamate-type siderophore and a catechol-type siderophore. Production of these two siderophores is expressed at two different iron levels in the medium, suggesting two different iron regulated uptake systems. We compared the production of each siderophore with the growth rate of the culture and found that the production of the catechol siderophore enhances the growth rate of the cyanobacterium, whereas the cells maintain lower than maximal growth rates when only the hydroxamate-type siderophore is being produced.Abbreviation EDDA ethylene diamine di-(o-hydroxyphenylacetic acid)  相似文献   

12.
The production of a catechol type of siderophore by an iron-depleted culture of cowpeaRhizobium decreased with the increase in the concentration of molybdenum in the growth medium above 1 mM. In vitro addition of molybdenum at pH 5 and 7 changed the absorbance maxima of siderophore, indicating the interaction of molybdenum with siderophore. Tungsten, which is a competitive inhibitor of molybdenum, was unable to dissociate the molybdenum-siderophore conjugate. In the presence of iron, siderophore increased the uptake of molybdenum. Under these conditions, the addition of 2,3-dihydroxybenzoic acid did not show an increase in the uptake. This suggests that an entire siderophore molecule is involved in the transport of molybdenum.  相似文献   

13.
Pseudomonasputida (CMMB2) was isolated from open ocean water of Gulf of Mannar. The isolate was identified based on 16S rRNA gene sequencing and phylogenetic analysis. Chrome azurol sulphonate assay confirms siderophore production by the isolate. Nature of siderophore produced by the isolate was found to be of mixed type. Siderophore production was found to be inversely proportional to iron concentration of the medium. Maximum siderophore production was observed with MM9 medium. Siderophore production was found to be influenced by different carbon, nitrogen and amino acid sources. Optimization of MM9 medium nutrient composition by response surface methodology (RSM) enhances siderophore production. Application of RSM is one of the strategic attempts in cost effective siderophore production process. Presence of aromatic ring in the siderophore with (C–O) and (C=C) stretching was ascertained by FTIR spectral analysis. Mass spectral analysis revealed the presence of chromophore in the pyoverdine siderophore. Cell free supernatant and purified siderophore was found to inhibit the growth of bacterial and fungal pathogens.  相似文献   

14.
In this study, we attempted to determine the effects of iron-availability and the activity of the bacterial iron-uptake system (IUS) on the growth of Staphylococcus aureus in human peritoneal dialysate (HPD) solution. A streptonigrin-resistant S. aureus (SRSA) strain, isolated from S. aureus ATCC 6538, exhibited defective siderophore production, thereby resulting in ineffective uptake of iron from low iron-saturated transferrin. The growth of both strains was stimulated in HPD solution supplemented with FeCl3 and holotransferrin, but growth was inhibited in HPD solution which had been supplemented with apotransferrin and dipyridyl. The SRSA strain grew less robustly than did its parental strain in both iron-supplemented HPD solution and regular HPD solution. These results indicate that iron-availability and siderophore-mediated IUS activity in particular, the ability to produce siderophores and thus capture iron from low iron-saturated transferrin play critical roles in the growth of S. aureus in HPD solution. Our results also indicated that the possibility of using iron chelators as therapeutic or preventive agents warrants further evaluation.  相似文献   

15.
Acinetobacter baumannii causes severe infections in compromised patients, who present an iron-limited environment that controls bacterial growth. This pathogen has responded to this restriction by expressing high-affinity iron acquisition systems including that mediated by the siderophore acinetobactin. Gene cloning, functional assays and biochemical tests showed that the A. baumannii genome contains a single functional copy of an entA ortholog. This gene, which is essential for the biosynthesis of the acinetobactin precursor 2,3-dihydroxybenzoic acid (DHBA), locates outside of the acinetobactin gene cluster, which otherwise harbors all genes needed for acinetobactin biosynthesis, export and transport. In silico analyses and genetic complementation tests showed that entA locates next to an entB ortholog, which codes for a putative protein that contains the isochorismatase lyase domain, which is needed for DHBA biosynthesis from isochorismic acid, but lacks the aryl carrier protein domain, which is needed for tethering activated DHBA and completion of siderophore biosynthesis. Thus, basF, which locates within the acinetobactin gene cluster, is the only fully functional entB ortholog present in ATCC 19606(T). The differences in amino acid length and sequences between these two EntB orthologs and the differences in the genetic context within which the entA and entB genes are found in different A. baumannii isolates indicate that they were acquired from different sources by horizontal transfer. Interestingly, the AYE strain proved to be a natural entA mutant capable of acquiring iron via an uncharacterized siderophore-mediated system, an observation that underlines the ability of different A. baumannii isolates to acquire iron using different systems. Finally, experimental infections using in vivo and ex vivo models demonstrate the role of DHBA and acinetobactin intermediates in the virulence of the ATCC 19606(T) cells, although to a lesser extent when compared to the responses obtained with bacteria producing and using fully matured acinetobactin to acquire iron.  相似文献   

16.
Abstract Siderophore produced by cowpea Rhizobium GN1 (Peanut isolate) was shown to be involved in iron uptake by this organism. Siderophore enhanced iron uptake in iron-starved cells. SDS-PAGE analysis of the outer membrane proteins showed two iron repressible outer membrane proteins with approximate molecular mass of 80 kDa and 76 kDa. A siderophore non-producing mutant, which was unable to grow on a medium containing synthetic iron chelators unless and until iron was added exogenously in the medium, could use siderophore of the wild-type for iron uptake indicating that the receptor for Fe-siderophore complex was intact in the mutant.  相似文献   

17.
Cepabactin from Pseudomonas cepacia, a new type of siderophore   总被引:10,自引:0,他引:10  
In iron-deficient conditions of growth Pseudomonas cepacia ATCC 25416 excreted both pyochelin and a low-molecular-mass compound which strongly chelated iron(III), and facilitated iron translocation as demonstrated by growth and uptake experiments. The name cepabactin is proposed for this new siderophore. Comparisons of UV-visible spectra and chromatographic behaviour, together with 1H-NMR spectra, led to the conclusion that cepabactin is 1-hydroxy-5-methoxy-6-methyl-2(1H)-pyridinone, a compound which can be considered as a cyclic hydroxamate, but also as a heterocyclic analogue of catechol. This pyridinone has already been described by other workers as an antibiotic produced by Pseudomonas alcaligenes, and by a soil isolate closely related to Pseudomonas cepacia. Thus, cepabactin appears to act as a siderophore for more than one species of non-fluorescent pseudomonad.  相似文献   

18.
Acquisition of iron by Aeromonas salmonicida.   总被引:9,自引:1,他引:8       下载免费PDF全文
The ability of six typical and three atypical strains of Aeromonas salmonicida to sequester Fe3+ from the high-affinity iron chelators ethylenediaminedihydroxy-phenylacetic acid, lactoferrin, and transferrin was determined. Typical strains were readily able to sequester Fe3+ and used two different mechanisms. One mechanism was inducible and appeared to involve production of a low-molecular-weight soluble siderophore(s). Iron uptake by this mechanism was strongly inhibited by ferricyanide. One virulent strain displayed a second mechanism which was constitutive and required cell contact with Fe3+-lactoferrin or -transferrin. This strain did not produce a soluble siderophore(s) but could utilize the siderophore(s) produced by the other strain. Fe3+ uptake by this stripping mechanism was strongly inhibited by dinitrophenol. Atypical strains displayed a markedly reduced ability to sequester iron from high-affinity chelators, although one of them was able to utilize the siderophores produced by the typical strain. In all strains examined, Fe3+ limitation resulted in the increased synthesis of several high-molecular-weight outer membrane proteins.  相似文献   

19.
Iron acquisition systems in the pathogenic Neisseria   总被引:1,自引:0,他引:1  
Pathogenic neisseriae have a repertoire of high-affinity iron uptake systems to facilitate acquisition of this essential element in the human host. They possess surface receptor proteins that directly bind the extracellular host iron-binding proteins transferrin and lactoferrin. Alternatively, they have siderophore receptors capable of scavenging iron when exogenous siderophores are present. Released intracellular haem iron present in the form of haemoglobin, haemoglobin-haptoglobin or free haem can be used directly as a source of iron for growth through direct binding by specific surface receptors. Although these receptors may vary in complexity and composition, the key protein involved in the transport of iron (as iron, haem or iron-siderophore) across the outer membrane is a TonB-dependent receptor with an overall structure presumably similar to that determined recently for Escherichia coli FhuA or FepA. The receptors are potentially ideal vaccine targets in view of their critical role in survival in the host. Preliminary pilot studies indicate that transferrin receptor-based vaccines may be protective in humans.  相似文献   

20.
Exposure of bacteria to members of the stress-associated family of catecholamine hormones, principally norepinephrine, has been demonstrated to increase both growth and production of virulence-related factors. Mutation of genes for enterobactin synthesis and uptake revealed an absolute requirement for enterobactin in norepinephrine-stimulated growth of Escherichia coli O157:H7. The autoinducer produced by norepinephrine-stimulated E. coli could not substitute for enterobactin. We also demonstrate that norepinephrine promotes iron shuttling between transferrin molecules, thereby enabling the bacterial siderophore enterobactin to more readily acquire iron for growth. These results suggest one of the possible mechanisms by which the hormonal output of stress may affect enterohaemorrhagic E. coli pathogenicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号