首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetic parameters of several substrates of penicillin acylase from Streptomyces lavendulae have been determined. The enzyme hydrolyses phenoxymethyl penicillin (penicillin V) and other penicillins with aliphatic acyl-chains such as penicillin F, dihydroF, and K. The best substrate was penicillin K (octanoyl penicillin) with a k(cat)/K(m) of 165.3 mM(-1) s(-1). The enzyme hydrolyses also chromogenic substrates as NIPOAB (2-nitro-5-phenoxyacetamido benzoic acid), NIHAB (2-nitro-5-hexanoylamido benzoic acid) or NIOAB (2-nitro-5-octanoylamido benzoic acid), however failed to hydrolyse phenylacetil penicillin (penicillin G) or NIPAB (2-nitro-5-phenylacetamido benzoic acid) and penicillins with polar substituents in the acyl moiety. These results suggest that the structure of the acyl moiety of the substrate is more determinant than the amino moiety for enzyme specificity. The enzyme was inhibited by several organic acids and the extent of inhibition changed with the hydrophobicity of the acid. The best inhibitor was octanoic acid with a K(i) of 0.8 mM. All the results, taking together, point to an active site highly hydrophobic for this penicillin acylase from Streptomyces lavendulae.  相似文献   

2.
Summary The synthetic substrate 6-nitro-3-(phenylacetamido) benzoic acid (NIPAB) is an appropriate substrate for assaying penicillin acylase activity in reversed micellar systems of Aerosol - OT in isooctane. Accumulation of 6-nitro-3-aminobenzoic acid (NABA) produced by the enzymatic hydrolysis of NIPAB, followed by the increase in absorbance at 405 nm, was linear at 4 to 20 mM for up to 30 minutes and 15 °C to 40 °C.Abbreviations PA penicillin acylase (penicillin amidohydrolase EC 3.5.1.11) - AOT Aerosol OT (sodium bis- (2-ethylhexyl) sulfosuccinate) - NIPAB 6-nitro-3-(phenylacetamido)-benzoic acid - NABA 6-nitro-3-aminobenzoic acid - BSA bovine serum albumin  相似文献   

3.
Summary The extraction of penicillin acylase by reverse micellar solutions of a surfactant was studied. A 50 mM solution of dioctyl sodium sulphosuccinate in isooctane extracted 46% of the enzyme activity in a crude periplasmic extract of induced cells of E. coli ATCC 9637. The increase in the specific activity of the final enzyme preparation, after stripping of the organic phase at pH 7.5, in the presence of 1 M KCl, was 8 - fold.Abbreviations PA penicillin acylase (penicillin amidohydrolase EC 3.5.1.11) - AOT Aerosol OT (dioctyl sodium sulphosuccinate) - NIPAB 6-nitro-3-(phenylacetamido)-benzoic acid - NABA 6-nitro-3-aminobenzoic acid - BSA bovine serum albumin - SDS sodium dodecylsulphate  相似文献   

4.
Penicillin acylase catalyses the hydrolysis and synthesis of semisynthetic beta-lactam antibiotics via formation of a covalent acyl-enzyme intermediate. The kinetic and mechanistic aspects of these reactions were studied. Stopped-flow experiments with the penicillin and ampicillin analogues 2-nitro-5-phenylacetoxy-benzoic acid (NIPAOB) and d-2-nitro-5-[(phenylglycyl)amino]-benzoic acid (NIPGB) showed that the rate-limiting step in the conversion of penicillin G and ampicillin is the formation of the acyl-enzyme. The phenylacetyl- and phenylglycyl-enzymes are hydrolysed with rate constants of at least 1000 s-1 and 75 s-1, respectively. A normal solvent deuterium kinetic isotope effect (KIE) of 2 on the hydrolysis of 2-nitro-5-[(phenylacetyl)amino]-benzoic acid (NIPAB), NIPGB and NIPAOB indicated that the formation of the acyl-enzyme proceeds via a general acid-base mechanism. In agreement with such a mechanism, the proton inventory of the kcat for NIPAB showed that one proton, with a fractionation factor of 0.5, is transferred in the transition state of the rate-limiting step. The overall KIE of 2 for the kcat of NIPAOB resulted from an inverse isotope effect at low concentrations of D2O, which is overridden by a large normal isotope effect at large molar fractions of D2O. Rate measurements in the presence of glycerol indicated that the inverse isotope effect originated from the higher viscosity of D2O compared to H2O. Deacylation of the acyl-enzyme was studied by nucleophile competition and inhibition experiments. The beta-lactam compound 7-aminodesacetoxycephalosporanic acid (7-ADCA) was a better nucleophile than 6-aminopenicillanic acid, caused by a higher affinity of the enzyme for 7-ADCA and complete suppression of hydrolysis of the acyl-enzyme upon binding of 7-ADCA. By combining the results of the steady-state, presteady state and nucleophile binding experiments, values for the relevant kinetic constants for the synthesis and hydrolysis of beta-lactam antibiotics were obtained.  相似文献   

5.
The paper reports the purification and characterization of the first penicillin acylase from Bacillus subtilis. YxeI, the protein annotated as hypothetical, coded by the gene yxeI in the open reading frame between iol and hut operons in B. subtilis was cloned and expressed in Eshcherichia coli, purified and characterized. The purified protein showed measurable penicillin acylase activity with penicillin V. The enzyme was a homotetramer of 148 kDa. The apparent Km of the enzyme for penicillin V and the synthetic substrate 2-nitro-5-(phenoxyacetamido)-benzoic acid was 40 mM and 0.63 mM, respectively, and the association constants were 8.93 × 102 M−1 and 2.51 × 105 M−1, respectively. It was inhibited by cephalosporins and conjugated bile salts, substrates of the closely related bile acid hydrolases. It had good sequence homology with other penicillin V acylases and conjugated bile acid hydrolases, members of the Ntn hydrolase family. The N-terminal nucleophile was a cysteine which is revealed by a simple removal of N-formyl-methionine. The activity of the protein was affected by high temperature, acidic pH and the presence of the denaturant guanidine hydrochloride.  相似文献   

6.
A simple, rapid assay for screening penicillin G acylase-producing bacteria is presented. The method is based on the formation of yellow 2-nitro-5-aminobenzoic acid by penicillin G acylase acting on 2-nitro-5-phenylacetaminobenzoic acid (NIPAB). NIPAB test paper is briefly applied to bacterial colonies on the agar surface, which are subsequently scored individually on the paper by color; bright yellow indicates the presence of penicillin G acylase, natural color its absence. The present method is suitable not only for screening penicillin G acylase-production by a variety of bacteria but also for detection from a large number of transformant colonies of clones containing a gene encoding for the enzyme.  相似文献   

7.
Penicillin V acylase from Fusarium sp. SKF 235 was immobilized on several cation-exchange resins, of which Amberlite CG-50 was preferred. Maximum activity of the immobilized penicillin V acylase was 250 to 280 IU/g dry beads. The pH and temperature optima of the enzyme shifted from 6.5 to 6.8 and 55°C to 60°C, respectively, as a result of immobilization. However, the K m for penicillin V remained at 10mm. Parameters for producing 6-aminopenicillanic acid were investigated and the immobilized penicillin V acylase was used for 68 cycles in a stirred tank reactor.  相似文献   

8.
We report on the molecular cloning and characterization of penicillin V acylase (PVA) from an actinomycete, Streptomyces mobaraensis (Sm-PVA), which was originally isolated as an acylase that efficiently hydrolyzes the amide bond of various N-fatty-acyl-l-amino acids and N-fatty-acyl-peptides as well as capsaicin (8-methyl-N-vanillyl-6-nonenamide). In addition, the purified Sm-PVA hydrolyzed penicillin V with the highest activity (k(cat)) among the PVAs so far reported, penicillin G, and 2-nitro-5-phenoxyacetamide benzoic acid. The BLAST search revealed that the Sm-PVA precursor is composed of a polypeptide that is characteristic of enzymes belonging to the beta-lactam acylase family with four distinct segments; a signal sequence (43 amino acids), an alpha subunit (173 amino acids), a linker peptide (28 amino acids), and a beta subunit (570 amino acids). The mature, active Sm-PVA is a heterodimeric protein with alpha and beta subunits, in contrast to PVAs isolated from Bacillus sphaericus and B. subtilis, which have a homotetrameric structure. The amino acid sequence of Sm-PVA showed identities to PVA from S. lavendulae, N-acylhomoserine lactone-degrading acylase from Streptomyces sp., cyclic lipopeptide acylase from Streptomyces sp., and aculeacin A acylase from Actinoplanes utahensis with 68, 67, 67, and 41% identities, respectively.  相似文献   

9.
Determination of kinetic parameters of penicillin acylases for phenylacetylated compounds is complicated due to the low K(m) values for these substrates, the lack of a spectroscopic signal, and the strong product inhibition by phenylacetic acid. To overcome these difficulties, a spectrophotometric method was developed, with which kinetic parameters could be determined by measuring the effects on the hydrolysis of the chromogenic reference substrate 2-nitro-5-[(phenylacetyl)amino]benzoic acid (NIPAB). To that end, spectrophotometric progress curves with NIPAB in the absence and presence of the phenylacetylated substrates and their products were measured and analyzed by numerical fitting to the appropriate equations for competing substrates with product inhibition. This analysis yielded kinetic constants for phenylacetylated substrates such as penicillin G, which are in close agreement with those obtained in independent initial velocity experiments. Using NIPAB analogs with lower k(cat)/K(m) values, kinetic parameters for the hydrolysis of cephalexin and penicillin V were determined. This method was suitable for determining the kinetic constants of penicillin acylases in periplasmic extracts from Escherichia coli, Alcaligenes faecalis, and Kluyvera citrophila. The use of chromogenic reference substrates thus appears to be a rapid and reliable method for determining kinetic constants with various substrates and enzymes.  相似文献   

10.
A simple method was developed to release periplasmic penicillin G acylase from Escherichia coli BL21(DE3) during the fermentation process. More than 80% of the total penicillin G acylase was released into the broth when 3% (v/v) chloroform was added at 3 h after induction. The activity of extracellular penicillin G acylase reached 20699 U/l. This method was efficient and would facilitate further investigation of penicillin G acylase for industrial applications.  相似文献   

11.
Penicillin acylase of Escherichia coli catalyses the hydrolysis and synthesis of beta-lactam antibiotics. To study the role of hydrophobic residues in these reactions, we have mutated three active-site phenylalanines. Mutation of alphaF146, betaF24 and betaF57 to Tyr, Trp, Ala or Leu yielded mutants that were still capable of hydrolysing the chromogenic substrate 2-nitro-5-[(phenylacetyl)amino]-benzoic acid. Mutations on positions alphaF146 and betaF24 influenced both the hydrolytic and acyl transfer activity. This caused changes in the transferase/hydrolase ratios, ranging from a 40-fold decrease for alphaF146Y and alphaF146W to a threefold increase for alphaF146L and betaF24A, using 6-aminopenicillanic acid as the nucleophile. Further analysis of the betaF24A mutant showed that it had specificity constants (kcat/Km) for p-hydroxyphenylglycine methyl ester and phenylglycine methyl ester that were similar to the wild-type values, whereas the specificity constants for p-hydroxyphenylglycine amide and phenylglycine amide had decreased 10-fold, due to a decreased kcat value. A low amidase activity was also observed for the semisynthetic penicillins amoxicillin and ampicillin and the cephalosporins cefadroxil and cephalexin, for which the kcat values were fivefold to 10-fold lower than the wild-type values. The reduced specificity for the product and the high initial transferase/hydrolase ratio of betaF24A resulted in high yields in acyl transfer reactions.  相似文献   

12.
Aeromonas sp. ACY 95 produces constitutively and intracellularly a penicillin V acylase at an early stage of fermentation (12 h) and a cephalosporin C acylase at a later stage (36 h). Some penicillins, cephalosporin C and their side chain moieties/analogues, phenoxyacetic acid, penicillin V and penicillin G, enhanced penicillin V acylase production while none of the test compounds affected cephalosporin C acylase production. Supplementation of the medium with some sugars and sugar derivatives repressed enzyme production to varying degrees. The studies on enzyme formation, induction and repression, and substrate profile suggest that the cephalosporin C acylase and penicillin V acylase are two distinct enzymes. Substrate specificity studies indicate that the Aeromonas sp. ACY 95 produces a true cephalosporin C acylase which unlike the enzymes reported hitherto hydrolyses cephalosporin C specifically.The authors are with Research and Development, Hindustan Antibiotics Limited, Pimpri. Pune 411 018, India  相似文献   

13.
Penicillin V acylase was produced, both intracellularly and extracellularly, by Fusarium sp. SKF 235 grown in submerged fermentation. When neopeptone was added to the medium, >95% of the penicillin V acylase was extracellular. In the absence of a complex organic nitrogen source, the fungus produced low levels of totally intracellular penicillin V acylase. MgSO4 was essential for synthesis of the enzyme, which was induced by phenoxyacetic acid and penicillin V. The maximum yield of penicillin V acylase was 430 IU/g dry cell wt. The optimum pH value and temperature for the penicillin V acylase were 6.5 and 55°C, respectively.  相似文献   

14.
Microorganisms were tested for production of cephalosporin acylase. Some bacteria showed strong acylase activity for all of cephalexin, cephaloridine, cephalotin, penicillin G and ampicillin. Some showed a rather specific activity for cephalexin. Pseudomonas melanogenum KY 3987 showed specific activity only for cephalexin and ampicillin which contain a side chain of d-phenylglycine. Most of these acylase-producing bacteria had the ability to synthesize cephalexin and other cephalosporins from 7-aminocephem compounds and organic acid esters. Among them, Ktuyvera citrophila KY 7844 was one of the most promising organisms for enzymatic synthesis of cephalosporins. This organism had the ability to catalyze N-acylation of 7-aminocephem compound not only with α-amino acid ester, but also with such acid esters as 1-(1 H)-tetrazolylacetate methylester which has no α-amino group.  相似文献   

15.
Summary Beijerinckia indica var.penicillanicum mutant UREMS-5, producing 168% more penicillin V acylase, was obtained by successive treatment with UV, -irradiation and ethylmethane sulfonate. Penicillin V acylase production by the mutant strain was resistant to catabolite repression by glucose. Incorporation of glucose, sodium glutamate and vegetable oils in the medium enhanced enzyme production. The maximum specific production of penicillin V acylase was 244 IU/g dry weight of cells. Effect of solvents on hydrolysis of penicillin V by soluble penicillin V acylase and whole cells was studied. Methylene chloride, chloroform and carbon tetrachloride significantly stimulated the rate of penicillin V hydrolysis by whole cells.  相似文献   

16.
Efficient syntheses of folate receptor (FR) targeting conjugates of the anti-inflammatory, aminopterin hydrazide, are described. 2-{4-Benzoylamino}-5-oxo-5-{N′-[2-(pyridin-2-yldisulfanyl)-ethoxycarbonyl]-hydrazino}-pentanoic acid is synthesized from commercially available 4-[(2-amino-4-imino-3,4-dihydro-pteridin-6-yl-methyl)-amino]-benzoic acid. Conjugation of this novel, activated aminopterin hydrazide to folic acid through cysteine-terminating (C-terminus), peptide/carbohydrate spacers results in highly water soluble conjugates which allow for the release of free aminopterin hydrazide within the endosomes of targeted cells.  相似文献   

17.
The acylase from Arthrobacter viscosus was immobilized, studied in the enzymatic synthesis of some cephalosporins by kinetically controlled N-acylation (kcNa) of different cephem nuclei, and compared with the penicillin G acylase (PGA) from Escherichia coli. The reaction outcomes were dependent on the acylase microbial source and on the type of immobilization support. Generally, both enzymes, when immobilized onto hydrophilic resins such as glyoxyl-agarose (activated with aldehyde groups), displayed higher synthetic performances in comparison with hydrophobic acrylic epoxy-supports like Eupergit C. The kcNa of 7-amino cephalosporanic acid catalyzed by A. viscosus immobilized on glyoxyl-agarose afforded a quantitative conversion in 7-[(1-hydroxy-1-phenyl)-acetamido]-3-acetoxymethyl-Δ3-cephem-4-carboxylic acid, a useful intermediate for the synthesis of Cefamandole and Cefonicid. Similar results were obtained in the synthesis of these cephalosporins by direct acylation of the corresponding 3′-functionalized nucleus. In these reactions, A. viscosus displayed higher synthetic performances than the PGA from E. coli.  相似文献   

18.
Covalent immobilization of penicillin acylase from Streptomyces lavendulae   总被引:4,自引:0,他引:4  
Penicillin acylase from Streptomyces lavendulae has been covalently immobilized to epoxy-activated acrylic beads (Eupergit C). Consecutive modification of the matrix with bovine serum albumin leads to a new biocatalyst (ECPVA) with enhanced activity (1.5 fold) in the hydrolysis of penicillin V respect to its soluble counterpart. This biocatalyst had a K m value of 7.6 mM, slightly higher than K m for native acylase (3 mM). In addition, ECPVA can be recycled for at least 50 consecutive batch reactions without loss of catalytic activity.  相似文献   

19.
Stability and catalytic properties of native and immobilized penicillin acylase were studied in systems with low water content. Preparations of both native and immobilized penicillin acylase demonstrated the catalytic activity even in solid-phase systems which contained 3-5 wt. % of water. The stability and catalytic activity of penicillin acylase at low water content depended on the thermodynamic water activity (aw) in the system.  相似文献   

20.
Active penicillin acylase is formed only after an in vivo post-translational processing of the polypeptide precursor. Such a maturation process is rare in procaryotes. In this work, incubation under aerated conditions, of whole recombinant E. coli cells after glucose depletion and growth cessation, i.e., during the postfermentative stage, consistently resulted in 2- to 4-fold increases in penicillin acylase activity. Such results suggest that penicillin acylase maturation occurs to a high extent even during the postfermentative stage. Accordingly, the effect of different incubation conditions, during the postfermentative stage, on penicillin acylase was determined. Incubation under anaerobic conditions resulted only in a 1.27-fold increase of enzyme activity, with respect to the end of the batch culture, whereas a 3- and 4- fold increase occurred during incubation under dissolved oxygen concentrations of 100 and 43% (with respect to air sat.), respectively. Only a small negative effect, on the maturation process, was observed during incubation with acetate concentrations above 0.6 g/L. No effect of pH, in the range of 6.0 to 8.0, was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号