首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparative correlational studies of brain size and ecological traits (e.g. feeding habits and habitat complexity) have increased our knowledge about the selective pressures on brain evolution. Studies conducted in bats as a model system assume that shared evolutionary history has a maximum effect on the traits. However, this effect has not been quantified. In addition, the effect of levels of diet specialization on brain size remains unclear. We examined the role of diet on the evolution of brain size in Mormoopidae and Phyllostomidae using two comparative methods. Body mass explained 89% of the variance in brain volume. The effect of feeding behaviour (either characterized as feeding habits, as levels of specialization on a type of item or as handling behaviour) on brain volume was also significant albeit not consistent after controlling for body mass and the strength of the phylogenetic signal (λ). Although the strength of the phylogenetic signal of brain volume and body mass was high when tested individually, λ values in phylogenetic generalized least squares models were significantly different from 1. This suggests that phylogenetic independent contrasts models are not always the best approach for the study of ecological correlates of brain size in New World bats.  相似文献   

2.
Assessing how bats respond to habitat attributes requires an integrative approach to reliably predict direct community-level effects. We focused on hipposiderid and pteropodid bats because of their diverse resource use patterns, body size ranges, and dispersal abilities. We combined an array of bat species-level characteristics with key forest stand characteristics that may covary with habitat use. Twelve stations were sampled in the Lomami and Yangambi landscapes, Democratic Republic of the Congo. We investigated whether species-level flight ability of bats and forest stand characteristics can affect bat commuting flights and community-level estimates of both species detection and habitat occupancy. We captured bats for 108 trap-nights. Three sampling events (early evening, middle of the night, and early morning) were replicated for each survey night. Hipposiderids showed an early evening flight peak, while flight activity of pteropodids was constant throughout the night, but increased around the middle of the night. Species capture probability decreased with higher wing loading in hipposiderids and was negatively correlated with higher wing aspect ratio in pteropodids. Forest occupancy of hipposiderids increased along the gradient towards waterways, while pteropodid occurrence was not directly linked to measured forest stand variables. This suggests a consequence of habitat patterns at larger spatial scales, which would need clarifying through additional data collection. We discuss these findings in terms of resource-use strategies of clutter-tolerant and clutter-intolerant species. We argue that the occurrence of specific bat species and their habitat use patterns can serve as surrogate measures of ecosystem health.  相似文献   

3.
  1. Mobility in flying animals can be assessed by variations in morpho–ecological traits such as body, thorax and wing sizes, wing shape and the proportion between body mass and wing area. Habitat loss and fragmentation can promote phenotypic plasticity and microevolutionary divergencies in natural populations. In this context, sexual differences in physiology and behaviour can impose different selection pressure on morphological aspects related to flight.
  2. We evaluated the relative impact of forest patch area and habitat amount in shaping flight-related morpho–ecological traits of the tropical butterfly Hamadryas februa. We find a marked sexual dimorphism in the species, with females being larger, having larger thorax, higher wing loadings and larger wing total area than males. These trait values indicate females as the more dispersive sex. We show that habitat amount modulates body mass allocations in both sexes, leading to an increase in thorax mass with decreasing habitat amount. The effect of habitat amount was more pronounced in females, which increased total mass and wing loading while decreasing thorax allocation with decreasing habitat amount. This outcome suggests that females increase abdominal mass in response to a reduction in habitat amount. The focal forest patch increasing area was linked to increases in hindwing lengths in both females and males.
  3. We advocate that both landscape metrics (i.e., habitat amount and patch area) should be considered in studies evaluating landscapes' impacts on insect mobility. We discuss results in terms of the species' sexual differences in flight behaviour and the relative importance of both landscape metrics.
  相似文献   

4.
三种共栖蝙蝠的回声定位信号特征及其夏季食性的比较   总被引:3,自引:2,他引:1  
2005年6至9月,对桂林市郊区两个山洞中高颅鼠耳蝠(Myotissiligorensis)、菲菊头蝠(Rhinolo-phuspusillus)和黑髯墓蝠(Taphozousmelanopogon)的回声定位叫声特征和食性进行分析,并结合其形态特征与野外观察,推断其捕食生境和捕食策略。研究结果发现:黑髯墓蝠体型最大,声音特征属短调频型多谐波,一般为4个谐波,能量主要集中在第二谐波上,主频率为(32·84±1·17)kHz,选择鞘翅目和双翅目昆虫为主要食物;高颅鼠耳蝠(长调频型)和菲菊头蝠(长恒频-调频型),体型都较小,主频率分别是(84·44±8·13)kHz和(110·78±1·65)kHz,以双翅目昆虫为主要食物;而菲菊头蝠则以鞘翅目和双翅目昆虫为主要食物。上述结果证明,高颅鼠耳蝠、菲菊头蝠和黑髯墓蝠在声音和食物组成等方面出现了明显分化。  相似文献   

5.
Schoeman MC  Jacobs DS 《Oecologia》2011,166(2):493-506
Deterministic filters such as competition and prey defences should have a strong influence on the community structure of animals like animalivorous bats which have life histories characterized by low fecundity, low predation risk, long life expectancy and stable populations. We investigated the relative influence of these two deterministic filters on the trophic structure of animalivorous bat assemblages in South Africa. We used null models to test if patterns of dietary overlap were significantly different from patterns expected by chance and multivariate analyses to test the correlations between diet and phenotype (body size, wing morphology and echolocation). We found little evidence that competition structured the trophic niche of coexisting bats. Contrary to predictions from competition, dietary overlap between bats of ensembles and functional groups (open-air, clutter-edge, and clutter foragers) were significantly higher than expected by chance. Instead, we found support for the predictions of the allotonic frequency hypothesis: there were significant relationships between peak echolocation frequency and the proportion of moths in the diets of bats at local and regional scales, and peak echolocation frequency was the best predictor of diet even after we controlled for the influence of body size and phylogeny. These results suggest that echolocation frequency and prey hearing exert more influence on the trophic structure of sympatric animalivorous bats than competition. Nonetheless, differential habitat use and sensory bias may also be major determinants of trophic structure because these are also correlated with frequencies of bat calls.  相似文献   

6.
Summary The central nervous control of temperature regulation in the bat, Eptesicus fuscus, was evaluated by heating the preoptic-anterior hypothalamus (PO/AH) of active, unanaesthetized bats. Because bats are metabolically very variable, change in body temperature was used as the criterion of change in heat balance in response to change in brain temperature and change in wing temperature as an indicator of vasomotor changes.Heating the preoptic-anterior hypothalamic area (PO/AH) of the bat Eptesicus fuscus caused an average increase in wing temperature due to vasodilation of 1.0° C and an average increase in body temperature of 0.4° C. Conversely, cooling the PO/AH led to an average decline in wing temperature due to vasoconstriction of 0.9° C and an average decline in body temperature of 0.4° C.Bats were heat-stressed to augment the responsiveness of the PO/AH. Heat-stress alone causes a rise in body temperature and wing temperature. Release from heat stress causes a fall in body temperature and a fall in wing temperature. When the PO/AH is heated following a period of high heat-stress, the body temperature continues to fall but wing temperature reverses its direction of change and rises. When bats are given a low heat-stress and simultaneous heating of the PO/AH, wing temperature rises in response to PO/AH temperature and the body temperature stabilizes. When the PO/AH is cooled in bats under high heat-stress, body temperature stabilizes and wing temperature falls. When bats are cold-stressed, body temperature and wing temperature fall regardless of heating of the PO/AH.These responses are related to the life habits of the bat.It is concluded that the PO/AH of the bat Eptesicus fuscus may be less thermally sensitive than the PO/AH in other vertebrates studied, and that other central nervous structures have acquired an increased thermoregulatory function.We thank Mrs. Ruth Chalmers for her excellent histological preparstions.This work was supported, in part, by National science Foundation grant GB 6303 and GB 13797.  相似文献   

7.
The wing morphology of bats is very diverse, and may correlate with energetic, behavioural, and ecological demands. If these demands conflict, wing shape may reflect compromise solutions. In this study, we compared the wing morphology of two bats,Tadarida brasiliensis (Geoffroy, 1824) andMyotis chiloensis (Waterhouse, 1828), that differ in body size, habitat, and foraging behaviour. We analyzed features of biomechanical and energetic relevance, and sought evidence of compromise solutions to energetic, ecological, and behavioural demands. We found that wing span of both species conformed to expectations based on allometric relationships, but that although the wing area ofM. chiloensis did not differ from predictions, the wing area ofT. brasiliensis was lower.M. chiloensis possessed an unusually low second moment of area of the humerus. Wing form ofM. chiloensis is consistent with highly maneuverable flight needed to live between shrubs and wooded habitats, and its low aspect ratio and low wing loading indicate a high energetic cost and a low flight speed, respectively. The low humeral second moment of area may be related to a reduction of wing mass and may result in decreased inertial power. In contrast,T. brasiliensis showed high aspect ratio and wing loading, characteristic of high speed, energetically economic flight.  相似文献   

8.
All bats experience daily and seasonal fluctuation in body mass. An increase in mass requires changes in flight kinematics to produce the extra lift necessary to compensate for increased weight. How bats modify their kinematics to increase lift, however, is not well understood. In this study, we investigated the effect of a 20% increase in mass on flight kinematics for Cynopterus brachyotis, the lesser dog-faced fruit bat. We reconstructed the 3D wing kinematics and how they changed with the additional mass. Bats showed a marked change in wing kinematics in response to loading, but changes varied among individuals. Each bat adjusted a different combination of kinematic parameters to increase lift, indicating that aerodynamic force generation can be modulated in multiple ways. Two main kinematic strategies were distinguished: bats either changed the motion of the wings by primarily increasing wingbeat frequency, or changed the configuration of the wings by increasing wing area and camber. The complex, individual-dependent response to increased loading in our bats points to an underappreciated aspect of locomotor control, in which the inherent complexity of the biomechanical system allows for kinematic plasticity. The kinematic plasticity and functional redundancy observed in bat flight can have evolutionary consequences, such as an increase potential for morphological and kinematic diversification due to weakened locomotor trade-offs.  相似文献   

9.
Revegetation of previously cleared land is widely used to increase habitat area and connectivity of remnant vegetation for biodiversity conservation. Whether new habitat attracts or supports fauna depends on the dispersal traits of those fauna as well as the structure and composition of the surrounding landscape. Here, we examined wing morphology as a key dispersal trait for beetles in a revegetated landscape and asked, first, how it was related to phylogeny (family), trophic position, and body size. Second, we asked if wing morphology of recolonizing (or persisting) beetles varied with habitat characteristics at multiple scales, from microhabitat to landscape context. Third, we examined how common winged and wingless species responded to habitat at multiple scales. We measured the wing morphology of ground‐dwelling beetles from a restoration chronosequence, including paddocks, “young” revegetation (8–11 years old), “old” revegetation (14–19 years old), and fenced remnant vegetation. We found that body size and family membership were significant predictors of winglessness, with wingless species of carabids and curculionids being larger than their winged counterparts. We found no difference in the number of sites occupied by winged and wingless species, and no relationship between the wing morphology traits represented in different locations and habitat characteristics or landscape context. Furthermore, the most abundant species of both winged and wingless ground‐dwelling beetles had relatively little affinity to any habitat successional stage. Thus, despite intrinsic differences in wing morphology among species of ground‐dwelling beetle, we found no evidence that flight‐related dispersal limitations influenced recolonization (or persistence) in this landscape.  相似文献   

10.
Abstract. Male crickets produce conspicuous acoustic signals to attract mates and deter potential rivals. These signals are created when a male cricket closes his wings rapidly and a file and scraper mechanism causes several areas of the wing to vibrate. The harp is an area of the wing that is part of the resonating structure. Because the harp acts as part of a mechanical resonator, changes in harp area or mass could influence the frequency of sound produced. Because females exhibit stabilizing selection on the frequency used in male songs, we hypothesized that there would be a negative allometric relationship between body size and harp area. In addition, we examined the degree of asymmetry in the harp, wing, and tibia. We examined this in four different species of cricket: Acheta domesticus, Gryllus bimaculatus, Gryllus rubens , and Teleogryllus oceanicus. For each species, we measured pronotum width as an index of body size, tibia length, and the area of the forewing and harp. There were significant differences among species in their morphological characteristics. We observed consistent directional asymmetry in the harp area but not in the total wing area. When wings did exhibit directional asymmetry, it was in the opposite direction of the directional asymmetry observed in the harp. Within species, larger males typically had larger harps and the relationship between harp area and body size exhibited negative allometry. Wing area exhibited an isometric relationship with body size. Our data provide a potential mechanism linking decreases in song frequency with body size in male crickets, and suggest that sensory constraints might influence the morphology of signaling structures in a similar fashion as genitalia.  相似文献   

11.
Brain size and ecology in small mammals   总被引:3,自引:0,他引:3  
Relative brain size (measured as gross brain size after body size effects are removed) differs systematically between families of rodents, insectivores and lagomorphs. The Sciuridae have the largest relative brain size, the Soricidae and Bathyergidae the smallest.
These results are discussed and compared with previous analyses of relative brain sizes among primates and bats. These differences complicate comparisons between relative brain size across phylogenetically diverse species and attempts to relate differences in relative brain size to ecological variables. To overcome these problems, best fit relationships were estimated for each family , and values for each genus were expressed as deviations from the lines of best fit. We refer to these values as Comparative Brain Size (CBS).
Differences in CBS are related to differences in habitat type (forest-dwelling genera have larger CBS' than grassland forms), in diet (folivores have smaller CBS' than generalists or insectivores, frugivores and granivores), in zonation (arboreal genera have larger CBS' than terrestrial ones) and in activity timing (nocturnal genera have larger CBS' than dirurnal ones). However, these ecological categories are interrelated and, when the effects of other ecological differences are taken into account using analyses of variance, only the differences associated with diet, and possibly habitat remain.  相似文献   

12.
In this review, I explore the effects of both social organization and the physical environment, specifically habitat complexity, on the brains and behavior of highly visual African cichlid fishes, drawing on examples from primates and birds where appropriate. In closely related fishes from the monophyletic Ectodinii clade of Lake Tanganyika, both forces influence cichlid brains and behavior. Considering social influences first, visual acuity differs with respect to social organization (monogamy versus polygyny). Both the telencephalon and amygdalar homologue, area Dm, are larger in monogamous species. Monogamous species are found to have more vasotocin-immunoreactive cells in the preoptic area of the brain. Habitat complexity also influences brain and behavior in these fishes. Total brain size, telencephalic and cerebellar size are positively correlated with habitat complexity. Visual acuity and spatial memory are enhanced in cichlids living in more complex environments. However habitat complexity and social forces affect cichlid brains differently. Taken together, our field data and plasticity data suggest that some of the species-specific neural effects of habitat complexity could be the consequence of the corresponding social correlates. Environmental forces, however, exert a broader effect on brain structures than social ones do, suggesting allometric expansion of the brain structures in concert with brain size and/or co-evolution of these structures [Current Zoology 56 (1): 144-156 2010].  相似文献   

13.
动物体型性别二态性(Sexual size dimorphism,SSD)是存在于动物界的普遍现象,作用于某一性别体型的选择压力与作用于另一性别体型的选择压力大小或方向的不同被认为是SSD 产生的原因。伦施法则认为,在雄性体型比雌性体型大的动物类群中,SSD 随体型增大而增大,相反地,在雌性体型比雄性体型大的生物类群中随体型增大而减小。本文从动物体型性别二态性产生的原因及规律方面概述了其研究现状,以及蝙蝠性别二态性研究的进展,并提出关于蝙蝠体型性别二态性尚未解决的科学问题及未来的研究展望。  相似文献   

14.
Coleman JL  Barclay RM 《PloS one》2011,6(5):e20483

Background

We address three key gaps in research on urban wildlife ecology: insufficient attention to (1) grassland biomes, (2) individual- and population-level effects, and (3) vertebrates other than birds. We hypothesized that urbanization in the North American Prairies, by increasing habitat complexity (via the proliferation of vertical structures such as trees and buildings), thereby enhancing the availability of day-roosts, tree cover, and insects, would benefit synanthropic bats, resulting in increased fitness among urban individuals.

Methodology/Principal Findings

Over three years, we captured more than 1,600 little brown bats (Myotis lucifugus) in urban and non-urban riparian sites in and around Calgary, Alberta, Canada. This species dominated bat assemblages throughout our study area, but nowhere more so than in the city. Our data did not support most of our specific predictions. Increased numbers of urban bats did not reflect urbanization-related benefits such as enhanced body condition, reproductive rates, or successful production of juveniles. Instead, bats did best in the transition zone situated between strictly urban and rural areas.

Conclusions/Significance

We reject our hypothesis and explore various explanations. One possibility is that urban and rural M. lucifugus exhibit increased use of anthropogenic roosts, as opposed to natural ones, leading to larger maternity colonies and higher population densities and, in turn, increased competition for insect prey. Other possibilities include increased stress, disease transmission and/or impacts of noise on urban bats. Whatever the proximate cause, the combination of greater bat population density with decreased body condition and production of juveniles indicates that Calgary does not represent a population source for Prairie bats. We studied a highly synanthropic species in a system where it could reasonably be expected to respond positively to urbanization, but failed to observe any apparent benefits at the individual level, leading us to propose that urban development may be universally detrimental to bats.  相似文献   

15.
Competition is one of the most cited mechanisms to explain secondary sexual dimorphism in animals. Nonetheless, it has been proposed that sexual dimorphism in bat wings is also a result of adaptive pressures to compensate additional weight caused by fetus or pup carrying during the reproductive period of females. The main objective of this study is to verify the existence of sexual dimorphism in Sturnira lilium wings. We employed geometric morphometrics techniques using anatomical landmarks superimposition to obtain size (Centroid Size) and shape variables of wings, which were reduced by Linear Discriminant Analysis (LDA). We also employed classical morphometrics using wing length measurements to compare efficiency between these two morphometric approaches and make comparisons using wing area measurements. LDA indicated significant differences between wing shapes of males and females, with 91% (stepwise classification) and 80% (leave-one-out cross validation) of correct classification. However, the size variable obtained did not contribute to such classifications. We have observed larger areas in female wings, but we found no differences in wing length measurements and no allometric effects in wing length, shape and area measurements. Interestingly, our study has provided evidences of morphological differences where classical morphometrics have failed. LDA and area measurements analyses revealed that females have a different area distribution in distinct portions of the wing, with wider dactylopatagia and plagiopatagia, and wingtips more triangular than males. No differences in body length or relative wing length were observed between the sexes, but pregnant females have more body weight than non-pregnant females and males. Our findings suggest that sexual dimorphism in the wing shape of S. lilium is probably related to the increase in flight efficiency of females during reproductive period. It decreases wing loading in specific portions of the wing and reduces energy cost to maintain a faster and maneuverable flight.  相似文献   

16.
The interaction between body size, habitat complexity and interstice width on habitat preference of age-0 and -1 year Pseudopleuronectes americanus was examined using continuous remote video observation. The habitat choices of juvenile P. americanus were recorded over a 6 h period in tanks with four treatments: bare sand, sand with low complexity cobble, sand with intermediate complexity cobble and sand with high complexity cobble. Both age-0 and -1 year fish preferred cobble to bare sand. Within cobble treatments, age-0 year fish preferred intermediate complexity cobble, with a 1.59 ratio of interstitial space to body width. The largest age-1 year fish (123-130 mm standard length, L(S) ) preferred low complexity cobble. While a significant preference was not detected, medium age-1 year fish (83-88 mm L(S) ) tended to select low complexity cobble, whereas small age-1 year fish (73-82 mm L(S) ) tended to select low and intermediate cobble, with an interstitial space to body width ratio of 1.05. For medium and large age-1 year fish, there was an increased selection of low complexity cobble, corresponding to larger interstitial space to body size ratios. This study indicates that juvenile P. americanus prefer complex habitat to unstructured habitat and that this preference is mediated by a relationship between fish body size and the size of structure interstices. These results contribute to the growing body of knowledge of complex habitat selection and drivers of habitat choice in flatfishes.  相似文献   

17.
We examined influences on wing and body size in 11 species (12 strains) of Drosophila. Six measures of wing length and width were closely correlated with wing area and suggested little variation in wing shape among the species. Among ten species wing loading, an important factor in flight costs and manoeuvrability, increased as body mass increased at a rate consistent with expectations from allometric scaling of wing area and body mass to body length. Intraspecific variation in wing loading showed similar relationships to body mass. Density and temperature during larval development influenced wing loading through general allometric relations of body size and wing area. Temperature during the pupal stage, but not during wing hardening after eclosion, influenced wing area independently of body size. Wing area increased as growth temperature decreased. Individuals reared at cooler temperatures thus compensated for a potential allometric increase in wing loading by differentially enlarging the wing area during pupal development.  相似文献   

18.
The remarkable maneuverability of flying animals results from precise movements of their highly specialized wings. Bats have evolved an impressive capacity to control their flight, in large part due to their ability to modulate wing shape, area, and angle of attack through many independently controlled joints. Bat wings, however, also contain many bones and relatively large muscles, and thus the ratio of bats’ wing mass to their body mass is larger than it is for all other extant flyers. Although the inertia in bat wings would typically be associated with decreased aerial maneuverability, we show that bat maneuvers challenge this notion. We use a model-based tracking algorithm to measure the wing and body kinematics of bats performing complex aerial rotations. Using a minimal model of a bat with only six degrees of kinematic freedom, we show that bats can perform body rolls by selectively retracting one wing during the flapping cycle. We also show that this maneuver does not rely on aerodynamic forces, and furthermore that a fruit fly, with nearly massless wings, would not exhibit this effect. Similar results are shown for a pitching maneuver. Finally, we combine high-resolution kinematics of wing and body movements during landing and falling maneuvers with a 52-degree-of-freedom dynamical model of a bat to show that modulation of wing inertia plays the dominant role in reorienting the bat during landing and falling maneuvers, with minimal contribution from aerodynamic forces. Bats can, therefore, use their wings as multifunctional organs, capable of sophisticated aerodynamic and inertial dynamics not previously observed in other flying animals. This may also have implications for the control of aerial robotic vehicles.  相似文献   

19.
The extent to which size constrains the evolution of brain organization and the genesis of complex behaviour is a central, unanswered question in evolutionary neuroscience. Advanced cognition has long been linked to the expansion of specific brain compartments, such as the neocortex in vertebrates and the mushroom bodies in insects. Scaling constraints that limit the size of these brain regions in small animals may therefore be particularly significant to behavioural evolution. Recent findings from studies of paper wasps suggest miniaturization constrains the size of central sensory processing brain centres (mushroom body calyces) in favour of peripheral, sensory input centres (antennal and optic lobes). We tested the generality of this hypothesis in diverse eusocial hymenopteran species (ants, bees and wasps) exhibiting striking variation in body size and thus brain size. Combining multiple neuroanatomical datasets from these three taxa, we found no universal size constraint on brain organization within or among species. In fact, small-bodied ants with miniscule brains had mushroom body calyces proportionally as large as or larger than those of wasps and bees with brains orders of magnitude larger. Our comparative analyses suggest that brain organization in ants is shaped more by natural selection imposed by visual demands than intrinsic design limitations.  相似文献   

20.
Aim We studied the relationship between the size and isolation of islands and bat species richness in a near‐shore archipelago to determine whether communities of vagile mammals conform to predictions of island biogeography theory. We compared patterns of species richness in two subarchipelagos to determine whether area per se or differences in habitat diversity explain variations in bat species richness. Location Islands in the Gulf of California and adjacent coastal habitats on the Baja California peninsula in northwest Mexico. Methods Presence–absence surveys for bats were conducted on 32 islands in the Gulf of California using acoustic and mist‐net surveys. We sampled for bats in coastal habitats of four regions of the Baja peninsula to characterize the source pool of potential colonizing species. We fitted a semi‐log model of species richness and multiple linear regression and used Akaike information criterion model selection to assess the possible influence of log10 area, isolation, and island group (two subarchipelagos) on the species richness of bats. We compared the species richness of bats on islands with greater vegetation densities in the southern gulf (n = 20) with that on drier islands with less vegetation in the northern gulf (n = 12) to investigate the relationship between habitat diversity and the species richness of bats. Results Twelve species of bats were detected on islands in the Gulf of California, and 15 species were detected in coastal habitats on the Baja peninsula. Bat species richness was related to both area and isolation of islands, and was higher in the southern subarchipelago, which has denser vegetation. Log10 area was positively related to bat species richness, which increased by one species for every 5.4‐fold increase in island area. On average, richness declined by one species per 6.25 km increase in isolation from the Baja peninsula. Main conclusions Our results demonstrate that patterns of bat species richness in a near‐shore archipelago are consistent with patterns predicted by the equilibrium theory of island biogeography. Despite their vagility, bats may be more sensitive to moderate levels of isolation than previously expected in near‐shore archipelagos. Differences in vegetation and habitat xericity appear to be associated with richness of bat communities in this desert ecosystem. Although observed patterns of species richness were consistent with those predicted by the equilibrium theory, similar relationships between species richness and size and isolation of islands may arise from patch‐use decision making by individuals (optimal foraging strategies).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号