首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Schistosomiasis causes severe morbidity in many countries with endemic infection with the schistosome digenean parasites in Africa and Asia. To control and eliminate the disease resulting from infection, regular mass drug administration (MDA) is used, with a focus on school-aged children (SAC; 5–14 years of age). In some high transmission settings, the World Health Organization (WHO) also recommends the inclusion of at-risk adults in MDA treatment programmes. The question of whether ecology (age-dependant exposure) or immunity (resistance to reinfection), or some combination of both, determines the form of observed convex age-intensity profile is still unresolved, but there is a growing body of evidence that the human hosts acquire some partial level of immunity after a long period of repeated exposure to infection. In the majority of past research modelling schistosome transmission and the impact of MDA programmes, the effect of acquired immunity has not been taken into account. Past work has been based on the assumption that age-related contact rates generate convex horizontal age-intensity profiles. In this paper, we use an individual based stochastic model of transmission and MDA impact to explore the effect of acquired immunity in defined MDA programmes. Compared with scenarios with no immunity, we find that acquired immunity makes the MDA programme less effective with a slower decrease in the prevalence of infection. Therefore, the time to achieve morbidity control and elimination as a public health problem is longer than predicted by models with just age-related exposure and no build-up of immunity. The level of impact depends on the baseline prevalence prior to treatment (the magnitude of the basic reproductive number R0) and the treatment frequency, among other factors. We find that immunity has a larger impact within moderate to high transmission settings such that it is very unlikely to achieve morbidity and transmission control employing current MDA programmes.  相似文献   

2.
3.
Soil-transmitted helminth (STH) infections affect persons living in areas with poor water, sanitation, and hygiene (WASH). Preschool-aged children (PSAC) and school-aged children (SAC) are disproportionately affected by STH infections. We aimed to identify WASH factors associated with STH infection among PSAC and SAC in Kibera, Kenya. In 2012, households containing a PSAC or SAC were randomly selected from those enrolled in the International Emerging Infections Program, a population-based surveillance system. We administered a household questionnaire, conducted environmental assessments for WASH, and tested three stools from each child for STH eggs using the Kato-Katz method. WASH factors were evaluated for associations with STH infection using univariable and multivariable Poisson regression. Any-STH prevalence was 40.8% among 201 PSAC and 40.0% among 475 SAC enrolled. Using the Joint Monitoring Programme water and sanitation classifications, 1.5% of households reported piped water on premises versus 98.5% another improved water source; 1.3% reported improved sanitation facilities, while 81.7% used shared sanitation facilities, 13.9% had unimproved facilities, and 3.1% reported no facilities (open defecation). On univariable analysis, STH infection was significantly associated with a household toilet located off-premises (prevalence ratio (PR) = 1.33; p = 0.047), while always treating water (PR = 0.81; p = 0.04), covering drinking water containers (PR = 0.75; p = 0.02), using clean towels during hand drying (PR = 0.58; p<0.01), having finished household floor material (PR = 0.76; p<0.01), having electricity (PR = 0.70; p<0.01), and increasing household elevation in 10-meter increments (PR = 0.89; p<0.01) were protective against STH infection. On multivariable analysis, usually versus always treating water was associated with increased STH prevalence (adjusted prevalence ratio (aPR) = 1.52; p<0.01), while having finished household floor material (aPR = 0.76; p = 0.03), reported child deworming in the last year (aPR = 0.76; p<0.01), and 10-meter household elevation increases (aPR = 0.89; p<0.01) were protective against infection. The intersection between WASH and STH infection is complex; site-specific WASH interventions should be considered to sustain the gains made by deworming activities.  相似文献   

4.
BackgroundIt is thought that improving water, sanitation, and hygiene (WASH) might reduce the transmission of schistosomes and soil-transmitted helminths, owing to their life cycles. However, few large-scale studies have yet assessed the real extent of associations between WASH and these parasites.Conclusions/SignificanceImproving school WASH may reduce transmission of these parasites. However, different forms of WASH appear to have different effects on infection with the various parasites, with our analysis finding the strongest associations between water and S. mansoni, sanitation and A. lumbricoides, and hygiene and hookworm.  相似文献   

5.
BackgroundPrograms for control of soil-transmitted helminth (STH) infections are increasingly evaluating national mass drug administration (MDA) interventions. However, “unprogrammed deworming” (receipt of deworming drugs outside of nationally-run STH control programs) occurs frequently. Failure to account for these activities may compromise evaluations of MDA effectiveness.MethodsWe used a cross-sectional study design to evaluate STH infection and unprogrammed deworming among infants (aged 6–11 months), preschool-aged children (PSAC, aged 1–4 years), and school-aged children (SAC, aged 5–14 years) in Kibera, Kenya, an informal settlement not currently receiving nationally-run MDA for STH. STH infection was assessed by triplicate Kato-Katz. We asked heads of households with randomly-selected children about past-year receipt and source(s) of deworming drugs. Local non-governmental organizations (NGOs) and school staff participating in school-based deworming were interviewed to collect information on drug coverage.ResultsOf 679 children (18 infants, 184 PSAC, and 477 SAC) evaluated, 377 (55%) reported receiving at least one unprogrammed deworming treatment during the past year. PSAC primarily received treatments from chemists (48.3%) or healthcare centers (37.7%); SAC most commonly received treatments at school (55.0%). Four NGOs reported past-year deworming activities at 47 of >150 schools attended by children in our study area. Past-year deworming was negatively associated with any-STH infection (34.8% vs 45.4%, p = 0.005). SAC whose most recent deworming medication was sourced from a chemist were more often infected with Trichuris (38.0%) than those who received their most recent treatment from a health center (17.3%) or school (23.1%) (p = 0.05).ConclusionUnprogrammed deworming was received by more than half of children in our study area, from multiple sources. Both individual-level treatment and unprogrammed preventive chemotherapy may serve an important public health function, particularly in the absence of programmed deworming; however, they may also lead to an overestimation of programmed MDA effectiveness. A standardized, validated tool is needed to assess unprogrammed deworming.  相似文献   

6.

Background and Aims

Allozyme and reproductive data sets for the Canarian flora are updated in order to assess how the present levels and structuring of genetic variation have been influenced by the abiotic island traits and by phylogenetically determined biotic traits of the corresponding taxa; and in order to suggest conservation guidelines.

Methods

Kruskal–Wallis tests are conducted to assess the relationships of 27 variables with genetic diversity (estimated by A, P, Ho and He) and structuring (GST) of 123 taxa representing 309 populations and 16 families. Multiple linear regression analyses (MLRAs) are carried out to determine the relative influence of the less correlated significant abiotic and biotic factors on the genetic diversity levels.

Key Results and Conclusions

The interactions between biotic features of the colonizing taxa and the abiotic island features drive plant diversification in the Canarian flora. However, the lower weight of closeness to the mainland than of (respectively) high basic chromosome number, partial or total self-incompatibility and polyploidy in the MLRAs indicates substantial phylogenetic constraint; the importance of a high chromosome number is feasibly due to the generation of a larger number of linkage groups, which increase gametic and genotypic diversity. Genetic structure is also more influenced by biotic factors (long-range seed dispersal, basic chromosome number and partial or total self-incompatibility) than by distance to the mainland. Conservation-wise, genetic structure estimates (FST/GST) only reflect endangerment under intensive population sampling designs, and neutral genetic variation levels do not directly relate to threat status or to small population sizes. Habitat protection is emphasized, but the results suggest the need for urgent implementation of elementary reproductive studies in all cases, and for ex situ conservation measures for the most endangered taxa, even without prior studies. In non-endangered endemics, multidisciplinary research is needed before suggesting case-specific conservation strategies. The molecular information relevant for conservation should be conserved in a standardized format to facilitate further insight.  相似文献   

7.
The classic formulae in malaria epidemiology are reviewed that relate entomological parameters to malaria transmission, including mosquito survivorship and age-at-infection, the stability index (S), the human blood index (HBI), proportion of infected mosquitoes, the sporozoite rate, the entomological inoculation rate (EIR), vectorial capacity (C) and the basic reproductive number (R 0). The synthesis emphasizes the relationships among classic formulae and reformulates a simple dynamic model for the proportion of infected humans. The classic formulae are related to formulae from cyclical feeding models, and some inconsistencies are noted. The classic formulae are used to to illustrate how malaria control reduces malaria transmission and show that increased mosquito mortality has an effect even larger than was proposed by Macdonald in the 1950's.  相似文献   

8.
Guinea worm (Dracunculus medinensis) has exerted a high human health burden in parts of Africa. Complete eradication of Guinea worm disease (dracunculiasis) may be delayed by the circulation of the parasite in domestic dogs. As with humans, dogs acquire the parasite by directly ingesting infected copepods, and recent evidence suggests that consuming frogs that ingested infected copepods as tadpoles may be a viable transmission route (paratenic route). To understand the relative contributions of direct and paratenic transmission routes, we developed a mathematical model that describes transmission of Guinea worm between dogs, copepods and frogs. We explored how the parasite basic reproductive number (R0) depends on parameters amenable to actionable interventions under three scenarios: frogs/tadpoles do not consume copepods; tadpoles consume copepods but frogs do not contribute to transmission; and frogs are paratenic hosts. We found a non-monotonic relationship between the number of dogs and R0. Generally, frogs can contribute to disease control by removing infected copepods from the waterbody even when paratenic transmission can occur. However, paratenic transmission could play an important role in maintaining the parasite when direct transmission is reduced by interventions focused on reducing copepod ingestion by dogs. Together, these suggest that the most effective intervention strategies may be those which focus on the reduction of copepods, as this reduces outbreak potential irrespective of the importance of the paratenic route.  相似文献   

9.
Many mosquito species, including the major malaria vector Anopheles gambiae, naturally undergo multiple reproductive cycles of blood feeding, egg development and egg laying in their lifespan. Such complex mosquito behavior is regularly overlooked when mosquitoes are experimentally infected with malaria parasites, limiting our ability to accurately describe potential effects on transmission. Here, we examine how Plasmodium falciparum development and transmission potential is impacted when infected mosquitoes feed an additional time. We measured P. falciparum oocyst size and performed sporozoite time course analyses to determine the parasite’s extrinsic incubation period (EIP), i.e. the time required by parasites to reach infectious sporozoite stages, in An. gambiae females blood fed either once or twice. An additional blood feed at 3 days post infection drastically accelerates oocyst growth rates, causing earlier sporozoite accumulation in the salivary glands, thereby shortening the EIP (reduction of 2.3 ± 0.4 days). Moreover, parasite growth is further accelerated in transgenic mosquitoes with reduced reproductive capacity, which mimic genetic modifications currently proposed in population suppression gene drives. We incorporate our shortened EIP values into a measure of transmission potential, the basic reproduction number R0, and find the average R0 is higher (range: 10.1%–12.1% increase) across sub-Saharan Africa than when using traditional EIP measurements. These data suggest that malaria elimination may be substantially more challenging and that younger mosquitoes or those with reduced reproductive ability may provide a larger contribution to infection than currently believed. Our findings have profound implications for current and future mosquito control interventions.  相似文献   

10.
Climate drivers such as humidity and temperature may play a key role in influenza seasonal transmission dynamics. Such a relationship has been well defined for temperate regions. However, to date no models capable of capturing the diverse seasonal pattern in tropical and subtropical climates exist. In addition, multiple influenza viruses could cocirculate and shape epidemic dynamics. Here we construct seven mechanistic epidemic models to test the effect of two major climate drivers (humidity and temperature) and multi-strain co-circulation on influenza transmission in Hong Kong, an influenza epidemic center located in the subtropics. Based on model fit to long-term influenza surveillance data from 1998 to 2018, we found that a simple model incorporating the effect of both humidity and temperature best recreated the influenza epidemic patterns observed in Hong Kong. The model quantifies a bimodal effect of absolute humidity on influenza transmission where both low and very high humidity levels facilitate transmission quadratically; the model also quantifies the monotonic but nonlinear relationship with temperature. In addition, model results suggest that, at the population level, a shorter immunity period can approximate the co-circulation of influenza virus (sub)types. The basic reproductive number R0 estimated by the best-fit model is also consistent with laboratory influenza survival and transmission studies under various combinations of humidity and temperature levels. Overall, our study has developed a simple mechanistic model capable of quantifying the impact of climate drivers on influenza transmission in (sub)tropical regions. This model can be applied to improve influenza forecasting in the (sub)tropics in the future.  相似文献   

11.
Human infection by malarial parasites of the genus Plasmodium begins with the bite of an infected Anopheles mosquito. Current estimates place malaria mortality at over 650,000 individuals each year, mostly in African children. Efforts to reduce disease burden can benefit from the development of mathematical models of disease transmission. To date, however, comprehensive modeling of the parameters defining human infectivity to mosquitoes has remained elusive. Here, we describe a mechanistic within-host model of Plasmodium falciparum infection in humans and pathogen transmission to the mosquito vector. Our model incorporates the entire parasite lifecycle, including the intra-erythrocytic asexual forms responsible for disease, the onset of symptoms, the development and maturation of intra-erythrocytic gametocytes that are transmissible to Anopheles mosquitoes, and human-to-mosquito infectivity. These model components were parameterized from malaria therapy data and other studies to simulate individual infections, and the ensemble of outputs was found to reproduce the full range of patient responses to infection. Using this model, we assessed human infectivity over the course of untreated infections and examined the effects in relation to transmission intensity, expressed by the basic reproduction number R0 (defined as the number of secondary cases produced by a single typical infection in a completely susceptible population). Our studies predict that net human-to-mosquito infectivity from a single non-immune individual is on average equal to 32 fully infectious days. This estimate of mean infectivity is equivalent to calculating the human component of malarial R0. We also predict that mean daily infectivity exceeds five percent for approximately 138 days. The mechanistic framework described herein, made available as stand-alone software, will enable investigators to conduct detailed studies into theories of malaria control, including the effects of drug treatment and drug resistance on transmission.  相似文献   

12.
HIV can spread through its target cell population either via cell-free transmission, or by cell-to-cell transmission, presumably through virological synapses. Synaptic transmission entails the transfer of tens to hundreds of viruses per synapse, a fraction of which successfully integrate into the target cell genome. It is currently not understood how synaptic transmission affects viral fitness. Using a mathematical model, we investigate how different synaptic transmission strategies, defined by the number of viruses passed per synapse, influence the basic reproductive ratio of the virus, R0, and virus load. In the most basic scenario, the model suggests that R0 is maximized if a single virus particle is transferred per synapse. R0 decreases and the infection eventually cannot be maintained for larger numbers of transferred viruses, because multiple infection of the same cell wastes viruses that could otherwise enter uninfected cells. To explain the relatively large number of HIV copies transferred per synapse, we consider additional biological assumptions under which an intermediate number of viruses transferred per synapse could maximize R0. These include an increased burst size in multiply infected cells, the saturation of anti-viral factors upon infection of cells, and rate limiting steps during the process of synapse formation.  相似文献   

13.
Wiskott-Aldrich syndrome protein and SCAR homologue (WASH) is an important regulator of vesicle trafficking. By generating actin on the surface of intracellular vesicles, WASH is able to directly regulate endosomal sorting and maturation. We report that, in Dictyostelium, WASH is also required for the lysosomal digestion of both phagocytic and autophagic cargo. Consequently, Dictyostelium cells lacking WASH are unable to grow on many bacteria or to digest their own cytoplasm to survive starvation. WASH is required for efficient phagosomal proteolysis, and proteomic analysis demonstrates that this is due to reduced delivery of lysosomal hydrolases. Both protease and lipase delivery are disrupted, and lipid catabolism is also perturbed. Starvation-induced autophagy therefore leads to phospholipid accumulation within WASH-null lysosomes. This causes the formation of multilamellar bodies typical of many lysosomal storage diseases. Mechanistically, we show that, in cells lacking WASH, cathepsin D becomes trapped in a late endosomal compartment, unable to be recycled to nascent phagosomes and autophagosomes. WASH is therefore required for the maturation of lysosomes to a stage at which hydrolases can be retrieved and reused.  相似文献   

14.
In 2008, Bangladesh initiated Preventive Chemotherapy (PCT) for school-age children (SAC) through bi-annual school-based mass drug administration (MDA) to control Soil-Transmitted Helminth (STH) infections. In 2016, the Ministry of Health and Family Welfare’s Program on Lymphatic Filariasis Elimination and STH (ELFSTH) initiated district-level community impact assessments with Children Without Worms (CWW) using standardized, population-based sampling to measure the post-intervention STH burden across all ages (≥ 1 yr) for the three STH species. The Integrated Community-based Survey for Program Monitoring (ICSPM) was developed by CWW and was used to survey 12 districts in Bangladesh from 2017–2020. We excluded the first two district data as piloting caused some sampling errors and combined the individual demographic and parasite-specific characteristics from the subsequent 10 districts, linking them with the laboratory data for collective analysis. Our analysis identified district-specific epidemiologic findings, important for program decisions. Of the 17,874 enrolled individuals, our results are based on 10,824 (61.0%) stool samples. Overall, the prevalence of any STH species was substantially reduced to 14% from 79.8% in 2005. The impact was similar across all ages. STH prevalence was 14% in 10 districts collectively, but remained high in four districts, despite their high reported PCT coverage in previous years. Among all, Bhola district was unique because it was the only district with high T.trichuris prevalence. Bangladesh successfully lowered STH prevalence across all ages despite targeting SAC only. Data from the survey indicate a significant number of adults and pre-school age children (PSAC) were self-deworming with purchased pills. This may account for the flat impact curve across all ages. Overall prevalence varied across surveyed districts, with persistent high transmission in the northeastern districts and a district in the central flood zone, indicating possible service and ecological factors. Discrepancies in the impact between districts highlight the need for district-level data to evaluate program implementation after consistent high PCT coverage.  相似文献   

15.
The pentameric WASH complex facilitates endosomal protein sorting by activating Arp2/3, which in turn leads to the formation of F-actin patches specifically on the endosomal surface. It is generally accepted that WASH complex attaches to the endosomal membrane via the interaction of its subunit FAM21 with the retromer subunit VPS35. However, we observe the WASH complex and F-actin present on endosomes even in the absence of VPS35. We show that the WASH complex binds to the endosomal surface in both a retromer-dependent and a retromer-independent manner. The retromer-independent membrane anchor is directly mediated by the subunit SWIP. Furthermore, SWIP can interact with a number of phosphoinositide species. Of those, our data suggest that the interaction with phosphatidylinositol-3,5-bisphosphate (PI(3,5)P2) is crucial to the endosomal binding of SWIP. Overall, this study reveals a new role of the WASH complex subunit SWIP and highlights the WASH complex as an independent, self-sufficient trafficking regulator.  相似文献   

16.
BackgroundOxidative stress is crucial player in skeletal muscle atrophy pathogenesis. S-allyl cysteine (SAC), an organosulfur compound of Allium sativum, possesses broad-spectrum properties including immuno- and redox-modulatory impact. Considering the role of SAC in regulating redox balance, we hypothesize that SAC may have a protective role in oxidative-stress induced atrophy.MethodsC2C12 myotubes were treated with H2O2 (100 μM) in the presence or absence of SAC (200 μM) to study morphology, redox status, inflammatory cytokines and proteolytic systems using fluorescence microscopy, biochemical analysis, real-time PCR and immunoblotting approaches. The anti-atrophic potential of SAC was confirmed in denervation-induced atrophy model.ResultsSAC pre-incubation (4 h) could protect the myotube morphology (i.e. length/diameter/fusion index) from atrophic effects of H2O2. Lower levels of ROS, lipid peroxidation, oxidized glutathione and altered antioxidant enzymes were observed in H2O2-exposed cells upon pre-treatment with SAC. SAC supplementation also suppressed the rise in cytokines levels (TWEAK/IL6/myostatin) caused by H2O2. SAC treatment also moderated the degradation of muscle-specific proteins (MHCf) in the H2O2-treated myotubes supported by lower induction of diverse proteolytic systems (i.e. cathepsin, calpain, ubiquitin-proteasome E3-ligases, caspase-3, autophagy). Denervation-induced atrophy in mice illustrates that SAC administration alleviates the negative effects (i.e. mass loss, decreased cross-sectional area, up-regulation of proteolytic systems, and degradation of total/specific protein) of denervation on muscles.ConclusionsSAC exerts significant anti-atrophic effects to protect myotubes from H2O2-induced protein loss and myofibers from denervation-induced muscle loss, due to the prevention of elevated proteolytic systems and inflammatory/oxidative molecules.General significanceThe results signify the potential of SAC against muscle atrophy.  相似文献   

17.
A hallmark of advanced maternal age is a significant increase in meiotic chromosome segregation errors, resulting in early miscarriages and congenital disorders. These errors most frequently occur during meiosis I (MI). The spindle assembly checkpoint (SAC) prevents chromosome segregation errors by arresting the cell cycle until proper chromosome alignment is achieved. Unlike in mitosis, the SAC in oocytes is desensitized, allowing chromosome segregation in the presence of improperly aligned chromosomes. Whether SAC integrity further deteriorates with advancing maternal age, and if this decline contributes to increased segregation errors remains a fundamental question. In somatic cells, activation of the SAC depends upon Aurora kinase B (AURKB), which functions to monitor kinetochore–microtubule attachments and recruit SAC regulator proteins. In mice, oocyte‐specific deletion of AURKB (Aurkb cKO) results in an increased production of aneuploid metaphase II‐arrested eggs and premature age‐related infertility. Here, we aimed to understand the cause of the short reproductive lifespan and hypothesized that SAC integrity was compromised. In comparing oocytes from young and sexually mature Aurkb cKO females, we found that SAC integrity becomes compromised rapidly with maternal age. We show that the increased desensitization of the SAC is driven by reduced expression of MAD2, ZW10 and Securin proteins, key contributors to the SAC response pathway. The reduced expression of these proteins is the result of altered protein homeostasis, likely caused by the accumulation of reactive oxygen species. Taken together, our results demonstrate a novel function for AURKB in preserving the female reproductive lifespan possibly by protecting oocytes from oxidative stress.  相似文献   

18.

Background

This study was undertaken in five onchocerciasis/lymphatic filariasis (LF) co-endemic local government areas (LGAs) in Plateau and Nasarawa, Nigeria. Annual MDA with ivermectin had been given for 17 years, 8 of which were in combination with albendazole. In 2008, assessments indicated that LF transmission was interrupted, but that the MDA had to continue due to the uncertain status of onchocerciasis transmission. Accordingly, assessments to determine if ivermectin MDA for onchocerciasis could be stopped were conducted in 2009.

Methods

We evaluated nodule, microfilarial (mf) skin snip, and antibody (IgG4 response to OV16) prevalence in adults and children in six sentinel sites where baseline data from the 1990s were available. We applied the 2001 WHO criteria for elimination of onchocerciasis that defined transmission interruption as an infection rate of <0.1% in children (using both skin snip and OV16 antibody) and a rate of infective (L3) blackflies of <0.05%.

Results

Among adult residents in sentinel sites, mean mf prevalence decreased by 99.37% from the 1991–1993 baseline of 42.95% (64/149) to 0.27% (2/739) in 2009 (p<0.001). The OV16 seropositivity of 3.52% (26/739) among this same group was over ten times the mf rate. No mf or nodules were detected in 4,451 children in sentinel sites and ‘spot check’ villages, allowing the exclusion of 0.1% infection rate with 95% confidence. Seven OV16 seropositives were detected, yielding a seroprevalence of 0.16% (0.32% upper 95%CI). No infections were detected in PCR testing of 1,568 Simulium damnosum s.l. flies obtained from capture sites around the six sentinel sites.

Conclusion

Interruption of transmission of onchocerciasis in these five LGAs is highly likely, although the number of flies caught was insufficient to exclude 0.05% with 95% confidence (upper CI 0.23%). We suggest that ivermectin MDA could be stopped in these LGAs if similar results are seen in neighboring districts.  相似文献   

19.
Achieving a theoretical foundation for malaria elimination will require a detailed understanding of the quantitative relationships between patient treatment-seeking behavior, treatment coverage, and the effects of curative therapies that also block Plasmodium parasite transmission to mosquito vectors. Here, we report a mechanistic, within-host mathematical model that uses pharmacokinetic (PK) and pharmacodynamic (PD) data to simulate the effects of artemisinin-based combination therapies (ACTs) on Plasmodium falciparum transmission. To contextualize this model, we created a set of global maps of the fold reductions that would be necessary to reduce the malaria RC (i.e. its basic reproductive number under control) to below 1 and thus interrupt transmission. This modeling was applied to low-transmission settings, defined as having a R0<10 based on 2010 data. Our modeling predicts that treating 93–98% of symptomatic infections with an ACT within five days of fever onset would interrupt malaria transmission for ∼91% of the at-risk population of Southeast Asia and ∼74% of the global at-risk population, and lead these populations towards malaria elimination. This level of treatment coverage corresponds to an estimated 81–85% of all infected individuals in these settings. At this coverage level with ACTs, the addition of the gametocytocidal agent primaquine affords no major gains in transmission reduction. Indeed, we estimate that it would require switching ∼180 people from ACTs to ACTs plus primaquine to achieve the same transmission reduction as switching a single individual from untreated to treated with ACTs. Our model thus predicts that the addition of gametocytocidal drugs to treatment regimens provides very small population-wide benefits and that the focus of control efforts in Southeast Asia should be on increasing prompt ACT coverage. Prospects for elimination in much of Sub-Saharan Africa appear far less favorable currently, due to high rates of infection and less frequent and less rapid treatment.  相似文献   

20.
Despite nearly two centuries of study, the fundamental transmission dynamic properties of cholera remain incompletely characterized. We used historical time-series data on the spread of cholera in twelve European and North American cities during the second cholera pandemic, as reported in Amariah Brigham’s 1832 A Treatise on Epidemic Cholera, to parameterize simple mathematical models of cholera transmission. Richards growth models were used to derive estimates of the basic reproductive number (R0) (median: 16.0, range: 1.9 to 550.9) and the proportion of unrecognized cases (mean: 96.3%, SD: 0.04%). Heterogeneity in model-generated R0 estimates was consistent with variability in cholera dynamics described by contemporary investigators and may represent differences in the nature of cholera spread. While subject to limitations associated with measurement and the absence of microbiological diagnosis, historical epidemic data are a potentially rich source for understanding pathogen dynamics in the absence of control measures, particularly when used in conjunction with simple and readily interpretable mathematical models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号