首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Objective

Parkinson''s disease (PD), Multiple System Atrophy (MSA) and Progressive Supranuclear Palsy (PSP) are neurodegenerative diseases that can be difficult to distinguish clinically. The objective of the current study was to use surface-based analysis techniques to assess cortical thickness, surface area and grey matter volume to identify unique morphological patterns of cortical atrophy in PD, MSA and PSP and to relate these patterns of change to disease duration and clinical features.

Methods

High resolution 3D T1-weighted MRI volumes were acquired from 14 PD patients, 18 MSA, 14 PSP and 19 healthy control participants. Cortical thickness, surface area and volume analyses were carried out using the automated surface-based analysis package FreeSurfer (version 5.1.0). Measures of disease severity and duration were assessed for correlation with cortical morphometric changes in each clinical group.

Results

Results show that in PSP, widespread cortical thinning and volume loss occurs within the frontal lobe, particularly the superior frontal gyrus. In addition, PSP patients also displayed increased surface area in the pericalcarine. In comparison, PD and MSA did not display significant changes in cortical morphology.

Conclusion

These results demonstrate that patients with clinically established PSP exhibit distinct patterns of cortical atrophy, particularly affecting the frontal lobe. These results could be used in the future to develop a useful clinical application of MRI to distinguish PSP patients from PD and MSA patients.  相似文献   

2.

Background

Performance of externally paced rhythmic movements requires brain and behavioral integration of sensory stimuli with motor commands. The underlying brain mechanisms to elaborate beat-synchronized rhythm and polyrhythms that musicians readily perform may differ. Given known roles in perceiving time and repetitive movements, we hypothesized that basal ganglia and cerebellar structures would have greater activation for polyrhythms than for on-the-beat rhythms.

Methodology/Principal Findings

Using functional MRI methods, we investigated brain networks for performing rhythmic movements paced by auditory cues. Musically trained participants performed rhythmic movements at 2 and 3 Hz either at a 1∶1 on-the-beat or with a 3∶2 or a 2∶3 stimulus-movement structure. Due to their prior musical experience, participants performed the 3∶2 or 2∶3 rhythmic movements automatically. Both the isorhythmic 1∶1 and the polyrhythmic 3∶2 or 2∶3 movements yielded the expected activation in contralateral primary motor cortex and related motor areas and ipsilateral cerebellum. Direct comparison of functional MRI signals obtained during 3∶2 or 2∶3 and on-the-beat rhythms indicated activation differences bilaterally in the supplementary motor area, ipsilaterally in the supramarginal gyrus and caudate-putamen and contralaterally in the cerebellum.

Conclusions/Significance

The activated brain areas suggest the existence of an interconnected brain network specific for complex sensory-motor rhythmic integration that might have specificity for elaboration of musical abilities.  相似文献   

3.

Objectives

Examination of sensorimotor activation alone in multiple sclerosis (MS) patients may not yield a comprehensive view of cerebral response to task stimulation. Additional information may be obtained by examining the negative BOLD response (deactivation). Aim of this work was to characterize activation and deactivation patterns during passive hand movements in MS patients.

Methods

13 relapsing remitting-MS patients (RRMS), 18 secondary progressive-MS patients (SPMS) and 15 healthy controls (HC) underwent an fMRI study during passive right-hand movements. Activation and deactivation contrasts in the three groups were entered into ANOVA, age and gender corrected. Post-hoc analysis was performed with one-sample and two-sample t-tests. For each patient we obtained lesion volume (LV) from both T1- and T2-weighted images.

Results

Activations showed a progressive extension to the ipsilateral brain hemisphere according to the group and the clinical form (HC<RRMS<SPMS). Significant deactivation of the ipsilateral cortical sensorimotor areas was reduced in both patient groups with respect to HC. Deactivation of posterior cortical areas belonging to the default mode network (DMN), was increased in RRMS, but not in SPMS, with respect to HC. The amount of activation in the contralateral sensorimotor cortex was significantly correlated with that of deactivation in the DMN in HC and RRMS, but not in SPMS. Both increased activation and decreased deactivation patterns correlated with LV.

Conclusion

In RRMS patients, increased cortical activation was associated with increased deactivation of the posterior cortex suggesting a greater resting-state activity in the DMN, probably aimed at facilitating sensorimotor circuit engagement during task performance. In SPMS the coupling between increased sensorimotor activation/increased DMN deactivation was not observed suggesting disorganization between anticorrelated functional networks as a consequence of a higher level of disconnection.  相似文献   

4.

Background

Modulation of neurogenesis that acts as an endogenous repair mechanism would have a significant impact on future therapeutic strategies for Parkinson’s disease (PD). Several studies demonstrated dopaminergic modulation of neurogenesis in the subventricular zone (SVZ) of the adult brain. Levodopa, the gold standard therapy for PD, causes an increase in homocysteine levels that induces neuronal death via N-methyl-D-aspartate (NMDA) receptor. The present study investigated whether elevated homocysteine by levodopa treatment in a parkinsonian model would modulate neurogenesis via NMDA receptor signal cascade and compared the effect of levodopa and pramipexol (PPX) on neurogenic activity.

Methodology/Principal Findings

Neurogenesis was assessed in vitro using neural progenitor cells (NPCs) isolated from the SVZ and in vivo with the BrdU-injected animal model of PD using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Modulation of homocysteine levels was evaluated using co-cultures of NPCs and astrocytes and PD animals. Immunochemical and Western blot analyses were used to measure neurogenesis and determine the cell death signaling. Levodopa treatment increased release of homocysteine on astrocytes culture media as well as in plasma and brain of PD animals. Increased homocysteine by levodopa led to increased apoptosis of NPCs through the NMDA receptor-dependent the extracellular signal-regulated kinase (ERK) signaling pathways. The administration of a NMDA antagonist significantly attenuated apoptotic cell death in levodopa-treated NPCs and markedly increased the number of BrdU-positive cells in the SVZ of levodopa-treated PD animals. Comparative analysis revealed that PPX treatment significantly increased the number of NPCs and BrdU-positive cells in the SVZ of PD animals compared to levodopa treatment. Our present study demonstrated that increased homocysteine by levodopa has a detrimental effect on neurogenesis through NMDA receptor-mediated ERK signaling pathway.

Conclusions/Significance

Modulation of levodopa-induced elevated homocysteine by NMDA antagonist or dopamine agonist has a clinical relevance for PD treatment in terms of adult neurogenesis.  相似文献   

5.

Background

Functional MRI combined with electromyography (EMG-fMRI) is a new technique to investigate the functional association of movement to brain activations. Thalamic stereotactic surgery is effective in reducing tremor. However, while some patients have satisfying benefit, others have only partial or temporary relief. This could be due to suboptimal targeting in some cases. By identifying tremor-related areas, EMG-fMRI could provide more insight into the pathophysiology of tremor and be potentially useful in refining surgical targeting.

Objective

Aim of the study was to evaluate whether EMG-fMRI could detect blood oxygen level dependent brain activations associated with tremor in patients with Essential Tremor. Second, we explored whether EMG-fMRI could improve the delineation of targets for stereotactic surgery.

Methods

Simultaneous EMG-fMRI was performed in six Essential Tremor patients with unilateral thalamotomy. EMG was recorded from the trembling arm (non-operated side) and from the contralateral arm (operated side). Protocols were designed to study brain activations related to voluntary muscle contractions and postural tremor.

Results

Analysis with the EMG regressor was able to show the association of voluntary movements with activity in the contralateral motor cortex and supplementary motor area, and ipsilateral cerebellum. The EMG tremor frequency regressor showed an association between tremor and activity in the ipsilateral cerebellum and contralateral thalamus. The activation spot in the thalamus varied across patients and did not correspond to the thalamic nucleus ventralis intermedius.

Conclusion

EMG-fMRI is potentially useful in detecting brain activations associated with tremor in patients with Essential Tremor. The technique must be further developed before being useful in supporting targeting for stereotactic surgery.  相似文献   

6.

Background

Although some trials assessed the effectiveness of aerobic exercise for Parkinson''s disease (PD), the role of aerobic exercise in the management of PD remained controversial.

Objective

The purpose of this systematic review is to evaluate the evidence about whether aerobic exercise is effective for PD.

Methods

Seven electronic databases, up to December 2013, were searched to identify relevant studies. Two reviewers independently extracted data and assessed methodological quality based on PEDro scale. Standardised mean difference (SMD) and 95% confidence intervals (CI) of random-effects model were calculated. And heterogeneity was assessed based on the I2 statistic.

Results

18 randomized controlled trials (RCTs) with 901 patients were eligible. The aggregated results suggested that aerobic exercise should show superior effects in improving motor actions (SMD, −0.57; 95% CI −0.94 to −0.19; p = 0.003), balance (SMD, 2.02; 95% CI 0.45 to 3.59; p = 0.01), and gait (SMD, 0.33; 95% CI 0.17 to 0.49; p<0.0001) in patients with PD, but not in quality of life (SMD, 0.11; 95% CI −0.23 to 0.46; p = 0.52). And there was no valid evidence on follow-up effects of aerobic exercise for PD.

Conclusion

Aerobic exercise showed immediate beneficial effects in improving motor action, balance, and gait in patients with PD. However, given no evidence on follow-up effects, large-scale RCTs with long follow-up are warrant to confirm the current findings.  相似文献   

7.

Introduction

Celiac disease (CD) may initially present as a neurological disorder or may be complicated by neurological changes. To date, neurophysiological studies aiming to an objective evaluation of the potential central nervous system involvement in CD are lacking.

Objective

To assess the profile of cortical excitability to Transcranial Magnetic Stimulation (TMS) in a group of de novo CD patients.

Materials and methods

Twenty CD patients underwent a screening for cognitive and neuropsychiatric symptoms by means of the Mini Mental State Examination and the Structured Clinical Interview for DSM-IV Axis I Disorders, respectively. Instrumental exams, including electroencephalography and brain computed tomography, were also performed. Cortico-spinal excitability was assessed by means of single and paired-pulse TMS using the first dorsal interosseus muscle of the dominant hand. TMS measures consisted of resting motor threshold, motor evoked potentials, cortical silent period (CSP), intracortical inhibition (ICI) and facilitation (ICF). None of the CD was on gluten-free diet. A group of 20 age-matched healthy controls was used for comparisons.

Results

CD showed a significantly shorter CSP (78.0 vs 125.0 ms, p<0.025), a reduced ICI (0.3 vs 0.2, p<0.045) and an enhanced ICF (1.1 vs 0.7, p<0.042) compared to controls. A dysthymic disorder was identified in five patients. The effect size between dysthymic and non-dysthymic CD patients indicated a low probability of interference with the CSP (Cohen''s d -0.414), ICI (-0.278) and ICF (-0.292) measurements.

Conclusion

A pattern of cortical excitability characterized by “disinhibition” and “hyperfacilitation” was found in CD patients. Immune system dysregulation might play a central role in triggering changes of the motor cortex excitability.  相似文献   

8.

Background

Premotor cortical regions (PMC) play an important role in the orchestration of motor function, yet their role in compensatory mechanisms in a disturbed motor system is largely unclear. Previous studies are consistent in describing pronounced anatomical and functional connectivity between the PMC and the primary motor cortex (M1). Lesion studies consistently show compensatory adaptive changes in PMC neural activity following an M1 lesion. Non-invasive brain modification of PMC neural activity has shown compensatory neurophysiological aftereffects in M1. These studies have contributed to our understanding of how M1 responds to changes in PMC neural activity. Yet, the way in which the PMC responds to artificial inhibition of M1 neural activity is unclear. Here we investigate the neurophysiological consequences in the PMC and the behavioral consequences for motor performance of stimulation mediated M1 inhibition by cathodal transcranial direct current stimulation (tDCS).

Purpose

The primary goal was to determine how electrophysiological measures of PMC excitability change in order to compensate for inhibited M1 neural excitability and attenuated motor performance.

Hypothesis

Cathodal inhibition of M1 excitability leads to a compensatory increase of ipsilateral PMC excitability.

Methods

We enrolled 16 healthy participants in this randomized, double-blind, sham-controlled, crossover design study. All participants underwent navigated transcranial magnetic stimulation (nTMS) to identify PMC and M1 corticospinal projections as well as to evaluate electrophysiological measures of cortical, intracortical and interhemispheric excitability. Cortical M1 excitability was inhibited using cathodal tDCS. Finger-tapping speeds were used to examine motor function.

Results

Cathodal tDCS successfully reduced M1 excitability and motor performance speed. PMC excitability was increased for longer and was the only significant predictor of motor performance.

Conclusion

The PMC compensates for attenuated M1 excitability and contributes to motor performance maintenance.  相似文献   

9.

Background

The variability in the clinical phenotype of Parkinson’s disease seems to suggest the existence of several subtypes of the disease. To test this hypothesis we performed a cluster analysis using data assessing both motor and non-motor symptoms in a large cohort of newly diagnosed untreated PD patients.

Methods

We collected data on demographic, motor, and the whole complex of non-motor symptoms from 100 consecutive newly diagnosed untreated outpatients. Statistical cluster analysis allowed the identification of different subgroups, which have been subsequently explored.

Results

The data driven approach identified four distinct groups of patients, we have labeled: 1) Benign Pure Motor; 2) Benign mixed Motor-Non-Motor; 3) Non-Motor Dominant; and 4) Motor Dominant.

Conclusion

Our results confirmed the existence of different subgroups of early PD patients. Cluster analysis revealed the presence of distinct subtypes of patients profiled according to the relevance of both motor and non-motor symptoms. Identification of such subtypes may have important implications for generating pathogenetic hypotheses and therapeutic strategies.  相似文献   

10.

Background and Purpose

Previous studies have noted changes in resting-state functional connectivity during motor recovery following stroke. However, these studies always uncover various patterns of motor recovery. Moreover, subgroups of stroke patients with different outcomes in hand function have rarely been studied.

Materials and Methods

We selected 24 patients who had a subcortical stroke in the left motor pathway and displayed only motor deficits. The patients were divided into two subgroups: completely paralyzed hands (CPH) (12 patients) and partially paralyzed hands (PPH) (12 patients). Twenty-four healthy controls (HC) were also recruited. We performed functional connectivity analysis in both the ipsilesional and contralesional primary motor cortex (M1) to explore the differences in the patterns between each pair of the three diagnostic groups.

Results

Compared with the HC, the PPH group displays reduced connectivity of both the ipsilesional and contralesional M1 with bilateral prefrontal gyrus and contralesional cerebellum posterior lobe. The connectivity of both the ipsilesional and contralesional M1 with contralateral primary sensorimotor cortex was reduced in the CPH group. Additionally, the connectivity of the ipsilesional M1 with contralesional postcentral gyrus, superior parietal lobule and ipsilesional inferior parietal lobule was reduced in the CPH group compared with the PPH group. Moreover, the connectivity of these regions was positively correlated with the Fugl-Meyer Assessment scores (hand+wrist) across all stroke patients.

Conclusions

Patterns in cortical connectivity may serve as a potential biomarker for the neural substratum associated with outcomes in hand function after subcortical stroke.  相似文献   

11.

Background

There have been limited comparative data regarding the investigations on pulmonary and respiratory muscle function in the patients with different parkinsonism disorders such as Parkinson’s disease (PD) and multiple system atrophy (MSA) versus normal elderly. The present study is aiming to characterize the performance of pulmonary function and respiratory muscle strength in PD and MSA, and to investigate the association with severity of motor symptoms and disease duration.

Methods

Pulmonary function and respiratory muscle strength tests were performed in 30 patients with PD, 27 with MSA as well as in 20 age-, sex-, height-, weight-matched normal elderly controls. All the patients underwent United Parkinson’s disease rating scale (UPDRS) or united multiple system atrophy rating scale (UMSARS) separately as diagnosed.

Results

Vital capacity, forced expiratory volume in 1 second and forced vital capacity decreased, residual volume and ratio of residual volume to total lung capacity increased in both PD and MSA groups compared to controls (p<0.05). Diffusing capacity was decreased in the MSA group, compared with PD and normal elderly control groups (p<0.05). Respiratory muscle strength was lower in both PD and MSA groups than in controls (p<0.05). The values representing spirometry function and respiratory muscle strength were found to have a negative linear correlation with mean score of UPDRS-III in PD and mean score of UMSARS-I in MSA. Respiratory muscle strength showed a negative linear correlation with the mean score of UMSARS-II and disease duration in MSA patients.

Conclusions

These findings suggest that respiratory dysfunction is involved in PD and MSA. Respiratory muscle strength is remarkably reduced, and some of the parameters correlate with disease duration and illness severity. The compromised respiratory function in neurodegenerative disorders should be the focus of further researches.  相似文献   

12.

Background

Non-motor symptoms are increasingly recognized as important features of Parkinson’s disease (PD). LRRK2 mutations are common causes of familial and sporadic PD. Non-motor features have not been yet comprehensively evaluated in LRRK2 transgenic mouse models.

Objective

Using a transgenic mouse model overexpressing the R1441G mutation of the human LRRK2 gene, we have investigated the longitudinal correlation between motor and non-motor symptoms and determined if specific non-motor phenotypes precede motor symptoms.

Methodology

We investigated the onset of motor and non-motor phenotypes on the LRRK2R1441G BAC transgenic mice and their littermate controls from 4 to 21 month-old using a battery of behavioral tests. The transgenic mutant mice displayed mild hypokinesia in the open field from 16 months old, with gastrointestinal dysfunctions beginning at 6 months old. Non-motor features such as depression and anxiety-like behaviors, sensorial functions (pain sensitivity and olfaction), and learning and memory abilities in the passive avoidance test were similar in the transgenic animals compared to littermate controls.

Conclusions

LRRK2R1441G BAC transgenic mice displayed gastrointestinal dysfunction at an early stage but did not have abnormalities in fine behaviors, olfaction, pain sensitivity, mood disorders and learning and memory compared to non-transgenic littermate controls. The observations on olfaction and gastrointestinal dysfunction in this model validate findings in human carriers. These mice did recapitulate mild Parkinsonian motor features at late stages but compensatory mechanisms modulating the progression of PD in these models should be further evaluated.  相似文献   

13.

Background

The neuropsychological features and neuropathological progression patterns associated with rapidly evolving cognitive decline or dementia in Parkinson''s disease (PD) remain to be elucidated.

Methods

Fifty-three PD patients without dementia were recruited to participate in a 3-year longitudinal cohort study. The patients were grouped according to the Clinical Dementia Rating (CDR). Group-wise comparisons were made with regard to demographic characteristics, motor symptoms, neuropsychological performances and 18F-fluorodeoxyglucose positron emission tomography.

Results

Patients who had memory-plus cognitive impairment (patients whose CDR was 0 at baseline and 0.5 in memory and other domains at follow-up, and those whose baseline CDR was 0.5 in memory and other domains) exhibited higher age at onset, visuoperceptual impairment, non-tremor-dominant motor disturbance, rapid symptomatic progression and posterior neocortical hypometabolism. In patients who were cognitively unimpaired and those who had memory-dominant cognitive impairment (patients whose CDR was 0 at baseline and 0.5 only in memory domain at follow-up, and those whose baseline CDR was 0.5 only in memory domain), the posterior neocortex was relatively unaffected until a later stage of the disease.

Conclusions

These results suggest that visuoperceptual impairment and the early involvement of the posterior neocortex may be risk factors for rapid symptomatic progression and dementia in PD.  相似文献   

14.

Aims

To investigate the role of dopamine in cognitive and motor learning skill deficits after a traumatic brain injury (TBI), we investigated dopamine release and behavioral changes at a series of time points after fluid percussion injury, and explored the potential of amantadine hydrochloride as a chronic treatment to provide behavioral recovery.

Materials and Methods

In this study, we sequentially investigated dopamine release at the striatum and behavioral changes at 1, 2, 4, 6, and 8 weeks after fluid percussion injury. Rats subjected to 6-Pa cerebral cortical fluid percussion injury were treated by using subcutaneous infusion pumps filled with either saline (sham group) or amantadine hydrochloride, with a releasing rate of 3.6mg/kg/hour for 8 weeks. The dopamine-releasing conditions and metabolism were analyzed sequentially by fast scan cyclic voltammetry (FSCV) and high-pressure liquid chromatography (HPLC). Novel object recognition (NOR) and fixed-speed rotarod (FSRR) behavioral tests were used to determine treatment effects on cognitive and motor deficits after injury.

Results

Sequential dopamine-release deficits were revealed in 6-Pa-fluid-percussion cerebral cortical injured animals. The reuptake rate (tau value) of dopamine in injured animals was prolonged, but the tau value became close to the value for the control group after amantadine therapy. Cognitive and motor learning impairments were shown evidenced by the NOR and FSRR behavioral tests after injury. Chronic amantadine therapy reversed dopamine-release deficits, and behavioral impairment after fluid percussion injuries were ameliorated in the rats treated by using amantadine-pumping infusion.

Conclusion

Chronic treatment with amantadine hydrochloride can ameliorate dopamine-release deficits as well as cognitive and motor deficits caused by cerebral fluid-percussion injury.  相似文献   

15.

Background

Unilateral ischemic stroke disrupts the well balanced interactions within bilateral cortical networks. Restitution of interhemispheric balance is thought to contribute to post-stroke recovery. Longitudinal measurements of cerebral blood flow (CBF) changes might act as surrogate marker for this process.

Objective

To quantify longitudinal CBF changes using arterial spin labeling MRI (ASL) and interhemispheric balance within the cortical sensorimotor network and to assess their relationship with motor hand function recovery.

Methods

Longitudinal CBF data were acquired in 23 patients at 3 and 9 months after cortical sensorimotor stroke and in 20 healthy controls using pulsed ASL. Recovery of grip force and manual dexterity was assessed with tasks requiring power and precision grips. Voxel-based analysis was performed to identify areas of significant CBF change. Region-of-interest analyses were used to quantify the interhemispheric balance across nodes of the cortical sensorimotor network.

Results

Dexterity was more affected, and recovered at a slower pace than grip force. In patients with successful recovery of dexterous hand function, CBF decreased over time in the contralesional supplementary motor area, paralimbic anterior cingulate cortex and superior precuneus, and interhemispheric balance returned to healthy control levels. In contrast, patients with poor recovery presented with sustained hypoperfusion in the sensorimotor cortices encompassing the ischemic tissue, and CBF remained lateralized to the contralesional hemisphere.

Conclusions

Sustained perfusion imbalance within the cortical sensorimotor network, as measured with task-unrelated ASL, is associated with poor recovery of dexterous hand function after stroke. CBF at rest might be used to monitor recovery and gain prognostic information.  相似文献   

16.

Background

Motor imagery is considered as a promising therapeutic tool for rehabilitation of motor planning problems in patients with cerebral palsy. However motor planning problems may lead to poor motor imagery ability.

Aim

The aim of this functional magnetic resonance imaging study was to examine and compare brain activation following motor imagery tasks in patients with hemiplegic cerebral palsy with left or right early brain lesions. We tested also the influence of the side of imagined hand movement.

Method

Twenty patients with clinical hemiplegic cerebral palsy (sixteen males, mean age 12 years and 10 months, aged 6 years 10 months to 20 years 10 months) participated in this study. Using block design, brain activations following motor imagery of a simple opening-closing hand movement performed by either the paretic or nonparetic hand was examined.

Results

During motor imagery tasks, patients with early right brain damages activated bilateral fronto-parietal network that comprise most of the nodes of the network well described in healthy subjects. Inversely, in patients with left early brain lesion brain activation following motor imagery tasks was reduced, compared to patients with right brain lesions. We found also a weak influence of the side of imagined hand movement.

Conclusion

Decreased activations following motor imagery in patients with right unilateral cerebral palsy highlight the dominance of the left hemisphere during motor imagery tasks. This study gives neuronal substrate to propose motor imagery tasks in unilateral cerebral palsy rehabilitation at least for patients with right brain lesions.  相似文献   

17.

Background

Cortical changes associated with cognitive decline in Parkinson''s disease (PD) are not fully explored and require investigations with established diagnostic classification criteria.

Objective

We used MRI source-based morphometry to evaluate specific differences in grey matter volume patterns across 4 groups of subjects: healthy controls (HC), PD with normal cognition (PD-NC), PD with mild cognitive impairment (MCI-PD) and PD with dementia (PDD).

Methods

We examined 151 consecutive subjects: 25 HC, 75 PD-NC, 29 MCI-PD, and 22 PDD at an Italian and Czech movement disorder centre. Operational diagnostic criteria were applied to classify MCI-PD and PDD. All structural MRI images were processed together in the Czech centre. The spatial independent component analysis was used to assess group differences of local grey matter volume.

Results

We identified two independent patterns of grey matter volume deviations: a) Reductions in the hippocampus and temporal lobes; b) Decreases in fronto-parietal regions and increases in the midbrain/cerebellum. Both patterns differentiated PDD from all other groups and correlated with visuospatial deficits and letter verbal fluency, respectively. Only the second pattern additionally differentiated PD-NC from HC.

Conclusion

Grey matter changes in PDD involve areas associated with Alzheimer-like pathology while fronto-parietal abnormalities are possibly an early marker of PD cognitive decline. These findings are consistent with a non-linear cognitive progression in PD.  相似文献   

18.

Background

Previous fMRI studies show that women with eating disorders (ED) have differential neural activation to viewing food images. However, despite clinical differences in their responses to food, differential neural activation to thinking about eating food, between women with anorexia nervosa (AN) and bulimia nervosa (BN) is not known.

Methods

We compare 50 women (8 with BN, 18 with AN and 24 age-matched healthy controls [HC]) while they view food images during functional Magnetic Resonance Imaging (fMRI).

Results

In response to food (vs non-food) images, women with BN showed greater neural activation in the visual cortex, right dorsolateral prefrontal cortex, right insular cortex and precentral gyrus, women with AN showed greater activation in the right dorsolateral prefrontal cortex, cerebellum and right precuneus. HC women activated the cerebellum, right insular cortex, right medial temporal lobe and left caudate. Direct comparisons revealed that compared to HC, the BN group showed relative deactivation in the bilateral superior temporal gyrus/insula, and visual cortex, and compared to AN had relative deactivation in the parietal lobe and dorsal posterior cingulate cortex, but greater activation in the caudate, superior temporal gyrus, right insula and supplementary motor area.

Conclusions

Women with AN and BN activate top-down cognitive control in response to food images, yet women with BN have increased activation in reward and somatosensory regions, which might impinge on cognitive control over food consumption and binge eating.  相似文献   

19.

Objective

There is clearly a necessity to identify novel non-dopaminergic mechanisms as new therapeutic targets for Parkinson''s disease (PD). Among these, the soluble guanylyl cyclase (sGC)-cGMP signaling cascade is emerging as a promising candidate for second messenger-based therapies for the amelioration of PD symptoms. In the present study, we examined the utility of the selective sGC inhibitor 1H-[1], [2], [4] oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ) for reversing basal ganglia dysfunction and akinesia in animal models of PD.

Methods

The utility of the selective sGC inhibitor ODQ for reversing biochemical, electrophysiological, histochemical, and behavioral correlates of experimental PD was performed in 6-OHDA-lesioned rats and mice chronically treated with MPTP.

Results

We found that one systemic administration of ODQ is sufficient to reverse the characteristic elevations in striatal cGMP levels, striatal output neuron activity, and metabolic activity in the subthalamic nucleus observed in 6-OHDA-lesioned rats. The latter outcome was reproduced after intrastriatal infusion of ODQ. Systemic administration of ODQ was also effective in improving deficits in forelimb akinesia induced by 6-OHDA and MPTP.

Interpretation

Pharmacological inhibition of the sGC-cGMP signaling pathway is a promising non-dopaminergic treatment strategy for restoring basal ganglia dysfunction and attenuating motor symptoms associated with PD.  相似文献   

20.

Background

Severe stenosis of the internal carotid artery (ICA) has been associated with impaired cognition in patients, but its effect on rapid-onset cortical plasticity is not known. Carotid endarterectomy (CEA) in patients with severe ICA stenosis reduces stroke risk, but the impact on cognition or physiology of the respective hemisphere remains controversial.

Methods/Results

16 patients with severe stenosis of the ICA and 16 age and sex matched controls were included. Rapid-onset cortical plasticity was assessed using the paired-associative stimulation (PAS) protocol. PAS models long-term synaptic potentiation in human motor cortex, combining repetitive stimulation of the peripheral ulnar nerve with transcranial magnetic stimulation of the contralateral motor cortex. Cognitive status was assessed with a neuropsychological test battery. In patients, verbal learning and rapid-onset cortical plasticity were significantly reduced as compared to controls. Identical follow-up tests in 9 of the 16 patients six months after CEA revealed no improvement of cognitive parameters or cortical plasticity.

Conclusions

Decreased rapid-onset cortical plasticity in patients with severe stenosis of the ICA was not improved by reperfusion. Thus, other strategies known to increase plasticity should be tested for their potential to improve cortical plasticity and subsequently cognition in these patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号