首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Besides high-affinity IgE receptors (FcεRI), human basophils express activating (FcγRIIA) and inhibitory (FcγRIIB) low-affinity IgG receptors. IgG receptors (FcγR) were also found on mouse basophils, but not identified. We investigated in this study FcγR and the biological consequences of their engagement in basophils of the two species. We found the following: 1) that mouse basophils also express activating (FcγRIIIA) and inhibitory (FcγRIIB) low-affinity FcγR; 2) that activating FcγR can activate both human and mouse basophils, albeit with different efficacies; 3) that negative signals triggered by inhibitory FcγR are dominant over positive signals triggered by activating FcγR, thus preventing both human and mouse basophils from being activated by IgG immune complexes; 4) that the coengagement of FcεRI with inhibitory and activating FcγR results in a FcγRIIB-dependent inhibition of IgE-induced responses of both human and mouse basophils; 5) that FcγRIIB has a similar dominant inhibitory effect in basophils from virtually all normal donors; and 6) that IL-3 upregulates the expression of both activating and inhibitory FcγR on human basophils from normal donors, but further enhances FcγRIIB-dependent inhibition. FcγR therefore function as a regulatory module, made of two subunits with antagonistic properties, that prevents IgG-induced and controls IgE-induced basophil activation in both mice and humans.  相似文献   

2.
3.

Background  

Atherosclerosis lesions contain abundant immunoglobulins complexed with oxidized LDL (OxLDL) that are endocytosed by macrophages to form foam cells. While recent evidence supports a role for the macrophage scavenger receptor pathway in 75–90% of OxLDL uptake, in vitro evidence suggests another potential uptake pathway could involve autoantibody binding to IgG subclass-specific Fc receptors.  相似文献   

4.
Antibody-dependent cellular cytotoxicity (ADCC) is an important effector function determining the clinical efficacy of therapeutic antibodies. Core fucose removal from N-glycans on the Fc portion of immunoglobulin G (IgG) improves the binding affinity for Fcγ receptor IIIa (FcγRIIIa) and dramatically enhances ADCC. Our previous structural analyses revealed that Tyr–296 of IgG1-Fc plays a critical role in the interaction with FcγRIIIa, particularly in the enhanced FcγRIIIa binding of nonfucosylated IgG1. However, the importance of the Tyr–296 residue in the antibody in the interaction with various Fcγ receptors has not yet been elucidated. To further clarify the biological importance of this residue, we established comprehensive Tyr–296 mutants as fucosylated and nonfucosylated anti-CD20 IgG1s rituximab variants and examined their binding to recombinant soluble human Fcγ receptors: shFcγRI, shFcγRIIa, shFcγRIIIa, and shFcγRIIIb. Some of the mutations affected the binding of antibody to not only shFcγRIIIa but also shFcγRIIa and shFcγRIIIb, suggesting that the Tyr–296 residue in the antibody was also involved in interactions with FcγRIIa and FcγRIIIb. For FcγRIIIa binding, almost all Tyr–296 variants showed lower binding affinities than the wild-type antibody, irrespective of their core fucosylation, particularly in Y296K and Y296P. Notably, only the Y296W mutant showed improved binding to FcγRIIIa. The 3.00 Å-resolution crystal structure of the nonfucosylated Y296W mutant in complex with shFcγRIIIa harboring two N-glycans revealed that the Tyr-to-Trp substitution increased the number of potential contact atoms in the complex, thus improving the binding of the antibody to shFcγRIIIa. The nonfucosylated Y296W mutant retained high ADCC activity, relative to the nonfucosylated wild-type IgG1, and showed greater binding affinity for FcγRIIa. Our data may improve our understanding of the biological importance of human IgG1-Fc Tyr–296 in interactions with various Fcγ receptors, and have applications in the modulation of the IgG1-Fc function of therapeutic antibodies.  相似文献   

5.
Analysis of the strength and stoichiometry of immunoglobulin G (IgG) binding to neonatal Fc receptor (FcRn) and Fcγ receptor (FcγR) is important for evaluating the pharmacokinetics and effector functions of therapeutic monoclonal antibody (mAb) products, respectively. The current standard for assessing FcγR and FcRn binding is composed of cell-based and surface plasmon resonance (SPR) assays. In this work, asymmetrical flow field flow fractionation (AF4) was evaluated to establish the true stoichiometry of IgG binding in solution. AF4 and liquid chromatography–mass spectrometry (LC–MS) were applied to directly observe IgG/FcγR and IgG/FcRn complexes, which were not observed using nonequilibrium size exclusion chromatography (SEC) analysis. Human serum albumin (HSA), an abundant component of human blood and capable of binding FcRn, was studied in combination with FcRn and IgG. AF4 demonstrated that the majority of large complexes of IgG/FcRn/HSA were at an approximate 1:2:1 molar ratio. In addition, affinity measurements of the complex were performed in the sub-micromolar affinity range. A significant decrease in binding was detected for IgG molecules with increased oxidation in the Fc region. AF4 was useful in detecting weak binding between full-length IgG/Fc fragments and Fc receptors and the effect of chemical modifications on binding. AF4 is a useful technique in the assessment of mAb product quality attributes.  相似文献   

6.
Phagocytosis of immunoglobulin G-opsonised particles takes place via Fcγ receptor ligation, leading to uptake through an actin-dependent mechanism. Myosin regulatory light chains have previously been reported to control contractility during uptake through the Fcγ receptor. In this study, we show that p21-activated kinase 4 contributes to Fcγ receptor-mediated uptake downstream of actin cup formation by regulating phosphorylation of myosin regulatory light chain. siRNA-mediated knockdown of p21-activated kinase 4 leads to reduced myosin regulatory light chain phosphorylation at Serine 19, with a corresponding reduction in phospho-myosin regulatory right chain localised to bound immunoglobulin G-opsonised red blood cells. p21-activated kinase 4 phosphorylates myosin light chain 9 at Serine 19 in vitro and RNA interference against myosin light chain 9 implicates this isoform, but not myosin light chain 12A or 12B, in Fcγ receptor-mediated uptake. Taken together, these data indicate that p21-activated kinase 4 regulates regulatory myosin light chain phosphorylation and myosin contractility during FcγR-mediated phagocytosis.  相似文献   

7.
Phagocytosis of foreign pathogens by cells of the immune system is a vitally important function of innate immunity. The phagocytic response is initiated when ligands on the surface of invading microorganisms come in contact with receptors on the surface of phagocytic cells such as neutrophils, monocytes/macrophages, and dendritic cells. The complement receptor CR3 (CD11b/CD18, Mac-1) mediates the phagocytosis of complement protein (C3bi)-coated particles. Fcγ receptors (FcγRs) bind IgG-opsonized particles and provide a mechanism for immune clearance and phagocytosis of IgG-coated particles. We have observed that stimulation of FcγRs modulates CR3-mediated phagocytosis and that FcγRIIA and FcγRI exert opposite (stimulatory and inhibitory) effects. We have also determined that an intact FcγR immunoreceptor tyrosine-based activation motif is required for these effects, and we have investigated the involvement of downstream effectors. The ability to up-regulate or down-regulate CR3 signaling has important implications for therapeutics in disorders involving the host defense system.  相似文献   

8.
Fcγ receptors (FcγRs) bind the constant Fc region of IgG molecules. IgG/antigen-containing immune complexes elicit a variety of effector functions in cells that express activating FcγRs. Because activating FcγRs are present on cells from the innate immune system, such as dendritic cells, monocytes/macrophages and granulocytes, these IgG receptors form a crucial link between the innate and the acquired immune systems. Recently, the ability to detect the inhibitory FcγRIIb on cells has indicated an imbalance between activating and inhibitory FcγRs in rheumatoid arthritis. This progress offers an opportunity to study modulation of FcγR balance and could stimulate development of FcγR-directed immunotherapy.  相似文献   

9.
A recently developed integrative approach combining varied types of experimental data has been successfully applied to three-dimensional modelling of larger biomacromolecular complexes. Deuteration-assisted small-angle neutron scattering (SANS) plays a unique role in this approach by making it possible to observe selected components in the complex. It enables integrative modelling of biomolecular complexes based on building-block structures typically provided by X-ray crystallography. In this integrative approach, it is important to be aware of the flexible properties of the individual building blocks. Here we examine the ability of SANS to detect a subtle conformational change of a multidomain protein using the Fc portion of human immunoglobulin G (IgG) interacting with a soluble form of the low-affinity Fcγ receptor IIIb (sFcγRIIIb) as a model system. The IgG-Fc glycoprotein was subjected to SANS in the absence and presence of 75%-deuterated sFcγRIIIb, which was matched out in D2O solution. This inverse contrast-matching technique enabled selective observation of SANS from IgG-Fc, thereby detecting its subtle structural deformation induced by the receptor binding. The SANS data were successfully interpreted by considering previously reported crystallographic data and an equilibrium between free and sFcγRIIIb-bound forms. Our SANS data thus demonstrate the applicability of SANS in the integrative approach dealing with biomacromolecular complexes composed of weakly associated building blocks with conformational plasticity.  相似文献   

10.
In neutrophils, two receptors for IgG antibodies, namely FcγRIIA and FcγRIIIB are constitutively expressed, and a third one, FcγRI, can be upregulated by interferon-γ. Whether FcγRIIIB is capable of triggering phagocytosis by itself is still controversial. The main role of FcγRI has not been clearly established in these cells. To address this problem, neutrophils were treated with interferon-γ, and then phagocytosis mediated by each type of Fcγ receptor was evaluated by flow cytometry. FcγRIIA was the most efficient receptor for phagocytosis. FcγRIIIB could mediate phagocytosis but much less efficiently than FcγRIIA. Both FcγRIIA- and FcγRIIIB-mediated phagocytosis were blocked by inhibitors of Src family kinases, Syk, PI 3-K, and ERK. In contrast, interferon-γ-induced FcγRI was not able to mediate phagocytosis. Also, FcγRI did not activate ERK in the nucleus, but was however able to stimulate an efficient calcium rise. These data show that different neutrophil Fcγ receptors possess different phagocytosis capabilities: FcγRIIA and FcγRIIIB, but not FcγRI, promote phagocytosis.  相似文献   

11.
Human IgG receptors (FcR) display considerable heterogeneity, and are crucial immune response modulating molecules. FcRIIA, FcRIIIA, and FcRIIIB display functional biallelic polymorphisms. FcR polymorphisms have been found associated with susceptibility to infectious and autoimmune diseases. Linked transmission of FcR alleles was studied by determining the distribution of FcRIIA-FcRIIIA-FcRIIIB genotype combinations in 514 Dutch Caucasian, and 149 Japanese blood donors. The structure of the FcR locus was studied by radiation hybrid mapping of FcRIA, FcRIIA, FcRIIB, FcRIIIA, FcRIIIB, and adjacent genes from the pentraxin family. In addition, crossing-over frequencies within the FcR locus were determined in 63 Dutch Caucasian families, encompassing 183 individuals. FcRII and FcRIII subclasses were mapped in close proximity (0.47–3.14 cR). Accordingly, crossing-over frequencies within the FcRII-III locus in Dutch families were low. Analysis of combined FcR genotypes strongly suggested non-random distribution of FcRIIA-FcRIIIA-, and FcRIIIA-FcRIIIB genotypes in Dutch donors (P<0.001 and P<0.00001, respectively), and of FcRIIA-FcRIIIb genotypes in Japanese blood donors (P<0.02). Frequencies of FcRII-FcRIII haplotypes differed significantly between Dutch and Japanese (P<0.00001). This study provides important information for the interpretation of studies reporting associations of FcR alleles with disease, and underscores the apparent differences in FcR heterogeneity between ethnic groups.  相似文献   

12.
Interactions between the Fc segment of IgG and FcγRs on a variety of cells are likely to play an important role in the anti-HIV activity of Abs. Because the nature of the glycan structure on the Fc domain is a critical determinant of Fc-FcγR binding, proper Fc glycosylation may contribute to Ab-mediated protection. We have generated five different glycoforms of the broadly HIV-1-neutralizing mAb 2G12 in wild-type and glycoengineered plants and Chinese hamster ovary cells. Plant-derived 2G12 exhibited highly homogeneous glycosylation profiles with a single dominant N-glycan species. Using flow cytometry with FcγR-expressing cell lines, all 2G12 glycoforms demonstrated similar binding to FcγRI, FcγRIIa, and FcγRIIb. In contrast, two glycoforms derived from glycoengineered plants that lack plant-specific xylose and core α1,3-fucose, and instead carry human-like glycosylation with great uniformity, showed significantly enhanced binding to FcγRIIIa compared with Chinese hamster ovary or wild-type plant-derived 2G12. Using surface plasmon resonance, we show that binding of 2G12 to FcγRIIIa is markedly affected by core fucose, irrespective of its plant-specific α1,3 or mammalian-type α1,6 linkage. Consistent with this finding, 2G12 glycoforms lacking core fucose (and xylose) mediated higher antiviral activity against HIV-1 or simian immunodeficiency virus as measured by Ab-dependent cell-mediated virus inhibition. This is, to our knowledge, the first demonstration that specific alterations of Fc glycosylation can improve antiviral activity. Such alterations may result in better immunotherapeutic reagents. Moreover, biasing vaccine-induced immune responses toward optimal Fc glycosylation patterns could result in improved vaccine efficacy.  相似文献   

13.
Fcγ receptors (FcγRs) play critical roles in humoral and cellular immune responses through interactions with the Fc region of immunoglobulin G (IgG). Among them, FcγRI is the only high affinity receptor for IgG and thus is a potential target for immunotherapy. Here we report the first crystal structure of an FcγRI with all three extracellular Ig-like domains (designated as D1, D2, and D3). The structure shows that, first, FcγRI has an acute D1-D2 hinge angle similar to that of FcεRI but much smaller than those observed in the low affinity Fcγ receptors. Second, the D3 domain of FcγRI is positioned away from the putative IgG binding site on the receptor and is thus unlikely to make direct contacts with Fc. Third, the replacement of FcγRIII FG-loop ((171)LVGSKNV(177)) with that of FcγRI ((171)MGKHRY(176)) resulted in a 15-fold increase in IgG(1) binding affinity, whereas a valine insertion in the FcγRI FG-loop ((171)MVGKHRY(177)) abolished the affinity enhancement. Thus, the FcγRI FG-loop with its conserved one-residue deletion is critical to the high affinity IgG binding. The structural results support FcγRI binding to IgG in a similar mode as its low affinity counterparts. Taken together, our study suggests a molecular mechanism for the high affinity IgG recognition by FcγRI and provides a structural basis for understanding its physiological function and its therapeutic implication in treating autoimmune diseases.  相似文献   

14.
《MABS-AUSTIN》2013,5(5):491-504
The in vitro binding of monomeric, dimeric and multimeric forms of monoclonal IgG1 molecules, designated mAb1 and mAb2, to the extracellular domains of Fcγ receptors RI, RIIA and RIIIB were investigated using a surface plasmon resonance (SPR) based biosensor technique. Stable noncovalent and covalent dimers of mAb1 and mAb2, respectively, were isolated from CHO cell expressed materials. The dissociation constants of monomeric mAb1 and mAb2 were determined to be 1 nM for the FcγRI-binding and 6–12 μM for the FcγRIIA- and FcγRIIIB-binding. Dimeric mAb1 and mAb2 exhibited increased affinities, by 2-3 fold for FcγRI and 200-800 fold for FcγRIIA and FcγRIIIB. Further increases in binding were observed when the antibodies formed large immune complexes with multivalent antigens, but not in a linear relation with size. The binding properties of monomeric mAb2 were identical with and without a bound monovalent antigen, indicating that antigen-binding alone does not induce measurable change in binding of antibodies to Fcγ receptors. Dimerization is sufficient to show enhancement in the receptor binding. Given the wide distribution of the low-affinity Fcγ receptors on immune effector cells, the increased affinities to aggregated IgG may lead to some biological consequences, depending on the subsequent signal transduction events. The SPR-based in vitro binding assay is useful in evaluating Fcγ receptor binding of various species in antibody-based biotherapeutics.  相似文献   

15.
Incubation of human T cells for 18 hr with prostaglandin E2 (PGE2 3 × 10?6M) causes a slight but significant increase in the percentage of Tγ cells and a reduction in Tμ cells. When PGE was added to “non-Tγ” cells, the increase in the percentage of Tγ cells was more marked (from 1.5% Tγ without PGE to 11% Tγ with PGE2, P < 0.001). Supernates from cultures of human monocytes also caused an increase in Tγ cells (10% Tγ without supernate to 18% with supernate, P < 0.01), and this increase was blocked if the monocytes were cultured with indomethacin, a prostaglandin synthetase inhibitor (9% Tγ cells). Thus, monocytes may regulate Fcγ receptors on T cells via PGE2 production.  相似文献   

16.
N-glycans of a recombinant mouse soluble Fc receptor II (sFcRII) expressed in baby hamster kidney cells were released from glycopeptides by digestion with glycoamidase A (from sweet almond), and the reducing ends of the oligosaccharides were reductively aminated with 2-aminopyridine. The derivatized N-glycans were separated and structurally identified by a three-dimensional high-performance liquid chromatography (HPLC) mapping technique on three kinds of HPLC columns [Takahashi, et al. (1995) Anal. Biochem. 226: 139–46]. Eighteen different major N-glycan structures were identified, of which six were neutral (45%), five mono-sialyl (49%), one di-sialyl (4.6%), five tri-sialyl (1.1%), and one tetra-sialyl (0.3%). All N-glycan structures determined were complex type with fucosylation at the N-acetylglucosamine residue of the reducing end, and N-acetylneuraminic acid, when present, was -(2,3)-linked. The existence of a unique structure containing both N-acetylgalactosamine and -(2,3)-N-acetylneuraminic acid residues at the reducing ends, as below, was confirmed by MALDI-TOF mass spectrometry.  相似文献   

17.
The whole blood erythrocyte lysis method is the most common protocol of sample preparation for flow cytometry (FCM). Although this method has many virtues, our recent study has demonstrated false-positive results when surface markers of monocytes were examined by this method due to the phenomenon called Fcγ receptor (FcγR)-mediated trogocytosis. In the present study, similar FcγR-mediated trogocytosis-based false-positive results have been demonstrated when granulocytes were focused on instead of monocytes. These findings indicated that not only monocytes but also granulocytes, the largest population with FcγR expression in peripheral blood, could perform FcγR-mediated trogocytosis. Since the capacity of FcγR-mediated trogocytosis was different among blood samples, identification of factors that could regulate the occurrence of FcγR-mediated trogocytosis should be important for the quality control of FCM. Our studies have suggested that such factors are present in the serum. In order to identify the serum factors, we employed the in vitro model of FcγR-mediated trogocytosis using granulocytes. Investigation with this model determined the serum factors as heat-labile molecules with molecular weight of more than 100 kDa. Complements in the classical pathway were initially assumed as candidates; however, the C1 inhibitor did not yield an obvious influence on FcγR-mediated trogocytosis. On the other hand, although immunoglobulin ought to be resistant to heat inactivation, the inhibitor of human anti-mouse antibodies (HAMA) effectively blocked FcγR-mediated trogocytosis. Moreover, the inhibition rates were significantly higher in HAMAhigh serum than HAMAlow serum. The collective findings suggested the involvement of heterophilic antibodies such as HAMA in the mechanism of false-positive results in FCM due to FcγR-mediated trogocytosis.  相似文献   

18.
The in vitro binding of monomeric, dimeric and multimeric forms of monoclonal IgG1 molecules, designated mAb1 and mAb2, to the extracellular domains of Fcγ receptors RI, RIIA and RIIIB were investigated using a surface plasmon resonance (SPR) based biosensor technique. Stable noncovalent and covalent dimers of mAb1 and mAb2, respectively, were isolated from CHO cell expressed materials. The dissociation constants of monomeric mAb1 and mAb2 were determined to be 1 nM for the FcγRI-binding and 6–12 µM for the FcγRIIA- and FcγRIIIB-binding. Dimeric mAb1 and mAb2 exhibited increased affinities, by 2–3 fold for FcγRI and 200–800 fold for FcγRIIA and FcγRIIIB. Further increases in binding were observed when the antibodies formed large immune complexes with multivalent antigens, but not in a linear relation with size. The binding properties of monomeric mAb2 were identical with and without a bound monovalent antigen, indicating that antigen-binding alone does not induce measurable change in binding of antibodies to Fcγ receptors. Dimerization is sufficient to show enhancement in the receptor binding. Given the wide distribution of the low-affinity Fcγ receptors on immune effector cells, the increased affinities to aggregated IgG may lead to some biological consequences, depending on the subsequent signal transduction events. The SPR-based in vitro binding assay is useful in evaluating Fcγ receptor binding of various species in antibody-based biotherapeutics.  相似文献   

19.
Immunity contributes to arterial inflammation during atherosclerosis. Oxidized low-density lipoproteins induce an autoimmune response characterized by specific antibodies and immune complexes in atherosclerotic patients. We hypothesize that specific Fcγ receptors for IgG constant region participate in atherogenesis by regulating the inflammatory state of lesional macrophages. In vivo we examined the role of activating Fcγ receptors in atherosclerosis progression using bone marrow transplantation from mice deficient in γ-chain (the common signaling subunit of activating Fcγ receptors) to hyperlipidemic mice. Hematopoietic deficiency of Fcγ receptors significantly reduced atherosclerotic lesion size, which was associated with decreased number of macrophages and T lymphocytes, and increased T regulatory cell function. Lesions of Fcγ receptor deficient mice exhibited increased plaque stability, as evidenced by higher collagen and smooth muscle cell content and decreased apoptosis. These effects were independent of changes in serum lipids and antibody response to oxidized low-density lipoproteins. Activating Fcγ receptor deficiency reduced pro-inflammatory gene expression, nuclear factor-κB activity, and M1 macrophages at the lesion site, while increasing anti-inflammatory genes and M2 macrophages. The decreased inflammation in the lesions was mirrored by a reduced number of classical inflammatory monocytes in blood. In vitro, lack of activating Fcγ receptors attenuated foam cell formation, oxidative stress and pro-inflammatory gene expression, and increased M2-associated genes in murine macrophages. Our study demonstrates that activating Fcγ receptors influence the macrophage phenotypic balance in the artery wall of atherosclerotic mice and suggests that modulation of Fcγ receptor-mediated inflammatory responses could effectively suppress atherosclerosis.  相似文献   

20.
Cdc42 is a key regulator of the actin cytoskeleton and activator of Wiskott-Aldrich syndrome protein (WASP). Although several studies have separately demonstrated the requirement for both Cdc42 and WASP in Fcγ receptor (FcγR)-mediated phagocytosis, their precise roles in the signal cascade leading to engulfment are still unclear. Reduction of endogenous Cdc42 expression by using RNA-mediated interference (short hairpin RNA [shRNA]) severely impaired the phagocytic capacity of RAW/LR5 macrophages, due to defects in phagocytic cup formation, actin assembly, and pseudopod extension. Addition of wiskostatin, a WASP/neural-WASP (N-WASP) inhibitor showed extensive inhibition of phagocytosis, actin assembly, and cell extension identical to the phenotype seen upon reduction of Cdc42 expression. However, using WASP-deficient bone marrow-derived macrophages or shRNA of WASP or N-WASP indicated a requirement for both WASP and N-WASP in phagocytosis. Cdc42 was necessary for WASP/N-WASP activation, as determined using a conformation-sensitive antibody against WASP/N-WASP and partial restoration of phagocytosis in Cdc42 reduced cells by expression of a constitutively activated WASP. In addition, Cdc42 was required for proper WASP tyrosine phosphorylation, which was also necessary for phagocytosis. These results indicate that Cdc42 is essential for the activation of WASP and N-WASP, leading to actin assembly and phagocytic cup formation by macrophages during FcγR-mediated phagocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号