首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Patterns of dissolved organic carbon (DOC) and nitrogen (DON) delivery were compared between times of stormflow and baseflow in Paine Run, an Appalachian stream draining a 12.4 km2 forested catchment in the Shenandoah National Park (SNP), Virginia. The potential in-stream ecological impact of altered concentrations and/or chemical composition of DOM during storms also was examined, using standardized bacterial bioassays. DOC and DON concentrations in Paine Run were consistently low during baseflow and did not show a seasonal pattern. During storms however, mean DOC and DON concentrations approximately doubled, with maximum concentrations occurring on the rising limb of storm hydrographs. The rapid response of DOM concentration to changes in flow suggests a near-stream or in-stream source of DOM during storms. Stormflow (4% of the time, 36% of the annual discharge) contributed >50% of DOC, DON and NO3 flux in Paine Run during 1997. In laboratory bacterial bioassays, growth rate constants were higher on Paine Run stormflow water than on baseflow water, but the fraction of total DOM which was bioavailable was not significantly different. The fraction of the total stream DOC pool taken up by water column bacteria was estimated to increase from 0.03 ± 0.02% h–1 during baseflow, to 0.15 ± 0.04% h–1 during storms. This uptake rate would have a minimal effect on bulk DOM concentrations in Paine Run, but storms may still have considerable impact on the bacterial stream communities by mobilizing them into the water column and by supplying a pulse of DOM.  相似文献   

2.
1. We monitored streamwater and streambed sediment porewaters from White Clay Creek (WCC), SE Pennsylvania, for dissolved organic carbon (DOC), dissolved oxygen (DO) and conductivity to investigate organic matter processing within the hyporheic zone. Dissolved organic carbon and DO concentrations were higher in the streamwater than in the porewaters and, in many cases, concentrations continued to diminish with increasing depth into the streambed. 2. Hydrological exchange data demonstrated that the permeability of the stream bed declines with depth and constrains downwelling, effectively isolating porewaters >30 cm from streamwater. 3. End‐member mixing analysis (EMMA) based on conductivity documented a DOC source and DO sink in the hyporheic zone. We calculated hyporheic streambed DOC fluxes and respiration from the EMMA results and estimates of water flux. Based upon our calculations of biodegradable DOC entering the hyporheic zone, we estimate that DOC supports 39% of the hyporheic zone respiration, with the remaining 61% presumably being supported by entrained particulate organic carbon. Hyporheic respiration averaged 0.38 g C m?2 d?1, accounted for 41% of whole ecosystem respiration, and increased baseflow ecosystem efficiency from 46 to 59%. 4. Advective transport of labile organic molecules into the streambed concentrates microbial activity in near‐surface regions of the hyporheic zone. Steep gradients in biogeochemical activity could explain how a shallow and hydrologically constrained hyporheic zone can dramatically influence organic matter processing at the ecosystem scale.  相似文献   

3.
We examined patterns of dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) loading to a small urban stream during baseflow and stormflow. We hypothesized that lower DOC and TDN contributions from impervious surfaces would dilute natural hydrologic flowpath (i.e., riparian) contributions during storm events in an urban watershed, resulting in lower concentrations of DOC and TDN during storms. We tested these hypotheses in a small urban watershed in Portland, Oregon, over a 3-month period during the spring of 2003. We compared baseflow and stormflow chemistry using Mann–Whitney tests (significant at p<0.05). We also applied a mass balance to the stream to compare the relative significance of impervious surface contributions versus riparian contributions of DOC and TDN. Results showed a significant increase in stream DOC concentrations during stormflows (median baseflow DOC = 2.00 mg l−1 vs. median stormflow DOC = 3.46 mg l−1). TDN streamwater concentrations, however, significantly decreased with stormflow (median baseflow TDN = 0.75 mg l−1 vs. median stormflow TDN = 0.56 mg l−1). During storms, remnant riparian areas contributed 70–74% of DOC export and 38–35% of TDN export to the stream. The observed pattern of increased DOC concentrations during stormflows in this urban watershed was similar to patterns found in previous studies of forested watersheds. Results for TDN indicated that there were relatively high baseflow nitrogen concentrations in the lower watershed that may have partially masked the remnant riparian signal during stormflows. Remnant riparian areas were a major source of DOC and TDN to the stream during storms. These results suggest the importance of preserving near-stream riparian areas in cities to maintain ambient carbon and nitrogen source contributions to urban streams.  相似文献   

4.
SUMMARY.
  • 1 Studies were performed to assess the acclimation of the stream-bed heterotrophic microflora to sources of dissolved organic matter (DOM) typical of its environment and microfloral responses to pulses of DOM.
  • 2 Microcosm measurements of dissolved organic carbon (DOC) uptake, dissolved oxygen uptake. ATP concentration and epitluorescence microscopic counts (EMC) were performed using stream-bed sediments and heterogeneous dissolved organic matter (DOM) sources.
  • 3 Three study sites included an undisturbed woodlot spring seep, a small stream traversing a cattle pasture and a larger stream draining a catchment used for silage crops, pastures and woodlands.
  • 4 The DOM sources were cold water extracts of forest floor leaf litter, bovine manure, the green alga Ulothrix and jewel weed (Impaliens capensis L.) leaves.
  • 5 DOC uptake occurring in 2.5–5.0 h incubations indicated an acclimation of the microflora at each site to DOM sources generated by surrounding land use.
  • 6 The sediment microflora from the larger stream did not readily metabolize bovine manure DOM and the latter was used in an acclimation experiment.
  • 7 A minimum of 48 h of cumulative exposure to bovine manure DOM at 15–20°C were required to yield measurable changes in sediment microbial activity of sediment microbial biomass.
  • 8 The same microflora retained an ability to readily metabolize the added DOM source after 72 h of exposure to unamended stream water.
  • 9 The time frame of microfloral responses during acclimation indicated that changes leading to the metabolism of a DOM source were initially enzymatic and eventually involved growth and selection for specific decomposers within the microbial community.
  • 10 We conclude that in order to utilize naturally occurring pulses of carbon and energy, stream-bed heterotrophs must be already enzymatically prepared, induced, when the pulse occurs.
  相似文献   

5.
SUMMARY.
  • 1 The development of stone surface organic layers was investigated in dark and light experimental channels at two field sites. Layer formation was monitored by measuring organic carbon, chlorophyll-a, ATP and rates of oxygen consumption, and using scanning electron microscopy.
  • 2 In the darkened forest stream channel an organic layer consisting of slime, fine particles, bacteria and fungi developed and attained maximum biomass (=0.08 mg cm-2) in about 2 months. At the second site, channels were fed by spring water low in dissolved and particulate organic matter (DOC < 0.5 g m-3) and no organic layer developed on stones in the dark. Organic layers grown in channels subject to natural light intensities and photoperiods were dominated by diatoms and/or filamentous algae at both sites.
  • 3 Laboratory experiments carried out in enclosed, recirculating stream channels demonstrated the importance of dissolved organic matter (DOM) as a prerequisite for layer formation. Also. DOM additions in the form of leaf leachates stimulated oxygen consumption by preformed layers. Uptake by microorganisms accounted for most of the reduction in water-column DOM.
  • 4 Radiotracer experiments (14C and 144Ce) showed that several common stream invertebrates could feed on ‘heterotrophic’ layers. Calculated assimilation efficiencies ranged from 18% to 74% and imply that nonautotrophic components of stone surface organic layers are likely to play a significant role in carbon transfer to the benthos, particularly in small, shaded streams.
  相似文献   

6.
7.
Biogeochemical processes in the groundwater discharge zone of urban streams   总被引:1,自引:0,他引:1  
The influence of biogeochemical processes on nitrogen and organic matter transformation and transport was investigated for two urban streams receiving groundwater discharge during the dry summer baseflow period. A multiple lines of evidence approach involving catchment-, and stream reach-scale investigations were undertaken to describe the factors that influence pore water biogeochemical processes. At the catchment-scale gaining stream reaches were identified from water table mapping and groundwater discharge estimated to be between 0.1 and 0.8 m3 m?2 d?1 from baseflow analysis. Sediment temperature profiles also suggested that the high groundwater discharge limited stream water infiltration into the sediments. At the stream reach-scale, dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) concentrations were higher in stream water than in groundwater. However, DOC and DON concentrations were greatest in sediment pore water. This suggests that biodegradation of sediment organic matter contributes dissolved organic matter (DOM) to the streams along with that delivered with groundwater flow. Pore water ammonium (NH4 +) was closely associated with areas of high pore water DOM concentrations and evidence of sulfate (SO4 2?) reduction (low concentration and SO4:Cl ratio). This indicates that anoxic DOM mineralization was occurring associated with SO4 2? reduction. However the distribution of anoxic mineralization was limited to the center of the streambed, and was not constrained by the distribution of sediment organic matter which was higher along the banks. Lower sediment temperatures measured along the banks compared to the center suggests, at least qualitatively, that groundwater discharge is higher along the banks. Based on this evidence anoxic mineralization is influenced by groundwater residence time, and is only measurable along the center of the stream where groundwater flux rates are lower. This study therefore shows that the distribution of biogeochemical processes in stream sediments, such as anoxic mineralization, is strongly influenced by both the biogeochemical conditions and pore water residence time.  相似文献   

8.
Seasonal variations of dissolved inorganic nitrogen (DIN) (NO3–N and NH4–N) and dissolved organic nitrogen (DON) were determined in Fuirosos, an intermittent stream draining an unpolluted Mediterranean forested catchment (10.5 km2) in Catalonia (Spain). The influence of flow on streamwater concentrations and seasonal differences in quality and origin of dissolved organic matter, inferred from dissolved organic carbon to nitrogen ratios (DOC:DON ratios), were examined. During baseflow conditions, nitrate and ammonium had opposite behaviour, probably controlled by biological processes such as vegetation uptake and mineralization activity. DON concentrations did not have a seasonal trend. During storms, nitrate and DON increased by several times but discharge was not a good predictor of nutrient concentrations. DOC:DON ratios in streamwater were around 26, except during the months following drought when DOC:DON ratios ranged between 42 and 20 during baseflow and stormflow conditions, respectively. Annual N export during 2000–2001 was 70 kg km−1 year−1, of which 75% was delivered during stormflow. The relative contribution of nitrogen forms to the total annual export was 57, 35 and 8% as NO3–N, DON and NH4–N, respectively.  相似文献   

9.
10.
Understanding how the concentration and chemical quality of dissolved organic matter (DOM) varies in soils is critical because DOM influences an array of biological, chemical, and physical processes. We used PARAFAC modeling of excitation–emission fluorescence spectroscopy, specific UV absorbance (SUVA254) and biodegradable dissolved organic carbon (BDOC) incubations to investigate the chemical quality of DOM in soil water collected from 25 cm piezometers in four different wetland and forest soils: bog, forested wetland, fen and upland forest. There were significant differences in soil solution concentrations of dissolved organic C, N, and P, DOC:DON ratios, SUVA254 and BDOC among the four soil types. Throughout the sampling period, average DOC concentrations in the four soil types ranged from 9–32 mg C l−1 and between 23–42% of the DOC was biodegradable. Seasonal patterns in dissolved nutrient concentrations and BDOC were observed in the three wetland types suggesting strong biotic controls over DOM concentrations in wetland soils. PARAFAC modeling of excitation–emission fluorescence spectroscopy showed that protein-like fluorescence was positively correlated (r 2 = 0.82; P < 0.001) with BDOC for all soil types taken together. This finding indicates that PARAFAC modeling may substantially improve the ability to predict BDOC in natural environments. Coincident measurements of DOM concentrations, BDOC and PARAFAC modeling confirmed that the four soil types contain DOM with distinct chemical properties and have unique fluorescent fingerprints. DOM inputs to streams from the four soil types therefore have the potential to alter stream biogeochemical processes differently by influencing temporal patterns in stream heterotrophic productivity.  相似文献   

11.
1. Microbial decomposition of dissolved organic carbon (DOC) contributes to overall stream metabolism and can influence many processes in the nitrogen cycle, including nitrification. Little is known, however, about the relative decomposition rates of different DOC sources and their subsequent effect on nitrification. 2. In this study, labile fraction and overall microbial decomposition of DOC were measured for leaf leachates from 18 temperate forest tree species. Between 61 and 82% (mean, 75%) of the DOC was metabolized in 24 days. Significant differences among leachates were found for labile fraction rates (P < 0.0001) but not for overall rates (P=0.088). 3. Nitrification rates in stream sediments were determined after addition of 10 mg C L–1 of each leachate. Nitrification rates ranged from below detection to 0.49 μg N mL sediment–1 day–1 and were significantly correlated with two independent measures of leachate DOC quality, overall microbial decomposition rate (r=–0.594, P=0.0093) and specific ultraviolet absorbance (r=0.469, P=0.0497). Both correlations suggest that nitrification rates were lower in the presence of higher quality carbon. 4. Nitrification rates in sediments also were measured after additions of four leachates and glucose at three carbon concentrations (10, 30, and 50 mg C L–1). For all carbon sources, nitrification rates decreased as carbon concentration increased. Glucose and white pine leachate most strongly depressed nitrification. Glucose likely increased the metabolism of heterotrophic bacteria, which then out‐competed nitrifying bacteria for NH4+. White pine leachate probably increased heterotrophic metabolism and directly inhibited nitrification by allelopathy.  相似文献   

12.
Past studies have suggested that the concentration and quality of dissolved organic matter (DOM) may influence microbial community structure. In this study, we cross-inoculated the bacterial communities from two streams and a dystrophic lake that varied in DOM concentration and chemistry, to yield nine fully crossed treatments. We measured dissolved organic carbon (DOC) concentration and heterotrophic microbial community productivity throughout a 72-h incubation period, characterized DOM quality by molecular weight, and determined microbial community structure at the initial and final time points. Our results indicate that all bacterial inoculate sources had similar effects upon DOC concentration and DOM quality, regardless of the DOM source. These effects included an overall decrease in DOM M W and an initial period of DOC concentration variability between 0-24h. In contrast, microbial communities and their metabolic rates converged to profiles that reflected the DOM source upon which they were growing, regardless of the initial bacterial inoculation. The one exception was that the bacterial community from the low-concentration and low-molecular-weight DOM source exhibited a greater denaturing gradient gel electrophoresis (DGGE) band richness when grown in its own DOM source than when grown in the highest concentration and molecular weight DOM source. This treatment also exhibited a higher rate of productivity. In general, our data suggest that microbial communities are selected by the DOM sources to which they are exposed. A microbial community will utilize the low-molecular-weight (or labile) DOM sources as well as parts of the high-molecular-weight (refractory) DOM, until a community develops that can efficiently metabolize the more abundant high-molecular-weight source. This experiment examines some of the complex interactions between microbial community selection and the combined factors of DOM quality and concentration. Our data suggest that the roles of aerobic aquatic heterotrophic bacteria in carbon cycling, as well as the importance of high-molecular-weight DOM as a carbon source, may be more complex than is conventionally recognized.  相似文献   

13.
14.
Release of oxygen from the roots ofaquatic macrophytes into anaerobic sediments canaffect the quantity of interstitial dissolved organicmatter and nutrients that are available to bacteria. Nutrient and dissolved organic carbon (DOC)concentrations were compared between subsurface(interstitial) waters of unvegetated sediments andsediments among stands of the emergent herbaceousmacrophyte Juncus effusus L. in a lotic wetlandecosystem. Concentrations of inorganic nitrogen(NH4 +, NO3 -, and NO2 -)were greater from sediments of the unvegetatedcompared to the vegetated zone. DOC concentrations ofinterstitial waters were greater in sediments of theunvegetated zone both in the winter and springcompared to those from the vegetated zone. AlthoughDOC concentrations in hydrosoils collected from bothzones increased from winter to spring, bacterialproductivity per mg DOC in spring decreased comparedto winter. Greater initial bacterial productivityoccurred on DOM collected from the vegetated comparedto the unvegetated zone in winter samples (days 1 and4), with increased bacterial productivity on samplescollected from the unvegetated zone at the end of thestudy (day 20). Bacterial productivity wassignificantly greater on all sampling days on DOM fromvegetated samples compared to unvegetated samples. In nutrient enrichment experiments, bacterialproductivity was significantly increased (p < 0.05)with phosphorus but not nitrogen only amendments.  相似文献   

15.
We measured sediment production of carbon dioxide (CO2) and methane (CH4) and the net flux of CO2 across the surfaces of 15 boreal and subarctic lakes of different humic contents. Sediment respiration measurements were made in situ under ambient light conditions. The flux of CO2 between sediment and water varied between an uptake of 53 and an efflux of 182 mg C m−2 day−1 from the sediments. The mean respiration rate for sediments in contact with the upper mixed layer (SedR) was positively correlated to dissolved organic carbon (DOC) concentration in the water (r2 = 0.61). The net flux of CO2 across the lake surface [net ecosystem exchange (NEE)] was also closely correlated to DOC concentration in the upper mixed layer (r2 = 0.73). The respiration in the water column was generally 10-fold higher per unit lake area compared to sediment respiration. Lakes with DOC concentrations <5.6 mg L−1 had net consumption of CO2 in the sediments, which we ascribe to benthic primary production. Only lakes with very low DOC concentrations were net autotrophic (<2.6 mg L−1) due to the dominance of dissolved allochthonous organic carbon in the water as an energy source for aquatic organisms. In addition to previous findings of allochthonous organic matter as an important driver of heterotrophic metabolism in the water column of lakes, this study suggests that sediment metabolism is also highly dependent on allochthonous carbon sources.  相似文献   

16.
Although water in mangrove sediments influences nutrient cycling in both, mangrove forest and estuary, little information exists on seasonal and vertical distribution of dissolved organic and inorganic compounds in the sediment column. We studied the influence of sediment texture and chemistry, permeability (K), tides, and rainfall on dissolved organic carbon (DOC) and nitrogen (DON), dissolved inorganic phosphate (DIP) and salinity in creek and sediment waters of a mangrove in Pará, Brazil. Water samples were taken from boreholes and piezometers in the mangrove forest and from an adjacent tidal creek at neap and spring tides, during the dry and rainy season. Forest sediment was analysed for carbon (C), nitrogen (N), salinity and permeability. Clay, C and N decreased with depth. Sediment permeability (K) was lowest (<0.1 m day−1) in the upper, clay-rich and crab-burrow-free mud layer. In the deeper, fine sand strata, K ranged from 0.7 to 1.8 m day−1. Tidal range in the creek was 3.5 and 5.5 m for neap and spring tides, respectively. Salinity, DOC, DON and DIP in creek water were inversely related to tidal height. Piezometer data revealed significant water level changes in deeper, sandy sediment layer, which followed, time-lagged, the tidal fluctuations. In contrast, tide did not affect the water level in the upper sediment due to low permeability. Compared with creek water, sediment water was enriched in DOC, DON and DIP because of organic matter input and mineralization. In deeper layers, solute concentration was most likely affected by sorption processes (DOC and DIP) and reduction reactions (DIP). During the rainy season, DOC and DON in creek and sediment water were higher than in the dry season. DIP appeared invariant to seasonal changes. In the rainy season, salt flushing from surface sediments resulted in higher salinities at intermediate sediment depths, while in the deeper layers salinity was lower due to exchange with water from the tidal creek.  相似文献   

17.
We examined the impact of permafrost on dissolved organic matter (DOM) composition in Caribou-Poker Creeks Research Watershed (CPCRW), a watershed underlain with discontinuous permafrost, in interior Alaska. We analyzed long term data from watersheds underlain with varying degrees of permafrost, sampled springs and thermokarsts, used fluorescence spectroscopy, and measured the bioavailabity of dissolved organic carbon (DOC). Permafrost driven patterns in hydrology and vegetation influenced DOM patterns in streams, with the stream draining the high permafrost watershed having higher DOC and dissolved organic nitrogen (DON) concentrations, higher DOC:DON and greater specific ultraviolet absorbance (SUVA) than the streams draining the low and medium permafrost watersheds. Streams, springs and thermokarsts exhibited a wide range of DOC and DON concentrations (1.5–37.5 mgC/L and 0.14–1.26 mgN/L, respectively), DOC:DON (7.1–42.8) and SUVA (1.5–4.7 L mgC−1 m−1). All sites had a high proportion of humic components, a low proportion of protein components, and a low fluorescence index value (1.3–1.4), generally consistent with terrestrially derived DOM. Principal component analysis revealed distinct groups in our fluorescence data determined by diagenetic processing and DOM source. The proportion of bioavailable DOC ranged from 2 to 35%, with the proportion of tyrosine- and tryptophan-like fluorophores in the DOM being a major predictor of DOC loss (p < 0.05, R 2 = 0.99). Our results indicate that the degradation of permafrost in CPCRW will result in a decrease in DOC and DON concentrations, a decline in DOC:DON, and a reduction in SUVA, possibly accompanied by a change in the proportion of bioavailable DOC.  相似文献   

18.
Dissolved organic matter (DOM) is an important component of aquatic food webs. We compare the uptake kinetics for NH4–N and different fractions of DOM during soil and salmon leachate additions by evaluating the uptake of organic forms of carbon (DOC) and nitrogen (DON), and proteinaceous DOM, as measured by parallel factor (PARAFAC) modeling of DOM fluorescence. Seasonal DOM slug additions were conducted in three headwater streams draining a bog, forested wetland, and upland forest using DOM collected by leaching watershed soils. We also used DOM collected from bog soil and salmon carcasses to perform additions in the upland forest stream. DOC uptake velocity ranged from 0.010 to 0.063 mm s−1 and DON uptake velocity ranged from 0.015 to 0.086 mm s−1, which provides evidence for the whole-stream uptake of allochthonous DOM. These findings imply that wetlands could potentially be an important source of DOM to support stream heterotrophic production. There was no significant difference in the uptake of DOC and DON across the soil leachate additions (P > 0.05), although differential uptake of DOM fractions was observed as protein-like fluorescence was removed from the water column more efficiently than bulk DOC and DON (P < 0.05). Moreover, PARAFAC analysis of DOM fluorescence showed that protein-like fluorescence decreased downstream during all DOM additions, whereas humic-like fluorescence did not change. This differential processing in added DOM suggests slow and fast turnover pools exist for aquatic DOM. Taken together, our findings argue that DON could potentially fill a larger role in satisfying biotic N demand in oligotrophic headwater streams than previously thought. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Author contributions  J.B.F. conceived of or designed study, performed research, analyzed data, contributed new methods or models, and wrote the paper. E.H. conceived of or designed study and analyzed data. R.T.E. conceived of or designed study and analyzed data. J.B.J. contributed new methods or models and analyzed data.  相似文献   

19.
  • 1 The terrestrial-aquatic interface beneath a riparian corridor was investigated as a region of hydrological and biological control of nutrient flux. Subsurface flow paths were defined from the channel toward the riparian zone and also from the riparian zone toward the channel using tracer-injection studies. Solute transport had a rapid channel component (m min?1) and a slow hyporheic flow component (mh?1, m day?1). Subsurface flow beneath the riparian zone approximated a straight path entering at meanders but could also cross beneath the stream, possibly using relic channels.
  • 2 Dissolved oxygen (DO) concentration in the hyporheic zone ranged from <1.0 to 9.5mgl?1 due to permeability variations in bankside sediments. DO concentration was related to the proportion of stream water in the lateral hyporheic zone, indicating that the channel water was the DO source.
  • 3 The magnitude and riming of lateral water exchange was linked to previously published studies of nitrification and denitrificarion. Both nitrification potential and channel exchange decreased with distance from the channel and were absent at sites lacking effective exchange, due to low DO. Field amendment of ammonium to an aerobic flow path indicated nitrification potential under natural hydrological conditions. Denitrification potential was inversely related to channel exchange and was insignificant in channel sediments. Field amendment of acetylene plus nitrate to a flow path with low DO and minimal channel exchange indicated denitrificarion of amended nitrate.
  • 4 Comparison of hydraulic head to distribution of the biologically important solutes DO, ammonium, and nitrate was useful for interpreting previous findings and conceptualizing the riparian zone as a functioning ecotone between terrestrial and aquatic systems.
  相似文献   

20.
Temporal and spatial distributions of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), chlorophyll-a and inorganic nitrogen were investigated in two small mountainous lakes (Lake Hongfeng and Baihua), on the Southwestern China Plateau, based on almost 2 years’ field observation. DOC concentrations ranged from 163 μM to 248 μM in Lake Hongfeng and from 143 μM to 308 μM in Lake Baihua, respectively, during the study period. DON concentrations ranged from 7 μM to 26 μM in Lake Hongfeng and from 14 μM to 47 μM in Lake Baihua. DOC showed vertical heterogeneity with higher concentrations in the epilimnion than in the hypolimnion during the stratification period. The DON concentration profiles appeared to be more variable than the DOC profiles. Apparent DON maxima occurred in the upper layer of water. In Lake Hongfeng, DOC concentration in the surface water was highest at the end of spring and early summer. DON concentration was 2–5 μM higher in May 2003 and in June 2004 than in adjacent months. DOC and chlorophyll-a concentrations were significantly correlated (r = 0.79, P < 0.05). The period of highest concentrations of DOC in Lake Hongfeng was also the season of concentrated rainfall. Algae activity and allochthonous input might result in an increase of DOC and DON concentrations together. In Lake Baihua, the maximum concentrations of DOC and DON in the surface water occurred simultaneously in May 2003 and February 2004. DOC concentrations were significantly correlated with DON (r = 0.90, P < 0.01), indicating the common sources. Allochthonous input, biological processes, stratification and mixing were the most important factors controlling the distributions and cycling of dissolved organic matter (DOM) and inorganic nitrogen in these two lakes. Inference from the corresponding vertical distributions of DOM and inorganic nitrogen indicated that DOM played potential roles in the internal loading of nitrogen and metabolism in the water body in these small lakes. The carbon/nitrogen (C/N) ratio showed a potential significance for tracing the source and biogeochemical processes of DOM in the lakes. These results are of significance in the further understanding of biogeochemical cycling and environmental effects of DOM and nitrogen in lake ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号