首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
About 50% of the ethanolamine in phosphatidylethanolamine in Tetrahymena is replaced by 3-aminopropan-1-ol when the compound is added to the growth medium. The phosphatidylpropanolamine which is formed is not converted into the corresponding phosphatidylcholine analogue by methylation. There is an increase in phosphatidylcholine formed by the phosphotransferase pathway from free [3H]choline and a decrease in the phosphatidylcholine formed by the methylation pathway from [14C]methionine. The nature of the observed phospholipid alterations suggests that the regulation of phosphatidylcholine biosynthesis in Tetrahymena may be different from that found in higher eukaryotes.  相似文献   

2.
Effects of the calmodulin antagonists chlorpromazine, trifluoperazine, and N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide on phospholipid metabolism were examined in rabbit platelets using [3H]serine, [3H]ethanolamine, [3H]choline, and [3H]glycerol. All these drugs markedly stimulated the incorporation of [3H]serine into phosphatidylserine. On the other hand, these drugs had only a slight effect on the rate of incorporation of [3H]ethanolamine and [3H]choline into the corresponding phospholipid. When [3H]glycerol was used as a precursor of the phospholipids, 3H-labeled phospholipids were mainly composed of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol. Although the phosphorus content of phosphatidylserine was about 40% of that of phosphatidylcholine in rabbit platelets, the amount of phosphatidylserine labeled with [3H]glycerol was less than 2% of that of the labeled phosphatidylcholine, and calmodulin antagonists slightly stimulated the incorporation of [3H]glycerol into phosphatidylserine. Treatment with calmodulin antagonists caused a marked decrease in the content of endogenous free serine with concomitant increase in the contents of endogenous free ethanolamine and choline. On the other hand, the contents of other free amino acids, including essential and non-essential amino acids, were unchanged. These results suggest that the calmodulin antagonists we used did not affect de novo synthesis of phosphatidylserine, but did stimulate the serine phospholipid base-exchange reaction in rabbit platelets.  相似文献   

3.
Since phospholipids are major components of all serum lipoproteins, the role of phospholipid biosynthesis in lipoprotein secretion from cultured rat hepatocytes has been investigated. In liver, phosphatidylcholine is made both by the CDP-choline pathway and by the methylation of phosphatidylethanolamine, which in turn is derived from both serine (via phosphatidylserine) and ethanolamine (via CDP-ethanolamine). Monolayer cultures of rat hepatocytes were incubated in the presence of [methyl-3H]choline, [1-3H] ethanolamine, or [3-3H]serine. The specific radioactivity of the phospholipids derived from each of these precursors was measured in the cells and in the secreted lipoproteins of the cultured medium. The specific radioactivities of phosphatidylcholine and phosphatidylethanolamine derived from [1-3H]ethanolamine were markedly lower (approximately one-half and less than one-tenth, respectively) in the secreted phospholipids than in the cellular phospholipids. Thus, ethanolamine was not an effective precursor of the phospholipids in lipoproteins. On the contrary, the specific radioactivity of phosphatidylcholine made from [methyl-3H]choline was approximately equal in cells and lipoproteins. In addition, over the first 4 h of incubation with [3-3H]serine, the specific radioactivities of phosphatidylcholine and phosphatidylethanolamine were significantly higher in the lipoproteins than in the cells. These data indicate that there is not a random and homogeneous labeling of the phospholipid pools from the radioactive precursors. Instead, specific pools of phospholipids are selected, on the basis of their routes of biosynthesis, for secretion into lipoproteins.  相似文献   

4.
1. Phenobarbitone injection did not affect the concentration of phospholipids in the liver endoplasmic reticulum, but it increased the rate of incorporation of [(32)P]orthophosphate into the phospholipids. 20-Methylcholanthrene caused a transient increase in total phospholipid but a decrease in the turnover rate of the phospholipids. 2. Incorporation of [(32)P]orthophosphate into phosphatidylcholine, compared with that into phosphatidylethanolamine, was increased by phenobarbitone injection but decreased by 20-methylcholanthrene injection. 3. The activity of S-adenosylmethionine-phosphatidylethanolamine methyltransferase increased 12h after phenobarbitone injection, when incorporation of [(32)P]orthophosphate into phosphatidylcholine was a maximum, but at other times, and after 20-methylcholanthrene injection, the activity of the enzyme did not correlate with the rate of phosphatidylcholine synthesis. 4. [(14)C]Glycerol was incorporated more rapidly into phosphatidylcholine than into phosphatidylethanolamine, whereas [(32)P]orthophosphate and [(14)C]ethanolamine were incorporated more rapidly into phosphatidylethanolamine than into phosphatidylcholine. 5. Incorporation of [(32)P]orthophosphate into phosphatidylethanolamine of liver slices incubated in vitro was much more rapid than into phosphatidylcholine, and incorporation into phosphatidylcholine was markedly stimulated by addition of methionine to the medium. Changes in the incorporation of [(32)P]orthophosphate into phospholipids observed in vivo after injection of phenobarbitone or methylcholanthrene could not be reproduced in slices incubated in vitro. 6. It is concluded that phenobarbitone injection causes an increased rate of turnover of total phospholipids in the endoplasmic reticulum and an increased conversion of phosphatidylethanolamine into phosphatidylcholine, whereas 20-methylcholanthrene injection depresses both the turnover rate of total phospholipids and the formation of phosphatidylcholine.  相似文献   

5.
The squid giant axon and extruded axoplasm from the giant axon were used to study the capacity of axoplasm for phospholipid synthesis. Extruded axoplasm, suspended in chemically defined media, catalyzed the synthesis of phospholipids from all of the precursors tested. 32P-Labeled inorganic phosphate and gamma-labeled ATP were actively incorporated into phosphatidylinositol phosphate, while [2-3H]myo-inositol and L-[3H(G)]serine were actively incorporated into phosphatidylinositol and phosphatidylserine, respectively. Though less well utilized. [2-3H]glycerol was incorporated into phosphatidic acid, phosphatidylinositol, and triglyceride, and methyl-3H]choline and [1-3H]ethanolamine were incorporated into phosphatidylcholine and phosphatidylethanolamine, respectively. Isolated squid giant axons were incubated in artificial seawater containing the above precursors. The axoplasm was extruded following the incubations. Although most of the product lipids were recovered in the sheath (composed of cortical axoplasm, axolemma, and surrounding satellite cells), significant amounts (4-20%) were present in the extruded axoplasm. With tritiated choline and myo-inositol, the major labeled phospholipids found in both the extruded axoplasm and the sheath were phosphatidylcholine and phosphatidylinositol, respectively. With both glycerol and phosphate, phosphatidylethanolamine was a major labeled lipid in both axoplasm and sheath. These findings demonstrate that all classes of phospholipids are formed by endogenous synthetic enzymes in axoplasm. In addition, we feel that the different patterns of incorporation by intact axons and extruded axoplasm indicate that surrounding sheath cells contribute lipids to axoplasm. A comprehensive picture of axonal lipid metabolism should include axoplasmic synthesis and glial-axon transfer as pathways complementing the axonal transport of perikaryally formed lipids.  相似文献   

6.
The effects of ethanolamine, choline, and different fatty acids on phospholipid synthesis via the CDP-ester pathways were studied in isolated rat intestinal villus cells. The incorporation of [14C]glucose into phosphatidylethanolamine was stimulated severalfold by the addition of ethanolamine and long-chained unsaturated fatty acids, while the addition of lauric acid inhibited the incorporation of radioactivity into phosphatidylethanolamine. At concentrations of ethanolamine higher than 0.2 mM, phosphoethanolamine accumulated, but the concentrations of CDP-ethanolamine and the incorporation of radioactivity into phospatidylethanolamine did not increase further. The incorporation of [14C]glucose into phosphatidylcholine responded in a way similar to that of phosphatidylethanolamine, except that a 10-fold higher concentration of choline was required for maximal stimulation. CCC inhibited the incorporation of choline into phosphatidylcholine. In contrast with hepatocytes, villus cells did not form phosphatidylcholine via phospholipid N-methylation. The data indicate that, in intestinal villus cells, the cytidylyltransferase reactions are rate limiting in the synthesis of phosphatidylethanolamine and probably also of phosphatidylcholine. The availability of diacylglycerol and its fatty acid composition may also significantly affect the rate of phospholipid synthesis.  相似文献   

7.
The role of phospholipids in the assembly and secretion of very low density lipoproteins (VLDL) has been investigated by incubation of monolayer cultures of rat hepatocytes with monomethylethanolamine, an analogue of ethanolamine and choline. The cellular concentration of phosphatidylmonomethylethanolamine was increased 17-fold in response to treatment of hepatocytes with monomethylethanolamine. The secretion of phosphatidylcholine, triacylglycerol, and the apolipoproteins BH, BL, and E into VLDL was inhibited by approximately 50% in hepatocytes incubated with monomethylethanolamine, compared to untreated cells. Cell viability was unaffected by treatment with the ethanolamine analogue, as was cellular protein synthesis. The mechanism by which monomethylethanolamine reduced VLDL secretion was examined. Since monomethylethanolamine is a structural analogue of ethanolamine and choline, an obvious hypothesis for explanation of the effect on VLDL secretion was that phosphatidylcholine biosynthesis, which is required for VLDL secretion (Z. Yao and D. E. Vance. 1988. J. Biol. Chem. 263: 2998-3004) was inhibited. However, the biosynthesis of phosphatidylcholine from [3H]choline or from [3H]glycerol was not significantly reduced in the analogue-treated, compared with the untreated, hepatocytes. Nor was the incorporation of [3H]glycerol into cellular triacylglycerol altered in the monomethylethanolamine-treated cells. Furthermore, addition of monomethylethanolamine to hepatocytes did not reduce the rate of biosynthesis of phosphatidylethanolamine either from CDP-ethanolamine or from phosphatidylserine, nor was phosphatidylserine biosynthesis from [3-3H]serine affected. The 50% inhibition of VLDL secretion elicited by monomethylethanolamine was apparently specific for VLDL because there was no difference in secretion of HDL (lipid or apoprotein moieties) or albumin by cells incubated with or without the ethanolamine analogue. The experiments showed that inhibition of VLDL secretion by monomethylethanolamine was not the result of decreased biosynthesis of phospholipids, triacylglycerols, or cholesteryl esters. More subtle effects of the ethanolamine/choline analogue, for example interference by the increased amount of phosphatidylmonomethylethanolamine, in the process of assembly of lipids with apoB remain a possibility.  相似文献   

8.
In hepatocytes pre-labelled with [3H]glycerol, vasopressin increased by 20% the amount of radioactivity present in diacylglycerols. The effect of vasopressin was partially dependent on Ca2+. The magnitude of the increase in [3H]diacylglycerol was 5-times the sum of the radioactivity present in phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. No stimulation by vasopressin of the initial rate of incorporation of radioactivity into diacylglycerols was observed in cells incubated in the presence of 10 mM [3H]glycerol. Treatment of hepatocytes labelled with either [3H]ethanolamine or [3H]choline with vasopressin, ionophore A23187 or phospholipase C increased the amount of radioactivity present in trichloroacetic acid extracts of the cells. The effect of vasopressin was dependent on extracellular Ca2+. It is concluded that in hepatocytes vasopressin increases diacylglycerols by a process which does not principally involve the conversion of phosphoinositides to diacylglycerol or the de novo synthesis of diacylglycerol from glycerol 3-phosphate, but does involve the Ca2+-dependent conversion of phosphatidylethanolamine and phosphatidylcholine to diacylglycerol.  相似文献   

9.
J E Vance  D E Vance 《FEBS letters》1986,204(2):243-246
We have examined the effect of inhibitors of methylation of phosphatidylethanolamine on lipoprotein secretion from cultured rat hepatocytes. The incorporation of [1-3H]ethanolamine into phosphatidylcholine of hepatocytes and secreted lipoproteins was inhibited by greater than 90% by the methylation inhibitors 3-deazaadenosine and Neplanocin. In addition, these compounds strongly inhibited the incorporation of [3-3H]serine into the choline moiety of phosphatidylcholine of the hepatocytes, but had no effect on incorporation of [3-3H]serine into secreted phosphatidylcholine. The results suggest that a pool of phosphatidylcholine targeted for lipoprotein secretion originates from phosphatidylethanolamine made from serine and this methylation reaction has the unique property of being insensitive to 3-deazaadenosine.  相似文献   

10.
Phospholipid Metabolism in Mouse Sciatic Nerve In Vivo   总被引:4,自引:4,他引:0  
To probe the activities of various pathways of lipid metabolism in peripheral nerve, six phospholipid-directed precursors were individually injected into the exposed sciatic nerves of adult mice, and their incorporation into phospholipids and proteins was studied over a 2-week period. Tritiated choline, inositol, ethanolamine, serine, and glycerol were mainly used in phospholipid synthesis; in contrast, methyl-labeled methionine was primarily incorporated into protein. Phosphatidylcholine was the main lipid formed from tritiated choline, glycerol, and methionine precursors. Phosphatidylserine, phosphatidylethanolamine, and phosphatidylinositol were the main lipids formed from serine, ethanolamine, and inositol, respectively. With time there was a shift in label among phospholipids, with higher proportions of choline appearing in sphingomyelin, glycerol in phosphatidylserine, ethanolamine in phosphatidylethanolamine (plasmalogen), and inositol in polyphosphoinositides, especially phosphatidylinositol 4,5-bisphosphate. We suggest that the delay in formation of these phospholipids, which are concentrated in peripheral nerve myelin, may, at least in part, be due to their formation at a site(s) distant from the sites where the bulk of Schwann cell lipids are made. We propose that separating the synthesis of these myelin-destined lipids to near the Schwann cell's plasma membrane would facilitate their concentration in peripheral nerve myelin sheaths. At earlier labeling times, ethanolamine and glycerol were more actively incorporated into phosphatidylcholine and phosphatidylinositol, respectively, than later. The transient labeling of these phospholipids may reflect some unique role in peripheral nerve function.  相似文献   

11.
Phospholipid metabolism was studied in rat sciatic nerve during Wallerian degeneration induced by crush injury. Portions of crushed sciatic nerve, incubated with labeled substrates, showed significantly higher phosphatidylcholine synthesis than normal nerve, prior to any measurable alterations of phospholipid composition. Maximum synthesis occurred 3 days after crush injury, at which time the metabolism of other phospholipids was unchanged. After a rapid decrease in biosynthetic activity, a second phase of enhanced phosphatidylcholine synthesis occurred, beginning 6 days after crush injury. Increased incorporation of [33P]phosphate, [2-3H]glycerol, and [Me-14C]choline indicated stimulation of de novo synthesis of phosphatidylcholine 3 days after injury. Neither base exchange reactions nor sequential methylation of ethanolamine phospholipids contributed significantly to phosphatidylcholine synthesis. Assay of certain key enzymes under optimal conditions in subcellular fractions of sciatic nerve revealed higher activities of cholinephosphate cytidyltransferase, choline phosphotransferase, and acyl-CoA:lysophosphatidylcholine acyltransferase in injured nerve, while choline kinase activity remained unchanged. This indicates that stimulation of phosphatidylcholine synthesis occurs via the cytidine nucleotide pathway, as well as by increased acylation of lysophosphatidylcholine. Although the cause of stimulated phosphatidylcholine synthesis remains unexplained, it is possible that trace amounts of lysophospholipids or other metabolites produced by injury-enhanced phospholipase activity may be responsible.  相似文献   

12.
The effect of the presence of nitrogenous bases in the growth medium of fetal rat brain aggregating cell cultures was investigated. The presence of either N-methylethanolamine (MME) or N,N-dimethylethanolamine (DME) in the growth medium resulted in significant increase of the corresponding phospholipid, phosphatidyl-N-monomethylethanolamine (PMME) or phosphatidyl-N,N-dimethylethanolamine (PDME). They represented 28% and 32% of the total phospholipids, respectively. The presence of the new phospholipids was accompanied by a significant decrease of phosphatidylethanolamine (PE) and phosphatidylcholine (PC). Cells grown in the presence of ethanolamine or choline had only barely detectable amounts of PMME and PDME. Intact cells previously grown with the bases were incubated with [methyl-3H]methionine. Incubation of cells previously grown in presence of the bases MME and DME resulted in a marked increase of radioactivity in the corresponding phospholipids possessing one additional methyl group, PDME and PC respectively. The incorporation of S-adenosyl[methyl-3H]methionine (AdoMet) was examined in cell homogenates incubated in presence or absence of either PMME or PDME acceptors. The addition of these exogenous phospholipids caused a three-or fourfold stimulation of radioactivity incorporated into the total phospholipids of cells grown in the absence of nitrogen bases. The cells grown in presence of either MME or DME in the culture medium did not show an increased incorporation of methyl groups from AdoMet into the total phospholipids after addition of exogenous acceptors. This work suggests that MME and DME incorporated into the corresponding phospholipids function as effective substrates for phospholipid-N-methylation.  相似文献   

13.
The role of endogenous phospholipid substrates for phospholipid methylation was investigated in rat liver microsomes. The amount of phosphatidylethanolamine could be drastically reduced by treatment of microsomes with an amino group-blocking compound, methylacetimidate. Simultaneously, the formation of labelled phospholipids from S-adenosyl[Me-3H]methionine decreased, indicating that the amount of endogenous substrate influenced the reaction rate. Phosphatidylmonomethylethanolamine, phosphatidyldimethylethanolamine and phosphatidylmonoethylethanolamine added as dispersions to untreated or treated microsomes stimulated phospholipid methylation, whereas several other phospholipids were inactive. In other experiments the role of phospholipid substrates in intact cells was studied. Cultured rat hepatocytes were enriched in different phospholipids by preincubation with different amino alcohols, and the effects of phospholipid methylation was measured by incubation with [Me-14C]methionine. Phospholipid methylation was significantly stimulated after preincubation with ethanolamine, monomethylethanolamine, monoethylethanolamine and 2-aminobutanol. The results show that both the number and chain length of N-alkyl substituents on phosphatidylethanolamine, as well as other changes in the ethanolamine moiety, will affect the ability of different phospholipids to act as methyl acceptors.  相似文献   

14.
Mature human erythrocytes were tested for their ability to synthetize membrane phospholipids from simple precursors: [32P]-orthophosphate (32Pi), [U-14C] glycerol, [U-14C] glucose, [U-14C] serine, and [U-14C] choline. The incorporation of these labels into phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI), phosphatidic acid (PA), lysophosphatidylcholine (lyso-PC), phosphatidylinositol-4-phosphate (PIP), and phosphatidylinositol-4,5-bisphosphate (PIP2) was measured. All the phospholipids tested incorporated 32Pi, glycerol, and glucose in a time dependent manner. According to the rate of 32Pi incorporation, three groups of phospholipids could be distinguished: 1) PA, PIP2, PIP, lyso-PC; 2) PI and PS; 3) PC and PE, which incorporated 5 x 10(3), 40, and 6 nmol 32Pi/mmol phospholipid per 1 h, respectively. Moreover, [U-14C] serine and [U14C] choline were found to incorporate into phospholipids, and PS-decarboxylase activity could be measured. The possibility that the observed incorporation was due to contamination with bacteria or other blood cells could be ruled out. Our results bring evidence for de novo phospholipid synthesis of human red blood cells.  相似文献   

15.
Mudd SH  Datko AH 《Plant physiology》1986,82(1):126-135
The pathway for synthesis of phosphatidylcholine, the dominant methyl-containing end product formed by Lemna paucicostata, has been investigated. Methyl groups originating in methionine are rapidly utilized by intact plants to methylate phosphoethanolamine successively to the mono-, di-, and tri-methyl (i.e. phosphocholine) phosphoethanolamine derivatives. With continued labeling, radioactivity initially builds up in these compounds, then passes on, accumulating chiefly in phosphatidylcholine (34% of the total radioactivity taken up by plants labeled to isotopic equilibrium with l-[(14)CH(3)]methionine), and in lesser amounts in soluble choline (6%). Radioactivity was detected in mono- and dimethyl derivatives of free ethanolamine or phosphatidylethanolamine only in trace amounts. Pulse-chase experiments with [(14)CH(3)]choline and [(3)H] ethanolamine confirmed that phosphoethanolamine is rapidly methylated and that phosphocholine is converted to phosphatidylcholine. Initial rates indicate that methylation of phosphoethanolamine predominates over methylation of either phosphatidylethanolamine or free ethanolamine at least 99:1. Although more studies are needed, it is suggested this pathway may well turn out to account for most phosphatidylcholine synthesis in higher plants. Phosphomethylethanolamine and phosphodimethylethanolamine are present in low quantities during steady-state growth (18% and 6%, respectively, of the amount of phosphocholine). Radioactivity was not detected in CDP-choline, probably due to the low steady-state concentration of this nucleotide.  相似文献   

16.
1. Incorporation of [Me-14C]choline and [2-14C]ethanolamine into lipids was studied in germinating soya bean (Glycine max L.) seeds. The precursors are only incorporated into phosphatidylcholine and into phosphatidylethanolamine respectively. 2. Base-labelling via a phospholipase-D type of reaction was eliminated as a significant factor. 3. Cyclo heximide inhibited labelling of phosphatidylcholine from [Me-14C]choline but did not affect labelling of the aqueous choline pool. It had no effect on [2-14C]ethanolamine uptake or incorporation into phosphatidylethanolamine. 4. Hemicholinium-15 at 10mM concentrations decreased uptake and lipid labelling from the both bases. 5. There was no evidence for base competition. 6. The endogenous pool of choline was much larger than that of ethanolamine, which resulted in higher specific radioactivities for phosphatidyl-ethanolamine than for phosphatidylcholine. 7. The results can be interpreted as indicating that the kinase and phosphoryltransferase enzymes of the CDP-base pathways are separate for each phospholipid.  相似文献   

17.
Comparative studies were undertaken on the in vivo and in vitro incorporation of [14C] ethanolamine, [3H] methionine and [14C] S-adenosyl-methionine into phosphatidylethanolamine (PhE) and phosphatidylcholine (PhC) of rat liver and brain. It was observed that brain can synthesize de novo PhC from PhE via the transmethylation pathway, however synthesis rates were (1) markedly lower than those of liver and (2) decreased significantly with age. In the choline-containing lipids more than 95% of the radioactivity was found in PhC. Studies on the localization of the radioactivity in PhC following the intracranial injection of [3H] methionine or [14C] ethanolamine revealed that both precursors are incorporated almost exclusively into the choline moiety of this phospholipid. There was significant labeling of PhC only when the precursors were administered intracranially and much less incorporation was observed with the systemic routes. Thus following the intravenous administration of [14C] ethanolamine, the specific radioactivities of liver PhE and PhC were up to 75 times as high as those of brain and 4 to 5 times as high in the organs of the 20-day old as those of the adult. In contrast, when this precursor was administered intracranially the specific radioactivities of both phospholipids in liver were only twice as high as those of brain. Although the short-and long-term time-course studies on the in vivo incorporation of [14C] ethanolamine and [3H] methionine into PhC of both organs could suggest a precursor-product relationship between the biosynthesis of this phospholipid in liver and brain, this apparent relationship could also be due to the high turnover of PhE in liver, with half-life of 2.87 hr, and its low turnover in brain, with half-life of 10.7 days. The present findings on the low rate of formation of PhC from PhE in brain coupled with the fact that this conversion declines sharply with age, especially when the isotopes are administered systemically, could explain the observation of previous investigators that the brain cannot synthesize its own choline and thus it must derive its choline from exogenous sources such as lipid-choline. It was concluded that the brain can synthesize its own choline; however it remains also dependent on liver and dietary choline which are probably transported into the brain as free choline.  相似文献   

18.
The deacylation and reacylation process of phospholipids is the major pathway of turnover and repair in erythrocyte membranes. In this paper, we have investigated the role of carnitine palmitoyltransferase in erythrocyte membrane phospholipid fatty acid turnover. The role of acyl-L-carnitine as a reservoir of activated acyl groups, the buffer function of carnitine, and the importance of the acyl-CoA/free CoA ratio in the reacylation process of erythrocyte membrane phospholipids have also been addressed. In intact erythrocytes, the incorporation of [1-14C]palmitic acid into acyl-L-carnitine, phosphatidylcholine, and phosphatidylethanolamine was linear with time for at least 3 h. The greatest proportion of the radioactivity was found in acyl-L-carnitine. Competition experiments using [1-14C]palmitic and [9,10-3H]oleic acid demonstrated that [9,10-3H]oleic acid was incorporated preferentially into the phospholipids and less into acyl-L-carnitine. When an erythrocyte suspension was incubated with [1-14C]palmitoyl-L-carnitine, radiolabeled palmitate was recovered in the phospholipid fraction, and the carnitine palmitoyltransferase inhibitor, 2-tetradecylglycidic acid, completely abolished the incorporation. ATP depletion decreased incorporation of [1-14C]palmitic and/or [9,10-3H]oleic acid into acyl-L-carnitine, but the incorporation into phosphatidylcholine and phosphatidylethanolamine was unaffected. In contrast, ATP depletion enhanced the incorporation into phosphatidylcholine and phosphatidylethanolamine of the radiolabeled fatty acid from [1-14C]palmitoyl-L-carnitine. These data are suggestive of the existence of an acyl-L-carnitine pool, in equilibrium with the acyl-CoA pool, which serves as a reservoir of activated acyl groups. The carnitine palmitoyltransferase inhibition by 2-tetradecylglycidic acid or palmitoyl-D-carnitine caused a significant reduction of radiolabeled fatty acid incorporation into membrane phospholipids, only when intact erythrocytes were incubated with [9,10-3H]oleic acid. These latter data may be explained by the differences in rates and substrates specificities between acyl-CoA synthetase and the reacylating enzymes for palmitate and oleate, which support the importance of carnitine palmitoyltransferase in modulating the optimal acyl-CoA/free CoA ratio for the physiological expression of the membrane phospholipids fatty acid turnover.  相似文献   

19.
Base exchange reactions of the phospholipids in rat brain particles   总被引:13,自引:0,他引:13  
A particulate fraction from rat brain catalyzes the incorporation of [(14)C]choline, [(14)C]ethanolamine, and l-[(14)C]serine into phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine, respectively. The reaction appears to be energy-independent since Mg(2+), CTP, ATP, and NaF have no stimulatory action. The incorporation is inhibited by EDTA and activated by Ca(2+). The pH optimum for the incorporation of choline is 9.5, for ethanolamine it is 9.0, and for l-serine it is 8.5. Tris, bicine, and imidazole buffers are inhibitory. The incorporations are inhibited by a variety of structurally related alcohols and are stimulated by isoserine (alpha-hydroxy,beta-aminopropionic acid).  相似文献   

20.
Effect of Light on the Metabolism of Lipids in the Rat Retina   总被引:1,自引:1,他引:0  
The effect of light on the in vitro incorporation of a variety of radioactive precursors into glycerolipids was tested in isolated retinas of albino rats. There was an increase in the incorporation of [2-3H]myo-inositol, 32Pi, [2-3H]glycerol, and [methyl-3H]choline into retinal phospholipids in light compared to that in darkness. [2-3H]myo-Inositol was incorporated primarily into phosphatidylinositol. 32Pi was incorporated primarily into the phosphoinositides, although there were significant increases in the specific activities of all retinal phospholipids in light compared to those in darkness. Likewise, [2-3H]glycerol incorporation into all retinal phospholipids and diglycerides was greater in light than in the dark. There was no effect of light on the incorporation of [2-3H]ethanolamine into phosphatidylethanolamine or of [3-3H]serine into phosphatidylserine, although these phospholipids were labeled to a greater extent in light with [2-3H]glycerol. There was no effect of light on the incorporation of [3H]palmitic acid into diglycerides and phospholipids, with the exception of phosphatidylinositol. Light also had no effect on the uptake of [2-3H]glycerol, [2-3H]inositol, or [methyl-3H]choline into the retina. We conclude from these studies that light stimulates the phosphoinositide effect in the rat retina. Although some of the results are consistent with a stimulation of de novo synthesis of all lipid classes, our studies with [3H]palmitate, [2-3H]ethanolamine, and [3-3H]serine do not support this conclusion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号